INOVANCE

MD520 Series
 General-Purpose AC Drive

 Function Guide

Preface

About This Guide

The MD520 series AC drive is a general-purpose high-performance current vector control AC drive. It is designed to control and regulate the speed and torque of three-phase AC asynchronous motors. The AC drive can be used to drive textile machines, paper machines, wire drawing machines, machine tools, packaging machines, food machines, fans, water pumps, and other automated production equipment.

This guide introduces function application, fault codes, and parameters of the AC drive.

More Documents

Document Name	Document No.	Description
Quick Installation and Commissioning Guide	19011712	Describes the installation, wiring, commissioning, troubleshooting, parameters, and fault codes of the AC drive.
Hardware Guide	19011713	Describes the composition, technical specifications, components, dimensions, options (including installation accessories, cables, and peripheral electrical components), and expansion cards of the MD520 series AC drive, as well as routine maintenance and repair, and certification and standard compliance of the AC drive.
Installation Guide	19011714	Describes the installation dimensions, space design, specific installation steps, wiring requirements, routing requirements, and option installation requirements of the AC drive, as well as common EMC troubleshooting recommendations.
Commissioning Guide	19011715	Describes the tools, processes, and specific steps of commissioning of the AC drive, as well as troubleshooting, fault codes, and parameters related to the AC drive.
Communication Guide	19011716	Describes the communication method, networking, and communication settings of the AC drive.
Function Guide (this document)	19011717	Introduces function application, fault codes, and parameters of the AC drive.

Revision History

Date	Version	
January 2022	A00	First release

How to Obtain

This document is not delivered with the product. You can obtain the PDF version of this document by the following method:

Log in to Inovance's website (www.inovance.com), choose Support > Download, perform keyword search, and download the PDF file.

Table of Contents

Preface. 1
1 Function Application 8
1.1 Drive Configuration 8
1.1.1 Operation Command Sources 8
1.1.1.1 Setting Operation Command Source 8
1.1.1.2 Operating Panel Control. 8
1.1.1.3 Terminal I/O Control 9
1.1.1.4 Communication Control 13
1.1.1.5 Customization 15
1.1.2 Frequency Reference Sources 17
1.1.2.1 Setting Frequency Reference Sources 17
1.1.2.2 Selecting Source of Main Frequency Reference 17
1.1.2.3 Setting Main Frequency Through Operating Panel 19
1.1.2.4 Setting Main Frequency Through AI 19
1.1.2.5 Setting Main Frequency Through Multi-reference 23
1.1.2.6 Setting Main Frequency Through Simple PLC 25
1.1.2.7 Setting Main Frequency Through PID 26
1.1.2.8 Setting Main Frequency Through Communication 28
1.1.2.9 Selecting Source of Auxiliary Frequency Reference 30
1.1.2.10 Setting Frequency Based on Main and Auxiliary Frequency References 31
1.1.2.11 Setting Offset Frequency and Supplementary Frequency 34
1.1.2.12 Setting Frequency Reference Limits 34
1.1.2.13 Setting Action to Take When Frequency Is Below Lower Limit 35
1.1.2.14 Setting Main Frequency Through Pulse Input 36
1.1.3 Startup/Stop Modes 36
1.1.3.1 Startup Modes 36
1.1.3.2 Stop Modes. 39
1.1.3.3 Acceleration/Deceleration Time 41
1.2 Motor Configuration 43
1.2.1 Auto-tuning on Asynchronous Motor 45
1.2.2 Auto-tuning on Synchronous Motor 51
1.2.3 Motor Parameters 56
1.3 Control Interfaces 57
1.3.1 DI 57
1.3.2 DO 64
1.3.3 VDI 70
1.3.4 VDO 73
1.3.5 DIO 75
1.3.6 AI 78
1.3.7 AO and HDO 90
1.4 Control Performance 97
1.4.1 V/f Curve 97
1.4.2 Output Current (Torque) Limit 101
1.4.3 Overvoltage Stall Suppression 103
1.4.4 Speed Loop 104
1.4.5 Vector Control Slip Auto-tuning 106
1.4.6 Vector Control Overexcitation 107
1.4.7 Torque Upper Limit. 107
1.4.8 Torque Control 110
1.4.9 Current Loop 114
1.4.10 Performance of Field Weakening Region 115
1.4.11 FVC Control Mode and Performance Improvement 116
1.4.12 Auxiliary Control. 118
1.4.13 Encoder Signal Processing 120
1.4.14 Synchronous Motor PMVVC 121
1.4.15 PID Adjustment 122
1.5 Application Control. 124
1.5.1 Jogging 124
1.5.2 Frequency Detection 126
1.5.2.1 Multi-speed Reference 126
1.5.2.2 Frequency Detection (FDT) 128
1.5.2.3 Skip Frequency 129
1.5.2.4 Reverse Frequency Inhibition. 130
1.5.2.5 Frequency Reach Detection Range 131
1.5.2.6 Acceleration/Deceleration Time Switchover Frequency 132
1.5.2.7 Frequency Reach Detection Value 133
1.5.3 Current Detection. 134
1.5.3.1 Zero Current Detection 134
1.5.3.2 Output Overcurrent Threshold 134
1.5.3.3 Current Detection Level 135
1.5.2 FWD/REV Switchover Deadzone Time. 136
1.5.3 Timing Function 137
1.5.4 Accumulative Duration Reach 137
1.5.5 Current Running Duration Threshold 138
1.5.6 AI1 Voltage Upper/Lower Limit 138
1.5.7 IGBT Temperature 139
1.5.8 Cooling Fan Control 139
1.5.9 Output Power Correction 139
1.5.10 User-defined Parameters 139
1.5.11 Hibernation and Wakeup 141
1.6 Faults and Protection 143
1.6.1 Startup Protection 143
1.6.2 Undervoltage/Overvoltage Threshold and Fast Current Limiting 143
1.6.3 Phase Loss Protection 144
1.6.4 Motor Overheat Protection 144
1.6.5 Motor Overload Protection 145
1.6.6 Load Loss Protection 147
1.6.7 Overspeed Protection 148
1.6.8 Protection Against Excessive Speed Deviation 148
1.6.9 Motor Locked-rotor Protection 149
1.6.10 Motor Stall Protection 149
1.6.11 Current Control Fault Protection 149
1.6.12 Power Dip Ride-Through 149
1.6.13 Fault Reset 152
1.6.14 Auto Restart Upon Fault 154
1.6.15 Fault Protection Actions 156
1.6.16 Self-check 161
1.7 Monitoring 165
2 Process Control 176
2.1 Wobble Control Function 176
2.2 Fixed Length Control Function 177
2.3 Counting Function 178
2.4 Simple PLC Function 179
2.5 Master-Slave Control 184
2.6 Free Programming Modules 189
2.6.1 Word-Bit Conversion 189
2.6.2 W-DW Conversion 192
2.6.3 Logic Operations 193
2.6.4 Arithmetic Operations 197
2.6.5 Switch Functions 200
2.6.6 Control Functions. 203
2.6.7 Multi-point Curve 206
2.6.8 Constant Value 207
2.6.9 Any Parameter Control 209
2.6.10 Motor-driven Potentiometer 211
2.6.11 Multi-reference 214
3 Troubleshooting 216
3.1 Common Faults and Diagnosis 216
3.1.1 Display of Alarms and Faults 216
3.1.2 Restart upon Faults 216
3.1.3 Common Troubleshooting 218
3.1.4 Troubleshooting During Trial Run in Different Control Modes 219
3.2 List of Fault Codes 221
3.3 List of Fault Attributes 235
4 Parameter Group 241
4.1 FO: Basic Parameters 241
4.2 F1: Motor 1 Parameters 254
4.3 F2: Motor 1 Vector Control Parameters 259
4.4 F3: V/f Control Parameters 1. 268
4.5 F4: Input Terminal Parameters 278
4.6 F5: Output Terminal Parameters 306
4.7 F6: Startup/Stop Control Parameters 326
4.8 F7: Operating Panel and Display Parameters 333
4.9 F8: Auxiliary Function Parameters 343
4.10 F9: Fault and Protection Parameters 360
4.11 FA: Process Control PID Parameters 381
4.12 FB: Wobble, Fixed Length, and Counting Parameters 392
4.13 FC: Multi-reference Parameters 404
4.14 FD: Communication Parameters 420
4.15 FE: User-Defined Parameters 428
4.16 FP: Parameter Management 435
4.17 A0: Torque Control Parameters 443
4.18 A1: Virtual I/O Parameters 451
4.19 A2: Motor 2 Nameplate and Learning Parameters 1 467
4.20 A3: Motor $2 \mathrm{~V} / \mathrm{f}$ Control Parameters 479
4.21 A4: Control Source Parameters 490
4.22 A5: Control Optimization Parameters 511
4.23 A6: Al Curve Parameters 513
4.24 A8: Point-to-Point Communication Parameters 525
4.25 A9: Motor Parameters 1 527
4.26 AA: Reserved 543
4.27 AB: Motor Control Parameters 1 564
4.28 AC: AI/AO Correction Parameters 584
4.29 AF: Process Data Address Mapping Parameters 588
4.30 B6: Motor 2 Startup Control and Protection Parameters 601
4.31 B7: Motor 2 Nameplate and Learning Parameters 2 612
4.32 B8: Motor 2 Control, Protection, and Vector Parameters 1 627
4.33 B9: Motor 2 Vector Control Parameters 2 648
4.34 BA: Motor 3 Nameplate and Learning Parameters 668
4.35 BB: Motor 3 V/f Control Parameters 688
4.36 BC: Motor 3 Control and Protection Parameters 699
4.37 BD: Motor 3 Observation and Vector Parameters 720
4.38 BE: Motor 3 Vector Parameters 738
4.39 BF: AC Drive Parameters 758
4.40 C0: Communication Adaptation Parameters 767
4.41 C1: Word-Bit Conversion Parameters 790
4.42 C2: W-DW Conversion Parameters 806
4.43 C3: Logical Operation Parameters 812
4.44 C4: Arithmetic Operation Parameters 832
4.45 C5: Switch Function Parameters 855
4.46 C6: Control Function Parameters 894
4.47 C7: Multi-point Curve Parameters 923
4.48 C8: Constant Parameters 931
4.49 C9: Any Monitoring Parameters, Monitoring Parameters, and Commissioning Parameters 940
4.50 CA: Motor 4 Nameplate and Learning Parameters 953
4.51 CB: Motor 4 V/f Control Parameters 973
4.52 CC: Motor 4 Control and Protection Parameters 984
4.53 CD: Motor 4 Observation and Vector Parameters 1003
4.54 CE: Motor 4 Vector Parameters 1021
4.55 H0: Fault Information Parameters 1041
4.56 H1: Fault Setting Parameters 1052
4.57 H2: Fault Setting Parameters 1056
4.58 H3: Fault Display Parameters 1066
4.59 H4: Fault Display Parameters 1076
4.60 H5: Fault Display Parameters 1087
4.61 H6: Fault Display Parameters 1097
4.62 H7: Fault Display Parameters 1107
4.63 H8: Fault Display Parameters 1118
4.64 U0: Monitoring Parameters. 1128
4.65 U2: System Parameters 1145
4.66 U3: System Parameters 1155
4.67 L0: Bit Connector 1 Parameters 1162
4.68 L1: Bit Connector 2 Parameters 1182
4.69 L2: Bit Connector 3 Parameters 1196
4.70 L3: Bit Connector 4 Parameters. 1216
4.71 L4: Bit Connector 5 Parameters 1227
4.72 L5: Word Connector 1 Parameters. 1236
4.73 L6: Word Connector 2 Parameters 1254
4.74 L7: Word Connector 3 Parameters 1261
4.75 L9: DWord Connector 1 Parameters 1271
4.76 LB: Floating-point Connector 1 Parameters 1277
4.77 LC: Floating-point Connector 2 Parameters 1286
4.78 LD: Floating-point Connector 3 Parameters 1295
5 List of Parameters 1315
5.1 List of Parameters 1315

1 Function Application

1.1 Drive Configuration

1.1.1 Operation Command Sources

1.1.1.1 Setting Operation Command Source

Operation commands are used to control the start, stop, forward run, reverse run, and jog operations of the AC drive. Four command sources are available: operating panel, terminal I/O, communication, and customization. You can select the operation command source by setting F0-02.

Para.	Name	Default	Value Range	Description
F0-02	Operation command source	0	0 : Operating panel control 1: Terminal I/O control 2: Communication control 3: Customization	This parameter defines the source of the AC drive control commands, such as run, stop, forward run, reverse run, and jog. 0 : Operating panel control Control commands are input using the RUN, STOP/RES, and MF.K keys on the operating panel. This mode is suitable for initial commissioning. 1: Terminal I/O control Control commands are input through the DI terminals of the AC drive. The DI terminal control commands can be set based on different scenarios, such as start/stop, forward/reverse run, jog, two-wire/threewire control, and multi-speed. It is suitable for most applications. 2: Communication control Control commands are input through remote communication. The AC drive must be equipped with a communication card to communicate with the host controller. This mode applies to remote control or centralized control of multiple equipment. 3: Customization The command source can be selected flexibly. It is used for expansion.

1.1.1.2 Operating Panel Control

1. When $\mathrm{F0}-02$ is set to 0 , the start and stop of the AC drive are controlled by pressing keys (
 and
) on the operating panel.

- When you press , the AC drive starts to run (the RUN indicator is on).
- When you press during running, the AC drive stops running (the RUN indicator is off).

2. When F0-02 is set to 0 , you can also use commissioning software to control running of the $A C$ drive.
3. Open InoDriverShop and connect to the AC drive, as shown in the following figure.
4. Double-click Control Panel under the AC drive on the commissioning software to open the control panel interface. The following figure shows the control panel interface:

- Enter the set frequency in the input box on the panel and click Update Frequency to change the preset frequency defined by F0-08.
- Click on the panel.The AC drive starts forward running.
- Click on the panel. The AC drive starts reverse running.
- When the AC drive is running, click on the panel. The AC drive stops running.
- Hold on the panel. The AC drive starts forward jogging. When the key is released, jogging stops.
- Hold on the panel. The AC drive starts reverse jogging. When the key is released, jogging stops.
- When the AC drive is faulty, click to reset the fault.

1.1.1.3 Terminal I/O Control

When F0-02 is set to 1 , the start and stop of the $A C$ drive are controlled through terminals.
You can set F4-11 to select a terminal control mode. Four terminal I/O control modes are available, including two-wire mode 1 , two-wire mode 2 , three-wire mode 1 , and three-wire mode 2.

Para.	Name	Default	Value Range	Description		
F4-11	$\begin{array}{l}\text { Terminal control } \\ \text { mode }\end{array}$	0	0: Two-wire mode 1	This parameter		
defines the mode in						
1: Two-wire mode 2						
which the AC drive is						
controlled by					$\}$ 2: Three-wire mode 1	3: Three-wire mode 2
:---						

You can use any of multi-functional input terminals DI1 to DI10 as external input terminals. You can define he functions of DI1 to DI10 by setting F4-00 to F4-09. For details, see the description of F4-00 (DI1) to F4-09 (DI10) in "5.1 List of Parameters" on page 1315.

Two-wire mode 1

When F4-11 is set to 0 , two-wire mode 1 is used. This is the most commonly used two-wire mode.
For example, DI 1 is assigned with the forward run function, and DI2 is assigned with the reverse run function. Connect the forward run switch to DI1 and the reverse run switch to DI2.

Related Parameter	Name	Reference	Function Description
F4-11	Terminal control mode	0	Two-wire mode 1
F4-00	D11 function	1	Forward RUN (FWD)
F4-01	D12 function	2	Reverse RUN (REV)

When SW1 is closed and SW2 is open, the motor rotates in the forward direction. When SW1 is open and SW2 is closed, the motor rotates in the reverse direction. When SW1 and SW2 are both open or closed, the motor stops. See the following figure.

Figure 1-1 Wiring and parameter setting for two-wire mode 1

Figure 1-2 Timing diagram of two-wire mode 1 (normal)

Figure 1-3 Timing diagram of two-wire mode 1 (abnormal)

Two-wire mode 2

In this mode, DI1 is assigned with the operation command function, and DI2 is assigned with the running direction function. The parameters are set as follows.

Related Parameter	Name	Reference	Function Description
F4-11	Terminal control mode	1	Two-wire mode 2
F4-00	DI1 function	1	Operation command
F4-01	DI2 function	2	Running direction

When SW1 is closed, the motor rotates in the forward direction with SW2 open, and it rotates in the reverse direction with SW2 closed. When SW1 is open, the motor stops regardless of the status of SW2. See the following figure.

SW1	SW2	Command
1	0	Forward
1	1	Reverse
0	0	Stop
0	1	Stop

Figure 1-4 Wiring and parameter setting for two-wire mode 2

Figure 1-5 Timing diagram of two-wire mode 2

Three-wire mode 1

In this mode, DI3 is assigned with the three-wire operation control function, DI1 is assigned with the forward run function, and DI2 is assigned with the reverse run function. The AC drive buttons are used as the start/stop switch. The start/stop button is connected to DI3, the forward RUN button is connected to DI1, and the reverse RUN button is connected to DI2. The parameters are set as follows.

Related Parameter	Name	Reference	Function Description
F4-11	Terminal control mode	2	Three-wire mode 1
F4-00	DI1 function	1	Forward RUN (FWD)

Related Parameter	Name	Reference	Function Description
F4-01	DI2 function	2	Reverse RUN (REV)
F4-02	DI3 function	3	Three-wire operation control

SW3 is a normally-closed (NC) button, whereas SW1 and SW2 are normally-open (NO) buttons. If SW3 is closed, the motor rotates in the forward direction when you press down SW1, and it rotates in the reverse direction when you press down SW2. The motor stops immediately when SW3 opens. SW3 must remain closed during normal start and running. A signal from SW1 or SW2 takes effect once SW1 or SW2 is closed.

Figure 1-6 Wiring and parameter setting for three-wire mode 1

Figure 1-7 Timing diagram of three-wire mode 1

Three-wire mode 2

For example, DI3 is assigned with the three-wire operation control function, DI1 is assigned with the command function, and DI2 is assigned with the forward/reverse run switchover function. The start/ stop button is connected to DI3, the running enable signal is connected to DI1, and the forward/ reverse RUN button is connected to DI2. The parameters are set as follows.

Related Parameter	Name	Reference	Function Description
F4-11	Terminal control mode	3	Three-wire mode 2
F4-00	DI1 function	1	Operation command
F4-01	DI2 function	2	Running direction
F4-02	DI3 function	3	Three-wire operation control

If SW3 is closed, the AC drive runs when you press down SW1. The AC drive runs in the forward direction if SW2 is open and in the reverse direction if SW2 is closed. The motor stops immediately after SW3 is open. SW3 must remain closed during normal start and running. A signal from SW1 takes effect once SW1 is closed.

Figure 1-8 Wiring and parameter setting for three-wire mode 2

Figure 1-9 Timing diagram of three-wire mode 2

1.1.1.4 Communication Control

When $\mathrm{F} 0-02$ is set to 2 , the start and stop of the AC drive are controlled through communication.
The AC drive supports six types of communication with the host computer: Modbus (Modbus RTU, Modbus ASCII, and Modbus TCP), PROFIBUS DP, CANlink, CANopen, PROFINET, and EtherCAT, which
cannot be used at the same time. To enable communication as the command source, you must install a communication card. The AC drive supports six optional communication cards. If Modbus, PROFIBUS DP, CANopen, PROFINET, or EtherCAT is used, you need to set FO-28 (communication protocol selection) to select an applicable serial communication protocol. The CANlink protocol is valid all the time.

When the AC drive is controlled through serial communication, the host controller must send a write command to the AC drive. Here takes the Modbus protocol as an example to describe how to control the AC drive through communication.

Figure 1-10 Setting commands through communication
For example, to make the $A C$ drive run in reverse direction, the host computer sends the write command 01062000000203 CB (hexadecimal). The following table describes the meaning of each byte in the command. The command is in hexadecimal format. For other communication addresses and control commands, see "Appendix B: Communication Data Address Definition and Modbus Protocol".

Command	
01 H (configurable)	AC drive address
06 H	Write command
2000 H	Control command communication address
02 H (reverse RUN)	Control command
03 CBH	CRC check

The following table describes the master and slave communication commands and responses:

Host Command		Slave Response	
ADDR	01 H	ADDR	01 H
CMD	06 H	CMD	06 H
High-order bits of parameter address	20 H	High-order bits of parameter address	20 H
Low-order bits of parameter address	00 H	Low-order bits of parameter address	00 H
High-order bits of data content	00 H	High-order bits of data content	00 H
Low-order bits of data content	02 H	Low-order bits of data content	02 H
CRC high-order bits	03 H	CRC high-order bits	03 H
CRC low-order bits	CBH	CRC low-order bits	CBH

1.1.1.5 Customization

When F0-02 is set to 3 , the start and stop of the AC drive are controlled through a custom channel. The AC drive supports two sets of custom channel parameter configurations.

Table 1-1

Para.	Name	Default	Value Range	Description
A4-00	Custom channel selection	0	0 : Control channel 1 1: Control channel 2	Selection between two custom channels
A4-01	Custom OFF1 source	0	0: Disabled 3-18: DI1 to D116 Others: B connector	Source of start/stop control OFF1 for custom channel 1
A4-02	Custom OFF2 source 1	0	0: Enabled 1: Disabled 3-18: DI1 to DI16 Others: B connector	Source 1 of coast to stop command OFF2 for custom channel 1. The coast to stop command OFF2 is valid if any of the three sources is active low.
A4-03	Custom OFF3 source 1	0	0: Enabled 1: Disabled 3-18: DI1 to DI16 Others: B connector	Source 1 of emergency stop command OFF3 for custom channel 1 . The emergency stop command OFF3 is valid if any of the three sources is active low.
A4-04	Custom running permission source	0	0: Not permitted 1: Permitted 3-18: DI1 to DI16 Others: B connector	Running permission source for custom channel 1
A4-05	Custom fault reset source 1	0	0: Disabled 1: Enabled 3-18: DI1 to DI16 Others: B connector	Source 1 of the fault reset command for custom channel 1. The fault reset command is valid if any of the three sources is active high.
A4-06	Custom JOG1 source	0	0: Disabled 3-18: DII to DI16 Others: B connector	Source of the JOG1 command for custom channel 1

Para.	Name	Default	Value Range	Description
A4-07	Custom JOG2 source	0	0: Disabled 3-18: DI1 to DI16 Others: B connector	Source of the JOG2 command for custom channel 1
A4-08	Custom speed negation source	0	0: Disabled 1: Enabled 3-18: DI1 to DI16 Others: B connector	Source of the negation command for custom channel 1
A4-21	Custom OFF1 source	0	0: Disabled 3-18: DI1 to DI16 Others: B connector	Source of start/stop control OFF1 for custom channel 2
A4-22	Custom OFF2 source 1	0	0 : Enabled 1: Disabled 3-18: DI1 to DI16 Others: B connector	Source 1 of coast to stop command OFF2 for custom channel 2. The coast to stop command OFF2 is valid if any of the three sources is active low.
A4-23	Custom OFF3 source 1	0	0: Enabled 1: Disabled 3-18: DI1 to DI16 Others: B connector	Source 1 of emergency stop command OFF3 for custom channel 2 . The emergency stop command OFF3 is valid if any of the three sources is active low.
A4-24	Custom running permission source	0	0: Not permitted 1: Permitted 3-18: DI1 to DI16 Others: B connector	Running permission source for custom channel 2
A4-25	Custom fault reset source 1	0	0: Disabled 1: Enabled 3-18: DI1 to DI16 Others: B connector	Source 1 of the fault reset command for custom channel 2. The fault reset command is valid if any of the three sources is active high.
A4-26	Custom JOG1 source	0	0: Disabled 3-18: DI1 to DI16 Others: B connector	Source of the JOG1 command for custom channel 2

Para.	Name	Default	Value Range	Description
A4-27	Custom JOG2 source	0	0: Disabled $3-18:$ D11 to DI16 Others: B connector	Source of the JOG2 command for custom channel 2
A4-28	Custom speed negation source	0	0: Disabled $1:$ Enabled $3-18:$ D11 to DI16 Others: B connector	Source of the negation command for custom channel 2

1.1.2 Frequency Reference Sources

1.1.2.1 Setting Frequency Reference Sources

The AC drive supports three frequency references: main frequency reference, auxiliary frequency reference, and main and auxiliary frequency superposition.

1.1.2.2 Selecting Source of Main Frequency Reference

The AC drive supports more than 10 main frequency sources, including digital setting (non-retentive at power failure), digital setting (retentive at power failure), AI1, AI2, AI3, pulse input, multi-reference, simple PLC, PID, communication, and other F connector, which can be selected by setting F0-03 (0 to $9)$.

Figure 1-11 Main frequency reference selection

Para.	Name	Value Range	Default
F0-03	Main frequency source X	0: Digital setting (preset frequency (F0-08) that can be changed by pressing UP/DOWN; nonretentive at power failure) 1: Digital setting (preset frequency (F0-08) that can be changed by pressing UP/DOWN; retentive at power failure) 2: Al1 3: Al2 4: Al3 5: Pulse reference (DI5) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication Others: F connector	0

1.1.2.3 Setting Main Frequency Through Operating Panel

There are two ways to set the main frequency by using the operating panel:

- Set F0-03 to 0 (non-retentive at power failure). That is, when the $A C$ drive is powered on again after stop or power failure, the frequency reference is restored to the preset frequency (F0-08).
Modifications made to the preset frequency (F0-08) by using the \triangle and \rightarrow keys or UP and DOWN of terminals are cleared when the AC drive stops.
- Set F0-03 to 1 (retentive at power failure). That is, when the AC drive is powered on again after stop or power failure, the frequency reference is restored to the value memorized at the moment of the last power failure. Modifications made to the preset frequency (F0-08) by using the \triangle and keys or UP and DOWN of terminals are retained when the AC drive stops. For example, the preset frequency (F0-08) is set to 40 Hz and is adjusted to 45 Hz by using the \triangle key on the operating panel. If F0-23 is set to 0 (non-retentive), the target frequency is restored to 40 Hz (value of FO-08) after the AC drive stops; if F0-23 is set to 1 (retentive), the target frequency is still 45 Hz after the AC drive stops.

Note

Distinguish this parameter from F0-23 (Retentive memory of digital setting frequency upon stop). F0-23 determines whether the frequency setting is retained or cleared after the AC drive stops. FO-23 is related only to the stop state of the AC drive, rather than power failure.

The related parameters are as follows.

Para.	Name	Vefault	Value Range
F0-08	Preset frequency	50.00 Hz	0.00 Hz to maximum frequency (F0-10)
F0-10 Para.	Maximum frequency	50.00 Hz	50.00 Hz to 600.00 Hz
Name			Default
F0-23 Value Range			

1.1.2.4 Setting Main Frequency Through AI

When the main frequency is set through analog input, $\mathrm{Al} 1, \mathrm{Al} 2$, or Al 3 can be used. When $\mathrm{F} 0-03$ is set to 2 , AI1 is used as the main frequency reference source; when F0-03 is set to $3, \mathrm{Al} 2$ is used as the main frequency reference source; when $\mathrm{FO}-03$ is set to 4 , AI3 is used as the main frequency reference source.

When an AI terminal is used as the frequency source, it supports five types of AI curves. The AI curve defines the relationship between the analog input voltage (or current) and the corresponding setpoint.

Step	Related Parameters	Description
(Step 1) Set the Al curve: Set the relationship between the AI voltage/current inputs and frequency setpoints.	F4-13 to F4-16	Curve 1 setting
	F4-18 to F4-21	Curve 2 setting
	F4-23 to F4-26	Curve 3 setting
	A6-00 to A6-07	Curve 4 setting
	A6-08 to A6-15	Curve 5 setting
	F4-34	Setting for Al less than the minimum input (When Al is used as the frequency reference source, the setpoint 100% corresponds to the maximum frequency (FO-10).)
(Step 2) Select an AI curve for the AI terminal: Select a curve and filter time for the Al terminal.	F4-33	AI curve selection (You can select any AI curve for the Al terminal. Typically the default value is used (F4-33 $=0 \times 321$). That is, select curve 1 for Al1, curve 2 for Al2, and curve 3 for AI3.)
	F4-17, F4-22, and F4-27	Filter time of Al1 to Al3
(Step 3) Select an Al terminal as the frequency reference source: Select the Al terminal for setting the frequency reference based on terminal characteristics.	F0-03 (main frequency reference source)	$F 0-03=2$ Select AI1.
		$F 0-03=3$ Select AI2. You can choose voltage input or current input by using the DIP switches S1 to S3 on the control board.
		$F 0-03=4$ Select AI3. You can choose voltage input or current input by using the DIP switch S1 on the control board.

Setting AI Curve

Five types of Al curves are available. Curve 1, curve 2, and curve 3 are two-point curves, which are defined by parameters F4-13 to F4-27. Curves 4 and 5 are four-point curves, which are defined by parameters are in group A6.

The following takes AI curve 1 as an example to describe the settings. The related parameters are F4-13 to F4-16.

Figure 1-12 Settings of AI curve 1
When an Al terminal is used as the main frequency source, the voltage/current input setpoint 100\% indicates the percentage relative to the maximum frequency (F0-10).

When AI current mode 1 input is used, 1 mA current corresponds to 0.5 V voltage, and 0 to 20 mA current correspond to -10 V to +10 V voltage.

When Al current mode 2 input is used, 1 mA current corresponds to 0.25 V voltage, and 0 to 40 mA current correspond to -10 V to +10 V voltage.

Curve 2 and curve 3 are set in a similar way as curve 1 . Curve 2 is set by parameters F4-18 to F4-21, and curve 3 is set by parameters F4-23 to F4-26.

Figure 1-13 Settings of AI curve 2
The function of curve 4 and curve 5 is similar to that of curve 1 to curve 3 . However, curve 1 to curve 3 are straight lines, while curve 4 and curve 5 are 4 -point curves, which offer more flexible mapping. The x-axis of the Al curves 4 and 5 indicates the analog input voltage (or current), and the y-axis indicates the setpoint corresponding to the analog input, that is, the percentage relative to the maximum frequency (F0-10). The four points on curves 4 and 5 are the minimum input point, inflection 1 , inflection 2, and maximum input point. A6-00 corresponds to the x-axis of the minimum input point, that is, the minimum analog input voltage (or minimum analog input current).

When setting curve 4 and curve 5 , note that the curve's minimum input voltage, inflexion 1 voltage, inflexion 2 voltage, and maximum voltage must be in ascending order. Curve 4 is set by parameters A600 to A6-07, and curve 5 is set by parameters A6-08 to A6-15.

Figure 1-14 Curve 4 and curve 5

Selecting AI Curve for AI Terminal

The curves of terminals AI1 and AI2 are determined by the ones and tens positions of F4-33, which can be set to any of the five curves.

Longer AI input filter time indicates stronger anti-interference capability but slower adjustment response. Shorter filter time indicates faster adjustment response but weaker anti-interference capability. If the onsite analog input is prone to interference, you can increase the filter time to stabilize the detected analog input. However, increasing the Al filter time will slow down the response to analog detection. Therefore, the filter time must be set properly based on actual conditions.

Selecting AI Terminal as Frequency Reference Source

The control board provides three AI terminals: AI1, AI2, and AI3. AI1 provides voltage input of -10 V to +10 V . Al 2 and Al 3 provide voltage input of -10 V to +10 V or current input of 0 mA to $20 / 40 \mathrm{~mA}$. You can choose voltage input, current input, or temperature input for AI2 by using the DIP switches S1 to S3 on the control board, and you can select voltage input or temperature input for AI3 by using the DIP switch S1 on the expansion card. (For details, see Chapter 3 "Installation and Wiring".) The following describes how to set each AI terminal as the main frequency source.

For example, assume that curve 1 is selected for AI1 (the ones position of F4-33 is set to 1), and AI1 voltage input is selected as the main frequency source. To set the frequency reference to 10 Hz to 40 Hz (corresponding to 2 V to 10 V), set the parameters according to the following figure.

Figure 1-15 Parameter settings for AI1 voltage input as the main frequency source
Al2 can provide analog voltage input (-10 V to +10 V) or analog current input (0 mA to 20 mA).
When Al2 provides analog current input of 0 mA to 20 mA , the corresponding input voltage ranges from 0 V to +10 V . If the input current ranges from 4 mA to 20 mA , the corresponding input voltage ranges from 2 V to 10 V .

For example, assume that curve 2 is selected for AI2 (the tens position of F4-33 is set to 2), and AI2 current input is selected as the main frequency source. To set the frequency reference to 0 Hz to 50 Hz (corresponding to 4 mA to 20 mA), set the parameters according to the following figure.

Figure 1-16 Parameter settings for using AI2 current input as main frequency reference

1.1.2.5 Setting Main Frequency Through Multi-reference

When F0-03 is set to 6 , multi-reference is selected as the main frequency reference source. It is suitable for applications where only several frequency values are required without the need for continuous frequency adjustment.

The AC drive supports a maximum of 16 frequency references, which can be set by using FC-55 to FC-58 or input signal combinations of four DI terminals. Terminal control takes priority. For example, if DI1 is assigned with the function of multi-reference terminal 1, FC-55 does not take effect. You can also use less than four DI terminals, and the missing bits are considered to be 0 .

The relationship between the reference quantity and DI terminal quantity is as follows:

- 2 frequency references: one DI terminal (K1); FC-55 to FC-58 are set to 0 .
- 3-4 frequency references: two DI terminals (K1 and K2); FC-57 to FC-58 are set to 0 .
- 5-8 frequency references: three DI terminals (K1, K2, and K3); FC-58 is set to 0 .
- 9-16 frequency references: four DI terminals (K1, K2, K3, and K4).

The required multi-reference frequencies are defined by the multi-reference table in group FC. The following table describes the related parameters.

Para.	Name	Default	Value Range	Description
FC-00	Multi-reference 0	0.00\%	-100.0\% to +100.0\%	The multi-reference value is a relative value, which is a percentage relative to the maximum frequency. The positive or negative property of the parameter value determines the running direction. If the value is negative, the $A C$ drive runs in the reverse direction. The acceleration and deceleration time are defined by F0-17 and F0-18 by default. 0: FC-00 1: Al1 2: Al2 3: AI3 4: Pulse (DI5) 5: PID 6: F0-08 (preset frequency), which can be changed by using terminal UP/DOWN
FC-01	Multi-reference 1	0.00\%	-100.0\% to +100.0\%	
FC-02	Multi-reference 2	0.00\%	-100.0\% to +100.0\%	
FC-03	Multi-reference 3	0.00\%	-100.0\% to +100.0\%	
FC-04	Multi-reference 4	0.00\%	-100.0\% to +100.0\%	
FC-05	Multi-reference 5	0.00\%	-100.0\% to +100.0\%	
FC-06	Multi-reference 6	0.00\%	-100.0\% to +100.0\%	
FC-07	Multi-reference 7	0.00\%	-100.0\% to +100.0\%	
FC-08	Multi-reference 8	0.00\%	-100.0% to $+100.0 \%$	
FC-09	Multi-reference 9	0.00\%	-100.0\% to +100.0\%	
FC-10	Multi-reference 10	0.00\%	-100.0\% to +100.0\%	
FC-11	Multi-reference 11	0.00\%	-100.0\% to +100.0\%	
FC-12	Multi-reference 12	0.00\%	-100.0\% to +100.0\%	
FC-13	Multi-reference 13	0.00\%	-100.0\% to +100.0\%	
FC-14	Multi-reference 14	0.00\%	-100.0\% to +100.0\%	
FC-15	Multi-reference 15	0.00\%	-100.0\% to +100.0\%	
FC-51	Multi-reference 0 source	0	0 to 6	

When using multi-reference as the main frequency source, set the DI function selection parameters to 12 to 15 to select the input terminals.

Para.	Name	Reference	Function Description
F4-01	DI2 function	12	Multi-reference terminal 1
F4-03	DI4 function	13	Multi-reference terminal 2
F4-06	DI7 function	14	Multi-reference terminal 3
F4-07	DI8 function	15	Multi-reference terminal 4

Application

In the following figure, terminals DI2, DI4, DI7, and DI8 are used as multi-reference input terminals. They each contribute one bit to a 4-bit binary value, and different combinations of the bits represent different frequencies. When values of (DI2, DI4, DI7, DI8) are ($0,0,1,0$), they constitute a value of 2 . In this case, the frequency value set by FC-02 is selected. (See Table 6-1 for details about frequency selection.) Then, the target running frequency is calculated automatically by using the formula (FC-02) x (F0-10). The following figure shows the frequency setting.

Figure 1-17 Frequency setting in multi-speed mode
The four multi-reference terminals can provide 16 state combinations, corresponding to 16 frequency reference values. See the following table.

Table 1-2 State combinations of the four multi-reference terminals

K4	K3	K2		K1	Reference
OFF	OFF	OFF	OFF	Multi-reference 0	FC-00 (FC-51 =0)
OFF	OFF	OFF	ON	Multi-reference 1	FC-01
OFF	OFF	ON	OFF	Multi-reference 2	FC-02
OFF	OFF	ON	ON	Multi-reference 3	FC-03
OFF	ON	OFF	OFF	Multi-reference 4	FC-04
OFF	ON	OFF	ON	Multi-reference 5	FC-05
OFF	ON	ON	OFF	Multi-reference 6	FC-06
OFF	ON	ON	ON	Multi-reference 7	FC-07
ON	OFF	OFF	OFF	Multi-reference 8	FC-08
ON	OFF	OFF	ON	Multi-reference 9	FC-09
ON	OFF	ON	OFF	Multi-reference 10	FC-10
ON	OFF	ON	Multi-reference 12	FC-11	
ON-12					
ON	ON	OFF	ON	Multi-reference 13	FC-13
ON	ON	OFF	Multi-reference 14	FC-14	
ON	ON	ON	Multi-reference 15	FC-15	

In the preceding description, the multi-reference values are determined by selecting functions based on terminals using parameters in group F4. You can also set the multi-reference values by selecting terminals using parameters in group FC.

Para.	Name	Reference	Function Description
FC-55	Multi-reference value bit0	4	DI2
FC-56	Multi-reference value bit1	6	DI4
FC-57	Multi-reference value bit2	9	DI7
FC-58	Multi-reference value bit3	10	DI8

1.1.2.6 Setting Main Frequency Through Simple PLC

Step 1: Set F0-03 to 7 to select simple PLC as the main frequency source.

Step 2: Set parameters FC-00 to FC-15 and FC-18 to FC-49 to define the running time and acceleration/ deceleration time for each reference.

Figure 1-18 Setting simple PLC as the main frequency source
Step 3: Set FC-16 to select the simple PLC running mode.
Step 4: Set FC-17 to determine whether to retain the PLC running stage and running frequency upon a power failure or stop.

1.1.2.7 Setting Main Frequency Through PID

As a general process control method, PID control is a closed-loop mechanism in which each controlled variable is stabilized at the target level through proportional, integral, and differential calculation of the difference between the feedback signal and the target signal of the controlled variable. The output of PID control is used as the running frequency, which generally applies to on-site closed-loop control applications, such as constant pressure closed-loop control and constant tension closed-loop control.

- Proportional gain Kp: Once the deviation between PID output and input occurs, the PID controller adjusts the output to reduce the deviation. The speed at which the deviation decreases depends on the proportional coefficient Kp. A larger Kp tends to reduce the deviation faster, but may cause system oscillation, especially at large hysteresis. A smaller Kp indicates lower possibility of oscillation but also slower adjustment. (The value 100.0 indicates that when the difference between PID feedback and reference is 100.0%, the adjustment amplitude of the PID controller on the output frequency reference is the maximum frequency.)
- Integral time Ti: It determines the integral adjustment intensity of the PID controller. Shorter integral time indicates greater adjustment intensity. (Integral time refers to the time required for continuous adjustment of the integral regulator to reach the maximum frequency when the deviation between the PID feedback and reference is 100.0%.)
- Derivative time Td: It defines the deviation variation adjustment intensity of the PID controller. Longer derivative time indicates greater adjustment intensity. (Derivative time refers to the time within which the feedback value change reaches 100.0%, and the adjustment amplitude reaches the maximum frequency.)

Application

Step 1: Set F0-03 and F0-04 to 8 to select PID as the main frequency reference input source and auxiliary frequency input source.

Step 2: Set FA-00 to select a source of PID target reference. If FA-00 is set to 0 , set FA-01 (digital setting of PID). The value 100% of this parameter corresponds to the maximum value of PID feedback.

Al1, Al2, Al3, pulse (DI5), communication...

Figure 1-19 Block diagram of process PID control principle
Step 3: Set FA-02 to select a PID feedback source.
Step 4: Set FA-03 to select a PID action direction.
The following figure shows the logic of process PID control parameter configuration.

Figure 1-20 Block diagram of process PID control parameter configuration

The upper and lower limits and range of the frequency output when the PID is used as the main frequency source are described as follows (for example, when the frequency source is only PID or main + PID).

- When the reverse cut-off frequency is 0 or reverse running is inhibited (that is, any of the following):
(1) FA-08 $=0$, F8-13 $=0$; (2) FA- $08=0, F 8-13=1$; (3) FA- $08 \neq 0$, F8-13 $=1$

Output upper limit = Frequency upper limit
Output lower limit = Frequency lower limit
Output range = Frequency lower limit to frequency upper limit (that is, F0-14 to F0-12)

- When the reverse cut-off frequency is not 0 and reverse running is allowed (that is, FA-08 $\neq 0, \mathrm{~F}$ - 13 $=0$):
Output upper limit = Frequency upper limit, Output lower limit = -Reverse cut-off frequency
Output range $=-$ Reverse cut-off frequency to + Frequency upper limit (that is, - FA-08 to + F0-12)

Figure 1-21 PID parameter switchover

Figure 1-22 PID initial value function

1.1.2.8 Setting Main Frequency Through Communication

The following seven communication protocols are supported: Modbus, PROFIBUS DP, CANopen, CANlink, PROFINET, EtherCAT, and EthernetIP.

- When PROFIBUS DP, PROFINET, EtherCAT, EthernetIP, or CANopen (CANopen expansion card) is used, set Fd-00 to 9 and Fd-01 to 3.
- When a CANlink card is used for CANopen communication, set Fd-10 to 1 . Set Fd-12 and Fd-13 to specify the CAN communication baud rate and CAN station number, respectively.
- When a CANlink card is used for CANlink communication, set Fd-10 to 2. Set Fd-12 and Fd-13 to specify the CAN communication baud rate and CAN station number, respectively.
- When Modbus is used for communication, set Fd-00, Fd-01, and Fd-02 to specify the baud rate, data format, and local address, respectively.

Application

Step 1: Set F0-03 to 9 to select communication as the main frequency source.
Step 2: Send a write command to the AC drive from the host controller.
Here takes the Modbus protocol as an example to describe how to set the main frequency through communication. For example, to set the frequency to 10000 through communication, send the write command 0106100027109736.

The bytes are described as follows.

Byte	
01 H (configurable)	AC drive address
06 H	Write command
1000 H	Frequency reference address
$2710 \mathrm{H}(10000$ in decimal)	Target frequency
9736 H	CRC check

Similarly, to set the frequency to -10000 through communication, send the write command 01061000 D8 F0 D7 4E. In this command, D8F0 is the low-order four bits of the hexadecimal number converted from-10000.

Figure 1-23 Parameter settings when the main frequency is set through communication
Table 1-3 Correspondence between host commands and slave responses

Host Command		Slave Response	
ADDR	01 H	ADDR	01 H
CMD	06 H	CMD	06 H
High-order bits of parameter address	10 H	High-order bits of parameter address	10 H
Low-order bits of parameter address	00 H	Low-order bits of parameter address	00 H
High-order bits of data content	27 H	High-order bits of data content	27 H
Low-order bits of data content	10 H	Low-order bits of data content	10 H

Host Command		Slave Response	
CRC high-order bits	97 H	CRC high-order bits	97 H
CRC low-order bits	36 H	CRC low-order bits	36 H

The range of frequency reference set through communication is -10000 to +10000 (in decimal), corresponding to -100.00% (negative max. frequency) to $+100.00 \%$ (positive max. frequency). Assume that F0-10 (maximum frequency) is set to 50 Hz . If the frequency reference in the write command is 2710 H , which is equivalent to 10000 in decimal, the actual written frequency reference is 50 Hz (50 x 100\%).

1.1.2.9 Selecting Source of Auxiliary Frequency Reference

The AC drive supports 10 auxiliary frequency sources, including digital setting (non-retentive at power failure), digital setting (retentive at power failure), $\mathrm{Al} 1, \mathrm{AI} 2, \mathrm{AI} 3$, pulse input, multi-reference, simple PLC, PID, and communication, which can be selected by setting F0-04 (0 to 9).

When used as an independent frequency reference source, the auxiliary frequency reference source is used in the same way as the main frequency reference source. The following figure shows the block diagram. When the auxiliary frequency reference is used together with the main frequency reference to set the frequency reference, see "Setting Frequency Based on Main and Auxiliary Frequency

References".

Figure 1-24 Setting auxiliary frequency reference source

Para.	Name	Value Range	Default
F0-04	Auxiliary frequency source Y	0: Digital setting (preset frequency (F0-08) that can be changed by pressing UP/DOWN; nonretentive at power failure) 1: Digital setting (preset frequency (F0-08) that can be changed by pressing UP/DOWN; retentive at power failure) 2: Al1 3: AI2 4: Al3 5: Pulse (DI5) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication Others: F connector	0

1.1.2.10 Setting Frequency Based on Main and Auxiliary Frequency References

Main and auxiliary frequency reference superposition is used to set the frequency reference by combining the main frequency reference and auxiliary frequency reference. F0-07 defines the relationship between the target frequency and the main and auxiliary frequency references, which is described as follows.

Table 1-4 Relationship between target frequency and main and auxiliary frequency references

No.	Relationship Between Target Frequency and Main and Auxiliary Frequency References	
1	Main frequency reference	The main frequency reference is directly used as the target frequency.
2	Auxiliary frequency reference	The auxiliary frequency reference is directly used as the target frequency.
3	Main and auxiliary operation	There are four main and auxiliary operation results: main frequency reference + auxiliary frequency reference, main frequency reference - auxiliary frequency reference, larger value between main frequency reference and auxiliary frequency reference, and smaller value between main frequency reference and auxiliary frequency reference.
4	Frequency switchover	Any of the preceding three frequency sources selected or switched by using the DI terminal. The DI terminal must be assigned with function 18 (frequency reference switchover).

Figure 1-25 Selecting main and auxiliary frequency reference superposition result as frequency reference

Table 1-5 Main and auxiliary frequency reference superposition

Para.	Name	Default	Value Range
F0-05	Base value of range of auxiliary frequency source Y for superposition	0	0: Relative to the maximum frequency $1:$ Relative to main frequency reference
F0-06	Range of auxiliary frequency source Y for superposition	100%	0% to 150%

Para.	Name	Default	Value Range
F0-07	Frequency source superposition	0	Ones: Frequency source selection 0 : Main frequency source X 1: Main and auxiliary operation result (based on the tens) 2: Switchover between main frequency source X and auxiliary frequency source Y 3: Switchover between main frequency source X and main and auxiliary operation result 4: Switchover between auxiliary frequency source Y and main and auxiliary operation result Tens: Main and auxiliary frequency source operation 0 : Main + Auxiliary 1: Main - Auxiliary 2: Max. (main, auxiliary) 3: Min. (main, auxiliary) 4: Main x Auxiliary
F0-27	Frequency source bound to the command source	0	Ones: Frequency source bound to operating panel control 0 : No binding 1: Frequency digital setting 2: AI1 3: AI2 4: AI3 5: Pulse (DI5) 6: Multi-reference 7: Simple PLC 8: PID 9: Communication Tens: Frequency source bound to terminal I/O control Hundreds: Frequency source bound to communication control

F0-05 and F0-06 are used to limit the auxiliary frequency reference range and are only valid when the main + auxiliary operation is used.

F0-27 allows you to set the frequency sources for the three command sources of the AC drive, as shown in the preceding figure. When the specified command source (F0-02) is bound to a frequency source (corresponding bit of F0-27), the frequency is determined by the frequency reference source set in F027. In this case, both main and auxiliary frequency sources are ineffective.

1.1.2.11 Setting Offset Frequency and Supplementary Frequency

The offset frequency is defined by F0-21. It is directly superimposed on the raw main and auxiliary frequency operation result as a correction value before the ramp function generator (RFG).

Para.	Name	Value Range	Default
F0-21	Frequency offset for the frequency source	50.00 Hz to 600.00 Hz	50.00 Hz

The supplementary frequency is defined by A4-61. It is used in scenarios where speed adjustment needs to take effect directly without the acceleration and deceleration time. The supplementary frequency is only effective during normal operation, and the effective value is directly added to the RFG output.

Para.	Name	Value Range	Default
A4-61	Supplementary frequency	0: 0	0
		1: Al1	
		2: Al2	
		3: Al3	
		4: Pulse	
		5: Communication	
		6: Multi-reference	
		7: Motor-driven potentiometer	
		8: PID	
		Others: F connector	

1.1.2.12 Setting Frequency Reference Limits

Frequency upper limit: Limits the maximum operating frequency for motors.
Frequency lower limit: Limits the minimum operating frequency for motors.
Maximum frequency: Defines the maximum output frequency.
Frequency upper limit source: Defines the reference source of the frequency upper limit.
Frequency upper limit offset: Defines the offset of the frequency upper limit. This parameter is valid only when the frequency upper limit source is set to AI.

Para.	Name	Default	Value Range		
F0-10	Maximum frequency	50.00 Hz	50.00 Hz to 600.00 Hz		
F0-11	Source of frequency upper limit	0	0: F0-12 1: Al1 2: Al2 3: Al3		
F0-12			4: Pulse (DI5) 5: Communication 6: Multi-reference		
Others: F connector				,	Frequency lower limit (F0-
:---					
$14)$ to maximum frequency					
(F0-10)					

1.1.2.13 Setting Action to Take When Frequency Is Below Lower Limit

The frequency lower limit defines the minimum running frequency for the motor.
If the frequency of the $A C$ drive is set to a value below the frequency lower limit (F0-14), you need to set F8-14 to select the action of the AC drive. The actions include the following: run at frequency lower limit, stop, run at zero speed, and coast to stop.

- 0 : Run at frequency lower limit

When the running frequency is lower than the frequency lower limit, the $A C$ drive runs at the frequency lower limit.

- 1:Stop

When the running frequency is lower than the frequency lower limit, the AC drive stops.

- 2: Run at zero speed

When the running frequency is lower than the frequency lower limit, the AC drive runs at zero speed.

- 3. Coast to stop

If the running frequency is below the frequency lower limit, the AC drive coasts to stop.

Para.	Name	Default	Value Range	Description
F8-14	Action to take when frequency is below lower limit	0	0: Run at frequency lower limit 1: Stop 2: Run at zero speed	

1.1.2.14 Setting Main Frequency Through Pulse Input

When F0-03 is set to 5 , the pulse input is selected as the main frequency source. When the main frequency source is set to pulse (DI5), the pulse reference must be obtained from multi-functional input terminal DI5. The pulse reference signal specifications are $9-30 \mathrm{~V}$ (voltage range) and $0-100 \mathrm{kHz}$ (frequency range).

The procedure for setting the main frequency through pulse input is as follows:
Step 1: Set F0-03 to 5 to select pulse input as the main frequency source. In this mode, the pulse reference must be obtained from multi-functional input terminal DI5.

Step 2: Set F4-04 to 30 to assign DI5 with the pulse frequency input function.
Step 3: Set F0-07 to 00 to select the main frequency reference as the final frequency reference setting selection.

Step 4: Set the pulse reference curve. This curve defines the mapping between the pulse input of DI5 and the frequency setpoint, which is set by F4-28 to F4-31. It is a 2-point straight line.

Figure 1-26 Parameter settings for pulse input as the main frequency source
Step 5: Set F4-32 to specify the filter time of the pulse frequency reference.
Set this parameter to well balance the response speed and anti-interference capability. If quick response is required, reduce the parameter value. If the onsite interference is high, increase the parameter value.

A large value of this parameter enhances the anti-interference capability, but slows down the response to adjustments. A small value of this parameter speeds up the response to adjustments, but weakens the anti-interference capability. If the onsite pulse signal is prone to interference, you can increase the filter time to stabilize the detected pulse signal. However, increasing the filter time will slow down the response to pulse signal detection. Therefore, the filter time must be set properly based on actual conditions.

1.1.3 Startup/Stop Modes

1.1.3.1 Startup Modes

The AC drive supports four startup modes: direct start, flying start, pre-excitation start, and SVC quick start. You can set F6-00 to select the startup mode of the AC drive.

Direct Start

When F6-00 is set to 0 , the direct start mode is adopted, which applies to most load applications.

Figure 1-27 Timing diagram of direct start
Startup with startup frequency is applicable to applications with lifting loads, such as elevators and cranes.

Figure 1-28 Timing diagram of startup with startup frequency
Startup with DC braking is applicable to applications where the motor may rotate at startup.
If the $D C$ braking time is set to 0 , the $A C$ drive starts to run at the startup frequency. If the DC braking time is not 0 , the $A C$ drive performs DC braking first and then starts to run at the startup frequency. This mode applies to most small-inertia load applications where the motor is likely to rotate at startup.

Figure 1-29 Timing diagram of startup with DC braking

Startup with DC braking is applicable to drives of elevators and cranes. Startup with startup frequency is applicable to equipment drives that require burst startup under startup torque, such as cement mixers. The following figure shows the frequency curve during startup.

Figure 1-30 Direct start mode

Flying Start

When F6-00 is set to 1 , the AC drive uses the flying start mode. In this mode, the AC drive first determines the motor rotation speed and direction, and then starts at the detected frequency of the motor. It is applicable when the AC drive is used to drive large-inertia machinery loads.

If the $A C$ drive needs to be started again when the motor is still rotating due to inertia, the flying start mode can prevent overcurrent at startup. The following figure shows the frequency curve during startup.

Figure 1-31 Flying start mode

Pre-excitation Start

When F6-00 is set to 0,2 , or 3 and the DC braking time (F6-06) is 0 , the $A C$ drive enters the preexcitation start mode. This mode applies only to asynchronous motors in SVC or FVC mode. Performing pre-excitation on the motor before start improves the responsiveness of the motor and reduces the starting current.

You can change the pre-excitation mode by modifying bit 11 and bit 12 of the flux linkage control command word (AB-32 for motor 1 and B9-32, BE-32, and CE-32 for other motors). Pre-excitation by current is used by default. The pre-excitation current (AB-51, B9-51, BE-51, and CE-51) is the percentage relative to the rated current. A larger pre-excitation current setpoint indicates shorter preexcitation time.

SVC Quick Start

SVC quick start is also called quick pre-excitation start.

Note

- Flying start is recommended if you need to start a motor that is rotating at a high speed.
- Pre-excitation start and SVC quick start apply only to AC asynchronous motors.

1.1.3.2 Stop Modes

The AC drive supports three stop modes: decelerate to stop, coast to stop, and stop at maximum capability.

You can set F6-10 to select a stop mode as required.

Para.	Name	Default	Value Range	Description
F6-10	Stop mode	0	0 : Decelerate to stop 1: Coast to stop 2: Stop at maximum capability	0: Decelerate to stop Once the stop command takes effect, the AC drive decreases the output frequency to 0 based on the deceleration time and stops. 1: Coast to stop Once the stop command takes effect, the AC drive immediately stops output, and the motor coasts to stop under the action of mechanical inertia. 2: Stop at maximum capability The motor deceleration time is fixed at 20 ms , and the output torque may reach the torque limit during the deceleration process.
F6-11	Start frequency of DC braking at stop	0.00 Hz	$\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & \text { maximum } \\ & \text { frequency (F0-10) } \end{aligned}$	The AC drive starts DC braking when the running frequency decreases to the value of this parameter during deceleration to stop.
F6-12	DC braking delay at stop	0.0s	0.0s to 100.0s	When the running frequency decreases to the start frequency of DC braking at stop, the $A C$ drive stops output for a period of time and then starts DC braking. This prevents faults such as overcurrent caused due to DC braking at a high speed.
F6-13	DC braking current at stop	0\%	0\% to 150\%	A larger DC braking current indicates stronger braking force. 100\% corresponds to the rated motor current (the current upper limit is 80% of the rated current of the AC drive). The current upper limit can be set in F6-34, and its maximum value is 135% of the rated current of the AC drive.
F6-14	DC braking time at stop	0.0s	0.0s to 100.0s	This parameter indicates the hold time of DC braking. If it is set to 0, DC braking is disabled.

Figure 1-32 Timing diagram of DC braking at stop

Decelerate to Stop

When F6-10 is set to 0 , the AC drive decelerates to stop. Once the stop command takes effect, the AC drive decreases the output frequency to 0 based on the deceleration time and stops.

Figure 1-33 Timing diagram of decelerating to stop

Coast to Stop

Figure 1-34 Timing diagram of coasting to stop

1.1.3.3 Acceleration/Deceleration Time

The acceleration time indicates the time required for the output frequency of the AC drive to rise from 0 to the acceleration/deceleration base frequency (F0-25). The deceleration time indicates the time required for the output frequency of the AC drive to decrease from the acceleration/deceleration base frequency (FO-25) to 0 Hz .

Figure 1-35 Acceleration/Deceleration time
The AC drive provides totally four groups of acceleration/deceleration time, which can be selected by using a DI terminal (assigned with function 16/17). The acceleration/deceleration time is defined by the following parameters:

Group 1: F0-17, F0-18
Group 2: F8-03, F8-04

Group 3: F8-05, F8-06
Group 4: F8-07, F8-08

Application

The following takes DI7 and DI8 as the input switchover terminals to describe how to set the acceleration/deceleration time.

1. Set F4-06 and F4-07 to select DI7 and DI8 for switchover.

Para.	Name	Reference	Function Description
F4-06	DI7 function	16	Acceleration/deceleration time selection terminal 1
F4-07	DI8 function	17	Acceleration/deceleration time selection terminal 2

2. Set the acceleration/deceleration time by using the four groups of acceleration/deceleration time parameters.

DI8 State	DI7 State	Acceleration/Deceleration Time
OFF	OFF	Group 1: F0-17, F0-18 (Acceleration time 1)
OFF	ON	Group 2: F8-03, F8-04 (Acceleration time 2. For details, see F0-17 and F0-18.)
ON	OFF	Group 3: F8-05, F8-06 (Acceleration time 3. For details, see F0-17 and F0-18.)
ON	ON	Group 4: F8-07, F8-08 (Acceleration time 4. For details, see F0-17 and F0-18.)

3. Set F0-19 (acceleration/deceleration time unit). Note that when this parameter is modified, the decimal places of the four groups of acceleration/deceleration time will change, and the corresponding acceleration/deceleration time will also change.
4. Set F6-07 (acceleration/deceleration mode) to select the frequency change mode during the start and stop process of the AC drive.

- 0: The output frequency increases or decreases linearly.
- 1: The output frequency increases or decreases according to the S-curve (select the arc symmetry mode or acceleration/deceleration segmentation in F6-20) when the target frequency changes dynamically. This mode is applicable to applications requiring supreme comfort and fast realtime response.

5. Set F6-08 and F6-09 to select the time proportions of S-curve start segment and end segment. The values of F6-08 and F6-09 must meet the following condition: F6-08 + F6-09 $\leqslant 100.0 \%$.
6 . Select the arc type.
When the acceleration/deceleration is abrupt, the RFG output frequency change is unsmooth, and the output frequency acceleration is incontinuous, which will lead to torque oscillation of the motor and may damage the mechanical gear.

If A4-65 is set to 0 (incontinuous smoothing), acceleration/deceleration is executed immediately when the input value changes.

If A4-65 is set to 1 (continuous smoothing), even if the input value decreases suddenly during acceleration, the AC drive will execute the end arc (causing overshoot) and then decelerate; even if
the input value increases suddenly during deceleration, the AC drive will execute the end arc (causing overshoot) and then accelerate.

Take sudden deceleration in the forward acceleration process as an example. As shown in the figure, the target frequency at t0 is F3. The AC drive accelerates to F2 at t1, and the target frequency is F1 at this time. The RFG output frequency changes according to curve 3 (execute the end arc of the acceleration segment to reduce acceleration v to 0 and then start deceleration) rather than curve 2 (set acceleration to 0 immediately and directly start deceleration) to cope with sudden change in acceleration v at $t 1$, thereby reducing the impact of sudden changes on mechanical equipment.

1.2 Motor Configuration

The simple commissioning procedure of the AC drive is as follows:

Figure 1-36 Quick commissioning process

The commissioning steps are as follows:

Figure 1-37 Commissioning flowchart
You can set F1-37 to select different auto-tuning modes:

- 1: Static auto-tuning on partial parameters of asynchronous motor
- 2: Dynamic auto-tuning on asynchronous motor
- 3: Static auto-tuning on all parameters of asynchronous motor
- 4: Inertia auto-tuning
- 5: Deadzone auto-tuning
- 11: With-load auto-tuning on synchronous motor
- 12: No-load dynamic auto-tuning on synchronous motor
- 13: Static auto-tuning on all parameters of synchronous motor

For permanent magnet synchronous motors and excited synchronous motors, select 11, 12, or 13.

1.2.1 Auto-tuning on Asynchronous Motor

Auto-tuning is required in vector control mode; otherwise, faults such as overcurrent will occur during running. Auto-tuning is also recommended in V/f control mode. The control performance of speed tracking (at least static auto-tuning on all parameters of the asynchronous motor), overcurrent suppression, and torque boost is enhanced when the parameters are accurate. The following table compares the application scenarios and performance of different auto-tuning methods.

Auto-tuning Method	Application Scenario	Auto-tuning Effect
Static auto-tuning on some parameters of asynchronous motor	Scenarios where the motor cannot be disconnected from the load and dynamic auto-tuning is not allowed	Ordinary
Dynamic auto-tuning on all parameters of asynchronous motor	Scenarios where the motor can be easily disconnected from the load. If the motor load is a roller type load (pure inertia load), you can perform auto-turning directly without removing the roller.	Optimal
With-load auto-tuning on all parameters of asynchronous motor	Scenarios where the motor cannot be disconnected from the load and dynamic auto-tuning on all parameters is not allowed	Good

The following figure shows subflow 1 (V/f control mode) in the commissioning flowchart.

Figure 1-38 AC drive commissioning subflow 1 (V/f control)
The following figure shows subflow 2 (vector control mode) in the commissioning flowchart.

Figure 1-39 AC drive commissioning subflow 2 (vector control)
Taking motor parameter group 1 as an example, the following table lists the parameters obtained by using different auto-tuning methods.

Para.	Name	F1-37 $=1$	F1-37 $=2$	F1-37 $=3$	F1-37 $=4^{[2]}$
F1-06	Motor stator resistance	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	-
F1-07	Asynchronous motor rotor resistance	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	-
F1-08	Asynchronous motor leakage inductance	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	-
F1-09	Asynchronous motor mutual inductance	$\sqrt{ }[4]$	$\sqrt{[3]}$	-	

Para.	Name	F1-37 = 1	F1-37 $=2$	F1-37 $=3$	$F 1-37=4^{[2]}$
F1-10	Asynchronous motor no-load current	$\checkmark^{[4]}$	\checkmark	$\checkmark^{[3]}$	-
F1-31	Encoder phase sequence	-	$\sqrt{[1]}^{[1]}$	-	-
A9-19	Asynchronous magnetic field saturation current coefficient 1	-	\checkmark	-	-
A9-20	Asynchronous magnetic field saturation current coefficient 2	-	\checkmark	-	-
A9-21	Asynchronous magnetic field saturation current coefficient 3	-	$\sqrt{ }$	-	-
A9-22	Asynchronous magnetic field saturation current coefficient 4	-	\checkmark	-	-
A9-23	Asynchronous magnetic field saturation flux coefficient 1	-	\checkmark	-	-
A9-24	Asynchronous magnetic field saturation flux coefficient 2	-	$\sqrt{ }$	-	-
A9-25	Asynchronous magnetic field saturation flux coefficient 3	-	\checkmark	-	-
A9-26	Asynchronous magnetic field saturation flux coefficient 4	-	\checkmark	-	-
F1-30	Input A/B phase sequence	-	\checkmark	-	-
A9-16	Inertia ratio	-	$\sqrt{ }$	-	\checkmark
A9-17	Inertia	-	$\sqrt{ }$	-	$\sqrt{ }$
A9-18	Friction torque	-	$\sqrt{ }$	-	$\sqrt{ }$
F2-00	FVC speed loop Kp	-	$\sqrt{ }$	-	\checkmark
F2-01	FVC speed loop Ti	-	\checkmark	-	\checkmark
F2-03	SVC speed loop Kp	-	\checkmark	-	$\sqrt{ }$
F2-04	SVC speed loop Ti	-	\checkmark	-	\checkmark

Note [1]: If the encoder detection corresponding to the first bit of A9-09 is enabled or the motor control mode is set to FVC mode, the corresponding encoder phase sequence will be detected, and the detection result will be written into the corresponding function code in F1-30.

Note [2]: Inertia auto-tuning is performed when the motor control mode is set to V/f, FVC, or SVC mode.
Note [3]: No-load auto-tuning on all parameters (F1-37 = 2) is preferred if allowed. When F1-37 is set to 2 , the motor mutual inductance and no-load current obtained from rotation auto-tuning are more accurate, and the magnetic field saturation coefficient of the asynchronous motor is also auto-tuned to improve the torque control accuracy. In scenarios where the motor cannot rotate during auto-tuning, the obtained motor mutual inductance and no-load current are more accurate when F1-37 is set to 3 (however, the saturation coefficient cannot be auto-tuned and the auto-tuning accuracy is lower, compared with the situation in which F1-37 is set to 2).

Note [4]: When F1-37 is set to 1 , static auto-tuning is performed. In this case, the calculated mutual inductance and no-load current will be used. The accuracy is lower than when F1-37 is set to 2 or 3.

Note [5]: You can optimize auto-tuning items by setting AA-09.
Note [6]: In addition to the abovementioned auto-tuning methods, you can also manually input motor parameters or download the entire parameter file.

Note [7]: Motor auto-tuning can also be performed through communication in addition to the operating panel. You can set F0-02 to select the command source. For the Modbus, PROFIBUS, and CANopen protocols, the PKW parameters support auto-tuning but the PZD parameters do not. To perform motor auto-tuning through communication, set F1-37 or A2-37 to select an auto-tuning mode, and then enter the command.

When $\mathrm{F} 1-37$ is set to 2 (no-load auto-tuning on all parameters), the motor will rotate at a high speed during autotuning. Be sure to perform auto-tuning under the premise that mechanical safety is guaranteed. Meanwhile, ensure that the load torque of the motor at constant speed is as close to no load as possible. A smaller load indicates more accurate auto-tuning results. If the load is too heavy, AC drive overload or overcurrent may occur.

Application

The following uses the parameters of motor 1 (set F0-24 to 0 to select motor parameter group 1) as an example to describe the motor auto-tuning methods. If you need to perform auto-tuning on parameters of motor 2, set F0-24 to 1 (motor parameter group 2). The auto-tuning method for motor 2 is similar to that for motor 1 . For details about the related parameters, see parameter group A2.

- Static auto-tuning on some parameters of asynchronous motor

Table 1-6 Static auto-tuning on some parameters of asynchronous motor

Step	Description
Step 1	Power on the AC drive, and then set F0-02 to 0 to select the operating panel as the command source.
Step 2	Set F1-00 to F1-05 to input motor nameplate parameters correctly.

Step	Description
Step 3	Set F1-37 to 1 to select static auto-tuning on some parameters of the asynchronous motor, and press Enter on the operating panel. The operating panel displays:
Step 4	Press the RUN key on the operating panel for more than 3 seconds to start motor auto-tuning. The RUN indicator is steady on. The TUNE/TC indicator blinks. The motor does not rotate but the AC drive energizes the motor. After the preceding display disappears and the operating panel returns to normal parameter display state, auto-tuning is completed. Parameters F1-06 to F1-08 are obtained.

- Dynamic auto-tuning on all parameters of asynchronous motor

If the motor has constant output or is used for high-accuracy applications, perform dynamic autotuning on all parameters after disconnecting the motor from the load for optimal auto-tuning effect.

Table 1-7 Dynamic auto-tuning on all parameters of asynchronous motor

Step	Description
Step 1	Power on the AC drive, and then set F0-02 to 0 to select the operating panel as the command source.
Step 2	Set F1-00 to F1-05 to input motor nameplate parameters correctly.
Step 3	If F0-01 is set to 1 (FVC control), enter the encoder parameters (F1-27, F1-28, and F1- $30)$.
Step 4	Set F1-37 to 2 to select dynamic auto-tuning on all parameters of the asynchronous motor, and press Enter on the operating panel. The operating panel displays:
Step 5	Press the RUN key on the operating panel for more than 3 seconds to start motor auto-tuning. The RUN indicator is steady on. The TUNE/TC indicator blinks. The AC drive drives the motor to accelerate/decelerate and run in the forward/reverse direction, and performs auto-tuning. After the preceding display disappears and the operating panel returns to normal parameter display state, auto-tuning is completed. Parameters F1-06 to F1-10 and F1-30 are obtained.

- With-load auto-tuning on all parameters of asynchronous motor

If the motor cannot be disconnected from the load, perform auto-tuning on all parameters of the asynchronous motor with load, that is, static auto-tuning on all parameters of the asynchronous motor.

Table 1-8 Static auto-tuning on all parameters of asynchronous motor

Step	Description
Step 1	Power on the AC drive, and then set F0-02 to 0 to select the operating panel as the command source.
Step 2	Set F1-00 to F1-05 to input motor nameplate parameters correctly.

Step	Description
Step 3	Set F1-37 to 3 to select static auto-tuning on all parameters of the asynchronous motor, and press Enter on the operating panel. The operating panel displays:
Step 4	Press the RUN key on the operating panel for more than 3 seconds to start motor auto-tuning. The RUN indicator is steady on. The TUNE/TC indicator blinks. The motor does not rotate but the AC drive energizes the motor. After the preceding display disappears and the operating panel returns to normal parameter display state, auto-tuning is completed. Parameters F1-06 to F1-10 are obtained.

1.2.2 Auto-tuning on Synchronous Motor

Motor auto-tuning is the process by which the AC drive obtains the parameters of the controlled motor.

Synchronous motor auto-tuning includes static auto-tuning on some parameters (excluding back EMF) of synchronous motor, no-load dynamic auto-tuning on all parameters of synchronous motor, and static auto-tuning on all parameters of synchronous motor.

The following table compares the effect of different auto-tuning methods.
Table 1-9 Motor auto-tuning effect

Auto-tuning Method	Application Scenario	Auto-tuning Effect
Static auto-tuning on some parameters of synchronous motor	Scenarios where the motor cannot be disconnected from the load and dynamic auto- tuning is not allowed After auto-tuning, the back EMF (SVC and PMVVC) and encoder phase sequence need to be set manually.	Good
No-load dynamic auto-tuning on all parameters of synchronous motor	Scenarios where the motor can be disconnected from the application system easily	Optimal
Static auto-tuning on all parameters of synchronous motor	The motor cannot be disconnected from the load and motor rotation is not allowed. After auto-tuning, the back EMF (SVC and PMVVC), encoder zero position angle (FVC), and encoder phase sequence (FVC) need to be set manually.	Ordinary

The rated frequency of the motor is limited by the maximum frequency and the frequency upper and lower limits. The default maximum frequency is 50 Hz . Before motor commissioning, you need to set F0-10 (maximum frequency), F0-12 (frequency upper limit), and F0-14 (frequency lower limit). If the rated frequency of the motor is greater than 50 Hz , ensure that the maximum frequency is no lower than the frequency upper limit, and the rated frequency falls between the upper and lower frequency limits.

Synchronous motors support both vector control and V/f (VVC) control. The vector control mode is preferred. $\mathrm{V} / \mathrm{f}(\mathrm{VVC})$ control can be used if the load is a high-speed steady load. The commissioning steps are as follows.

Figure 1-40 Synchronous motor commissioning subflow 1 (vector control FVC/SVC)

Figure 1-41 Synchronous motor commissioning subflow 2 (vector control FVC/SVC)

Para.	Name	F1-37 = 11	F1-37 = 12	F1-37 = 13	F1-37 = 4
F1-16	Motor stator resistance	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	-
F1-17	Synchronous motor D axis inductance	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	-
F1-18	Synchronous motor Q axis inductance	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	-

Para.	Name	F1-37 = 11	F1-37 $=12$	F1-37 $=13$	F1-37 $=4$
F1-20	Synchronous motor CEMF voltage	$\checkmark^{[1]}$	\checkmark	-	-
F1-30	Encoder input A/ B phase sequence	-	$\sqrt{ }{ }^{[3]}$	-	-
F1-31	Encoder installation position angle	$\sqrt{[2]}^{[2]}$	$\sqrt{[3]}^{[3}$	-	-
A9-16	Inertia	-	\checkmark	-	$\sqrt{ }$
A9-17	Inertia ratio	-	$\sqrt{ }$	-	$\sqrt{ }$
A9-18	Friction torque	-	$\sqrt{ }$	-	$\sqrt{ }$
F2-00	FVC speed loop Kp	-	\checkmark	-	\checkmark
F2-01	FVC speed loop Ti	-	\checkmark	-	\checkmark
F2-03	SVC speed loop Kp	-	\checkmark	-	$\sqrt{ }$
F2-04	SVC speed loop Ti	-	$\sqrt{ }$	-	\checkmark

Note [1]: When F1-37 is set to 11 (with-load auto-tuning on synchronous motor), the obtained back EMF is an estimated value, of which the accuracy is lower than when F1-37 is set to 12 or 13.

Note [2]: When F1-37 is set to 11 (with-load auto-tuning on synchronous motor), the encoder phase sequence cannot be auto-tuned. Make sure that the encoder direction is consistent with the motor rotation direction before auto-tuning. System inertia is also not auto-tuned.

Note [3]: In SVC or V/f (PMVVC) control mode, if encoder detection (first bit of A9-09) is disabled, the zero position angle of the encoder is not auto-tuned.

Note [4]: If a resolver or 23-bit encoder is used, the motor does not rotate during the auto-tuning process. If an ABZ encoder is used, the motor rotates briefly during the auto-tuning process.

Note [5]: You can also manually input motor parameters or download the parameter file (to ensure accurate motor direction and encoder direction).

Note [6]: Motor auto-tuning can also be performed through the LCD operating panel (F0-02 = 0), DI terminal (F0-02 $=1$), and communication ($\mathrm{FO}-02=2$) in addition to the LED operating panel. For the Modbus, PROFIBUS, and CANopen protocols, the PKW parameters support auto-tuning but the PZD parameters do not. To perform motor auto-tuning through communication, set F1-37 to select an auto-tuning mode, and then enter the command.

When F1-37 is set to 12 (no-load auto-tuning on all parameters), the motor will rotate at a high speed during auto-tuning. Be sure to perform auto-tuning under the premise that mechanical safety is guaranteed. Meanwhile, ensure that the load torque of the motor at constant speed is as close to no load as possible. A smaller load indicates more accurate auto-tuning results. If the load is too heavy, AC drive overload or overcurrent may occur.

Noteln FVC control mode of the synchronous motor, the encoder installation position angle must be set or autotuned correctly before running. If no-load auto-tuning on all parameters (F1-37 = 12) cannot be performed because the load cannot be disconnected, with-load auto-tuning $($ F1-37 $=11$) is required.

Application

- Static auto-tuning on some parameters of synchronous motors

Table 1-10 Static auto-tuning on some parameters of synchronous motors

Step	Description
Step 1	Power on the AC drive, and then set F0-02 to 0 to select the operating panel as the command source.
Step 2	Set F1-00 to F1-05 to input motor nameplate parameters correctly.
Step 3	Set F1-37 to 11 to select static auto-tuning on some parameters of the synchronous motor, and press Enter on the operating panel. The operating panel displays:
Step 4	Press the RUN key on the operating panel for more than 3 seconds to start motor auto-tuning. The RUN indicator is steady on, the TUNE/TC indicator blinks, and the AC drive energizes the motor. After the preceding display disappears and the operating panel returns to normal parameter display state, auto-tuning is completed. Parameters F1-06, F1-17, F1-18, and F1-31 (FVC) are obtained. Manually set F1-19 (SVC and PMVVC) and F1-30 (FVC).

- No-load dynamic auto-tuning on all parameters of synchronous motors If the motor has constant output or is used for high-accuracy applications, perform dynamic autotuning on all parameters after disconnecting the motor from the load for optimal auto-tuning effect.

Table 1-11 Dynamic auto-tuning on all parameters of synchronous motors

Step	\quad Description
Step 1	Power on the AC drive, and then set F0-02 to 0 to select the operating panel as the command source.
Step 2	Set F1-00 to F1-05 to input motor nameplate parameters correctly.
Step 3	If F0-01 is set to 1 (FVC control), enter encoder parameters (F1-27 and F1-28).
Step 4	Set F1-37 to 12 to select no-load dynamic auto-tuning on all parameters of the synchronous motor, and press Enter on the operating panel. The operating panel displays:
Step 5	Press the RUN key on the operating panel for more than 3 seconds to start motor auto-tuning. The RUN indicator is steady on, the TUNE/TC indicator blinks, and the AC drive energizes the motor. After the preceding display disappears and the operating panel returns to normal parameter display state, auto-tuning is completed. Parameters F1-06, F1-17, F1-18, F1-19, F1-30 (FVC), and F1-31 (FVC) are obtained.

- Static auto-tuning on all parameters of synchronous motors

You can use this method in scenarios where the motor is not allowed to rotate at all.

Table 1-12 Static auto-tuning on all parameters of synchronous motors

Step	Description
Step 1	Power on the AC drive, and then set F0-02 to 0 to select the operating panel as the command source.
Step 2 Set F1-00 to F1-05 to input motor nameplate parameters correctly.	
Step 3	Set F1-37 to 13 to select static auto-tuning on all parameters of the synchronous motor, and press Enter on the operating panel. The operating panel displays:
Step 4	Press the RUN key on the operating panel for more than 3 seconds to start motor auto-tuning. The RUN indicator is steady on, the TUNE/TC indicator blinks, and the AC drive energizes the motor. After the preceding display disappears and the operating panel returns to normal parameter display state, auto-tuning is completed. Parameters F1-06, F1-17, and F1-18 are obtained. Manually set F1-19 (SVC and PMVVC), F1-31 (FVC), and F1-30 (FVC).

1.2.3 Motor Parameters

MD520 supports four groups of motor parameters, as listed in the following table.

Motor Parameter Group	Function Code
Motor parameter group 1	F0, F1, F2, F3, F6, F8, A9, AA, AB
Motor parameter group 2	A2, A3, B6, B7, B8, B9
Motor parameter group 3	BA, BB, BC, BD, BE
Motor parameter group 4	CA, CB, CC, CD, CE

The motor parameter group can be switched in the following two ways:

- Set F0-24 to select a motor parameter group. Set F0-24 to 0 to select motor parameter group 1, set F0-24 to 1 to select motor parameter group 2, set F0-24 to 2 to select motor parameter group 3, and set F0-24 to 3 to select motor parameter group 4.
- Set DI terminal functions to select a motor parameter group. Set the functions of any two DI terminals among DI1 to DI10 (F4-00 to F4-09) to 41 (motor selection terminal 1) and 76 (motor selection terminal 2) respectively. The following table describes the correspondence between DI terminal states and motor parameter group selection.

State of DI Terminal Assigned with Function 41	State of DI Terminal Assigned with Function 76	Motor parameter group
0	0	1
1	0	2
0	1	3
1	1	4

If any of F4-00 to F4-09 is set to 41 (motor selection terminal 1) or 76 (motor selection terminal 2), the DI terminal determines motor selection. The motor parameter group is selected by F0-24 only when no DI terminal (F4-00 to F4-09) is assigned with the motor selection function.

You can also obtain the current motor parameter group in U2-00. When U2-00 is 0 , motor parameter group 1 is selected; when U2-00 is 1 , motor parameter group 2 is selected; when U2-00 is 2 , motor parameter group 3 is selected; when U2-00 is 3, motor parameter group 4 is selected.

NoteThe motor parameter group switching command is invalid during running. You need to switch the motor parameter group after the AC drive stops.

1.3 Control Interfaces

1.3.1
 DI

The AC drive is equipped with a number of multi-functional DI terminals (among which DI5 can be used as the pulse input terminal). Each DI terminal can be assigned with a DI function.

Table 1-13 Related parameters

Para.	Name	Default	Value Range	Description
F4-00	DII function	1	0 to 80 (The value 30 (pulse frequency input function) is unavailable for F400.)	See "Table 1-14 Functions of DI terminals" on page 60.
F4-01	DI2 function	4		
F4-02	DI3 function	9		
F4-03	DI4 function	12		
F4-04	DI5 function	13		
F4-05	DI6 function	0		
F4-06	DI7 function	0		
F4-07	DI8 function	0		
F4-08	DI9 function	0		
F4-09	DI10 function	0		
F4-10	DI filter time	0.010s	0.000 s to 1.000 s	This parameter defines the delay upon DI terminal state change. It is available only for DI1 and DI2 currently.

Para.	Name	Default	Value Range	Description
F4-38	DI active mode setting 1	00000	Ones: DII active mode	The ones, tens, hundreds,
F4-39	DI active mode setting 2	00000	0 : Active high 1: Active low Tens: DI2 active mode (0 or 1, the options are the same as those of DI1). Hundreds: DI3 active mode (0 or 1, the options are the same as those of DI1). Thousands: DI4 active mode (0 or 1, the options are the same as those of DI1). Ten thousands: DI5 active mode (0 or 1 , the options are the same as those of DI1).	thousands, and ten thousands of this parameter define the active modes for terminals DI1 to DI5. 0: Active high The DI terminal (DI1 to DI5) is active when being connected to COM and inactive when being disconnected from COM. 1: Active low The DI terminal (DI1 to DI5) is inactive when being connected to COM and active when being disconnected from COM.
F4-41	DI1 switch-on delay	0.0s	0.0s to 3600.0s	-
F4-42	DI1 switch-off delay	0.0s	0.0s to 3600.0s	-
F4-43	DI2 switch-on delay	0.0s	0.0s to 3600.0s	-
F4-44	DI2 switch-off delay	0.0s	0.0s to 3600.0s	-
F4-45	DI3 switch-on delay	0.0s	0.0s to 3600.0s	-
F4-46	DI3 switch-off delay	0.0s	0.0s to 3600.0s	-
F4-47	DI4 switch-on delay	0.0s	0.0s to 3600.0s	-
F4-48	DI4 switch-off delay	0.0s	0.0s to 3600.0s	-
F4-49	DI force data	0x0	0x0 to 0x03FF	This parameter is used to set the level states of DI1 to DI10 (arranged by bit) forcibly. If the bit value is 0 , the corresponding level is forced to be inactive; otherwise, it is active.
F4-50	DI communication data	0x0	0x0 to 0xFFFF	This parameter is used to set the level states of DI1 to DIIO and VDII to VDI6 (arranged by bit) through communication. If the bit value is 0 , the corresponding level is inactive; otherwise, it is active.

Para.	Name	Default	Value Range	Description
F4-51	DI1 hardware source	0	0: Hardware 1: Force value	-
F4-52	DI2 hardware source	0	0: Hardware 1: Force value	-
F4-54	DI3 hardware source	0	-	-
F4-55	DI4 hardware source	0	-	-
	DI5/HDI hardware source	0	-	-
	DI6 hardware source	0	0: Hardware 1: Force value 2: Communication 4: AI1	

Para.	Name	Default	Value Range	Description
(Continued)	(Continued)	(Continued)	(Continued) 34: Expansion card relay 35: Expansion card DO2 36: VDO1 37: VDO2 38: VDO3 39: VDO4 40: VDO5 41: VDO6 42: VDO7 43: VDO8 44: VDO9 45: VDO10 46: VDO11	
F4-57	DI7 hardware source	0	Same as F4-56	-
F4-58	DI8 hardware source	0	Same as F4-56	-
F4-59	D19 hardware source	0	Same as F4-56	-
F4-60	DIIO hardware source	0	Same as F4-56	-
F4-61	DI5/HDI terminal type	1	$\begin{aligned} & \text { 0: HDI } \\ & \text { 1: } \mathrm{DI} \end{aligned}$	-

Table 1-14 Functions of DI terminals

Reference	Function	Description
0	No function	Set 0 for reserved terminals to avoid malfunction.
1	Forward RUN (IN1)	The terminal is used to set the operation mode of the AC drive to forward run. (FWD indicates forward.) In two-wire mode 1 (F4-11 = 0), the terminal is used to set the operation mode of the AC drive to forward run. In two-wire mode 2 (F4-11 = 1), the terminal is used to issue a running command.
2	Reverse RUN (IN2)	The terminal is used to set the operation mode of the AC drive to reverse run. (REV indicates reverse.) In three-wire mode 1 (F4-11 = 2), the terminal is used to set the operation mode of the AC drive to reverse run. In three-wire mode 2 (F4-11 = 3), the terminal is used to set the forward/reverse run direction.
3	Three-wire control mode (IN3)The terminal is used to set the AC drive to run in three-wire control mode. To use a terminal as the command source, set F4-11 (terminal control mode) to 2 (three-wire mode 1) or 3 (three-wire mode 2), and set this parameter to 3. The three-wire control modes include three- wire mode 1 and three-wire mode 2.	
4	Forward jogging (FJOG)	The terminal is used to set the operation mode of the AC drive to forward jogging. In jogging mode, the AC drive runs at low speed for a short time, which is typically used for maintenance and commissioning of field equipment.

Reference	Function	Description
5	Reverse jogging (RJOG)	The terminal is used to set the operation mode of the AC drive to reverse jogging. In jogging mode, the AC drive runs at low speed for a short time, which is typically used for maintenance and commissioning of field equipment.
6	Terminal UP	The terminal is used to increase the frequency when terminal $1 / O$ is used as the frequency reference source. When the terminal is active, it works as if the key is pressed and held. When the terminal is inactive, it works as if the \square key is released.
7	Terminal DOWN	The terminal is used to decrease the frequency when terminal I/O is used as the frequency reference source. When the terminal is active, it works as if the \square key is pressed and held. When the terminal is inactive, it works as if the key is released.
8	Coast to stop	When the terminal is active, a coast to stop command is issued, upon receiving which the AC drive stops output immediately, allowing the load to stop following mechanical inertia. The AC drive stops by stopping the output. At this time, the power supply of the motor is cut off and the drive system is in a free braking state. Since the stop time is determined by the inertia of the drive system, it is also called inertia stop.
9	Fault reset (RESET)	The terminal is used to reset faults of the AC drive, which functions the same as the STOP/RES key on the operating panel. Remote fault reset can be implemented by using this function.
10	Running pause	When the terminal is active, the AC drive decelerates to stop with all running parameters memorized (such as PLC, wobble, and PID parameters). When the terminal is inactive, the AC drive resumes its running state as recorded.
11	External fault NO input	When the terminal is active, the AC drive reports E015.1 upon receiving an external signal.
12	Multi-reference terminal 1	Multi-reference is selected as the main frequency source. You can set
13	Multi-reference terminal 2	the 16 states of the four terminals to define 16 speeds or 16 other
14	Multi-reference terminal 3	
15	Multi-reference terminal 4	continuous adjustment of the AC drive running frequency is not required and only several frequency values are required.
16	Acceleration/deceleration time selection terminal 1	The AC drive supports four groups of acceleration/deceleration time, which can be selected through combinations of four states of these
17	Acceleration/deceleration time selection terminal 2	two terminals. The acceleration time indicates the time required for the output frequency of the AC drive to rise from 0 to the acceleration/ deceleration base frequency (F0-25). The deceleration time indicates the time required for the output frequency of the $A C$ drive to decrease from the acceleration/deceleration base frequency (F0-25) to 0 Hz .
18	Frequency source switchover	The terminal is used to switch between different frequency reference sources. The frequency reference is set in F0-07 (frequency source superposition).
19	UP and DOWN setting clear	When the main frequency is set through the operating panel and this terminal is active, the frequency set by using the or key on the operating panel or terminal UP/DOWN (6 or 7) can be cleared and the frequency will be reset to the value of F0-08.

Reference	Function	Description
20	Command source switchover terminal 1	When the command source is set to terminal control (FO-02 = 1), activating the terminal switches from terminal control to operating panel control. When the command source is set to communication control (F0-02 = 2), activating the terminal switches from communication control to operating panel control.
21	Acceleration/Deceleration inhibition	The terminal is used to keep the AC drive at the current running frequency regardless of changes of the external input frequency (unless a stop command is received).
22	PID pause	The terminal is used to suspend PID control temporarily, so that the AC drive retains the current output frequency with no more PID tuning on the frequency source.
23	Simple PLC state reset	The terminal is used to reset the AC drive to the initial state of the simple PLC.
24	Wobble pause	In the wobble process, when the terminal is active, the wobble function is paused (the AC drive outputs at the center frequency).
25	Counter input	In the counting process, a counting pulse is input when the terminal is active.
26	Counter reset	In the counting process, the counter state is cleared when the terminal is active.
27	Length count input	In the fixed length process, the length count is input when the terminal is active.
28	Length reset	In the fixed length process, the length is cleared when the terminal is active.
29	Torque control inhibition	When the terminal is active, the AC drive switches from the torque control mode to speed control mode. When the terminal is inactive, the AC drive resumes the torque control mode.
30	Pulse input	This function must be selected when DI5 is used for pulse input.
32	Immediate DC braking	When the terminal is active, the AC drive switches to the DC braking state directly. During DC braking, the AC drive feeds DC into the stator winding of the asynchronous motor to form a static magnetic field to set the motor to braking with energy consumption. In this state, the rotor cuts the static magnetic field to generate braking torque, which stops the motor quickly.
33	External fault NC input	When the terminal is active, the AC drive reports E015.2 upon receiving an external signal.
34	Frequency modification enable	When the terminal is active, the frequency can be modified. When the terminal is inactive, the frequency cannot be modified.
35	PID action direction reversal	The terminal is used to reverse the direction set by FA-03 (PID action direction).
36	External stop terminal 1	When the command source is set to operating panel control (F0-02 = 0), the terminal is used to stop the AC drive, which functions the same as the STOP/RES key on the operating panel.
37	Control command switchover terminal 2	The terminal is used for switchover between terminal control and communication control. If the command source is set to terminal control, the system switches to communication control when the terminal is active. If the command source is set to communication control, the system switches to terminal control when the terminal is active.
38	PID integral pause	The integral adjustment function pauses when the terminal is active. However, the proportional and derivative adjustment functions are still valid.

Reference	Function	Description
39	Switchover between main frequency and preset frequency	The terminal is used to switch from the main frequency X to the preset frequency (F0-08).
40	Switchover between auxiliary frequency and preset frequency	The terminal is used to switch from the auxiliary frequency Y to the preset frequency (F0-08).
41/76	Motor selection	The terminal is used to select the motor. Assume that DI1 and DI2 are assigned with functions 41 and 76 . Motor 1 is selected when both DI1 and DI2 are inactive; motor 2 is selected when DI1 is active and DI2 is inactive; motor 3 is selected when DI1 is inactive and DI2 is active; and motor 4 is selected when both DI1 and DI2 are active.
43	PID parameter switchover	If the PID parameter switchover condition is set to "switchover by DI" (FA-18 = 1), the PID parameters are FA-05 to FA-07 (proportional gain Kp1, integral time Ti1, and derivative time Td1) when the terminal is inactive, or FA-15 to FA-17 (proportional gain Kp2, integral time Ti2, and derivative time Td2) when the terminal is active.
44	User-defined fault 1	When E027.1 is reported, the AC drive will take measures according to the value of F9-49 (fault protection action).
45	User-defined fault 2	When E28.1 is reported, the AC drive will take measures according to the value of F9-49 (fault protection action).
46	Switchover between speed control and torque control	The terminal is used to switch between speed control and torque control. When A0-00 (speed/torque control mode) is set to 0 , the torque control mode is used when the terminal is active, and the speed control mode is used when the terminal is inactive. When A0-00 (speed/torque control mode) is set to 1 , the speed control mode is used when the terminal is active, and the torque control mode is used when the terminal is inactive.
47	Emergency stop	Upon an emergency, the AC drive decelerates according to the deceleration time for emergency stop set in F8-59, or it decelerates according to the minimum unit time when the deceleration time for emergency stop is 0 s in V / f mode. The terminal does not need to be kept in the closed state. Even if it stays closed only for an instant, the AC drive will come to an emergency stop. Different from general deceleration, the emergency stop action prevents the AC drive from restarting even if the emergency stop input terminal is opened after the deceleration time for emergency stop expires and the run signal is still valid on the AC drive terminal. To restart the AC drive in this case, disconnect the running terminal and input the run command.
48	External stop terminal 2	The terminal is used to make the AC drive decelerate to stop in any control mode (operating panel, terminal, or communication control). In this case, the deceleration time is fixed to deceleration time 4 (F808).
49	Deceleration DC braking	The terminal is used to make the AC drive decelerate to the start frequency of DC braking during stop (F6-11) before entering the DC braking state.
50	Current running duration clear	The terminal is used to clear the current running duration of the $A C$ drive. If the current running duration is less than the setpoint of F8-53 (current running duration threshold, which is greater than 0) and the terminal is active in the process, the current running duration is cleared. If the current running duration is greater than the setpoint of F8-53 (greater than 0) and the terminal is active, the current running duration is not cleared.

Reference	Function	Description
51	Switchover between two- wire and three-wire control	The terminal is used to switch between two-wire and three-wire control. If F4-11 is set to 0 (two-wire mode 1), the AC drive switches to three- wire mode 1 when the terminal is active. When the terminal is inactive, two-wire mode 1 is used. If F4-11 is set to 1 (two-wire mode 2), the AC drive switches to three- wire mode 2 when the terminal is active. If F4-11 is set to 2 (three-wire mode 1), the AC drive switches to two- wire mode 1 when the terminal is active. If F4-11 is set to 3 (three-wire mode 2), the AC drive switches to two- wire mode 2 when the terminal is active.
52	Reverse running inhibition	When the terminal is active, even if the reverse frequency is set, the actual frequency reference of the AC drive is fixed to 0 . This function is the same as F8-13.

1.3.2
 DO

Table 1-15 Related parameters

Para.	Name	Default	Value Range	Description
F5-01	FMR output function	0	0 to 43	See "Table 1-16 Functions of DO terminals" on page 67.
F5-02	Control board relay (DO3) output function	2		
F5-03	Expansion card relay (DO4) output function	0		
F5-04	DO1 function	1		
F5-05	Expansion card DO2 function	4		
F5-17	FMR output delay (invalid)	0.0s	0.0s to 3600.0s	These parameters are reserved for compatibility with MD500. The settings are invalid.
F5-18	Relay 1 (DO3) output delay (invalid)	0.0s	0.0s to 3600.0 s	
F5-19	Relay 2 (DO4) output delay (invalid)	0.0	0.0s to 3600.0 s	
F5-20	DO1 output delay (invalid)	0.0s	0.0s to 3600.0s	
F5-21	DO2 output delay (invalid)	0.0s	0.0s to 3600.0 s	

Para.	Name	Default	Value Range	Description
F5-22	DO active mode	0	Ones: FMR 0: Positive logic active 1: Negative logic active Tens: Relay 1 (DO3) 0: Positive logic active 1: Negative logic active Hundreds: Relay 2 (DO4) 0: Positive logic active 1: Negative logic active Thousands: DO1 0: Positive logic active 1: Negative logic active Ten thousands: DO2 0: Positive logic active 1: Negative logic active	The ones, tens, hundreds, thousands, and ten thousands of this parameter define the active modes for DO terminals corresponding to F5-01 to F5-05. 0 : Positive logic (same as NO contact) Active: The DO terminal and COM/ CME terminal are connected inside the AC drive. Inactive: The DO terminal and COM/ CME terminal are disconnected. 1: Negative logic (same as NC contact) Active: The DO terminal and COM/ CME terminal are disconnected. Inactive: The DO terminal and COM/ CME terminal are connected inside the $A C$ drive.
F5-24	Control board relay (DO3) switch-on delay	0.0s	0.0s to 3600.0s	Output delay of the relay on the expansion card. F5-01 outputs the active signal only after the set delay time expires.
F5-25	Control board relay (DO3) switch-off delay	0.0s	0.0s to 3600.0s	
F5-26	FMR output switch-on delay	0.0	0.0s to 3600.0s	Output delay of relay 1 on the control board. F5-02 outputs the active signal only after the set delay time expires.
F5-27	FMR output switch-off delay	0.0s	0.0s to 3600.0s	
F5-28	DO1 output switch-on delay	0.0s	0.0s to 3600.0s	Output delay of relay 2 on the control board. F5-03 outputs the active signal only after the set delay time expires.
F5-29	DO1 output switch-off delay	0.0s	0.0s to 3600.0s	
F5-30	Expansion card relay (DO4) switch-on delay	0.0s	0.0s to 3600.0s	DO1 output delay. F5-04 outputs the active signal only after the set delay time expires.
F5-31	Expansion card relay (DO4) switch-off delay	0.0s	0.0s to 3600.0s	
F5-32	Expansion card DO2 output switch-on delay	0.0s	0.0s to 3600.0s	Output delay of DO2 on the expansion card. F5-05 outputs the active signal only after the set delay time expires.
F5-33	Expansion card DO2 output switch-off delay	0.0s	0.0s to 3600.0s	

Para.	Name	Default	Value Range	Description
F5-34	DO/RO source	0x0	Bit00: Relay 1 (DO3) output source 0 : Output function 1: Communication Bit01: FMR output source 0: Output function 1: Communication Bit02: DO1 output source 0: Output function 1: Communication Bit03: Relay 2 (DO4) output source 0 : Output function 1: Communication Bit04: DO2 output source 0 : Output function 1: Communication Bit05: VDO1 output source 0: Output function 1: Communication Bit06: VDO2 output source 0 : Output function 1: Communication Bit07: VDO3 output source 0 : Output function 1: Communication Bit08: VDO4 output source 0: Output function 1: Communication (To be continued)	

Para.	Name	Default	Value Range	Description
(Continued)	(Continued)	(Continued)	(Continued) Bit09: VDO5 output source 0: Output function 1: Communication Bit10: VD06 output source 0: Output function 1: Communication Bit11: VDO7 output source 0: Output function 1: Communication Bit12: VDO8 output source 0: Output function 1: Communication Bit13: VDO9 output source 0: Output function 1: Communication Bit14: VDO10 output source 0: Output function 1: Communication Bit15: VDO11 output source $0:$ Output function 1: Communication Sa	
F5-35	DO/RO terminal communication control	0x0	Same as F5-34	-

Table 1-16 Functions of DO terminals

Refer ence	Function	Description
0	No output	The output terminal has no function.
1	AC drive running	The DO terminal outputs an active signal when the AC drive is running with an output frequency (which can be zero).
2	Fault output	The DO terminal outputs an active signal when the AC drive stops due to a fault.
3	Frequency-level detection FDT1	When the running frequency is higher than the detected value, the DO terminal outputs an active signal. When the running frequency is lower than the result of the detected value minus the FDT hysteresis value (F8-19 \times F8-20), the active signal is canceled.
4	Frequency reach	The DO terminal outputs an active signal when the running frequency of the AC drive is within a certain range (target frequency \pm setpoint of F8-21 \times Maximum frequency).

Refer ence	Function	Description
5	Running at zero speed (no output at stop)	The DO terminal outputs an active signal when the AC drive is running with the output frequency of 0 . When the $A C$ drive stops, the signal becomes inactive.
6	Motor overload pre-warning	The AC drive determines whether the motor load exceeds the overload pre-warning threshold according to the overload pre-warning coefficient (F9-02) before performing the protection action. The terminal outputs an active signal when the overload prewarning threshold is exceeded. (For the calculation of the pre-warning threshold, see description of the motor overload protection function.)
7	AC drive overload prewarning	The DO terminal outputs an active signal 10 seconds before AC drive overload protection is performed.
8	Reference count value reach	The DO terminal outputs an active signal when the count value reaches the setpoint of FB-08.
9	Designated count value reach	The DO terminal outputs an active signal when the count value reaches the setpoint of FB-09.
10	Length reach	The DO terminal outputs an active signal when the detected actual length exceeds the setpoint of FB-05.
11	Simple PLC cycle completion	The terminal outputs a pulse signal with a width of 250 ms when the simple PLC completes one cycle.
12	Accumulative running duration reach	The terminal outputs an active signal when the accumulative running duration of the AC drive exceeds the setpoint of F -17 (accumulative running duration threshold).
13	Wobble limit reach	The DO terminal outputs an active signal when the frequency reference exceeds the frequency upper or lower limit and the output frequency of AC drive reaches the upper or lower limit.
14	Torque limit reach	The DO terminal outputs an active signal when the output torque reaches the torque limit in speed control mode.
15	Ready to run	The DO terminal outputs an active signal when the AC drive is ready for running without any fault after power-on.
16	Al1 > Al2	The DO terminal outputs an active signal when the value of AI1 is greater than that of Al2.
17	Frequency upper limit reach	The DO terminal outputs an active signal when the running frequency reaches the upper limit (FO-12).
18	Frequency lower limit reach (no output at stop)	If F8-14 (running mode when frequency reference lower than lower limit) is set to 1 (stop), the terminal outputs an inactive signal no matter whether the running frequency reaches the frequency lower limit. If F8-14 (running mode when frequency reference lower than lower limit) is set to 0 (run at frequency lower limit) or 2 (run at zero speed), the terminal outputs an active signal when the running frequency reaches the frequency lower limit.
19	Undervoltage state	The DO terminal outputs an active signal when undervoltage occurs on the AC drive.
20	Communication control	Whether the terminal is active or inactive is determined by the setpoint in communication address 0x2001.
23	Running at zero speed 2 (output at stop)	The DO terminal outputs an active signal when the AC drive is running with the output frequency of 0 . The DO terminal also outputs an active signal when the AC drive is stopped.
24	Accumulative power-on duration reach	The DO terminal outputs an active signal when the accumulative power-on duration (F7-13) of the AC drive exceeds the accumulative power-on duration threshold (F8-16).

Refer ence	Function	Description
25	Frequency-level detection FDT2	When the running frequency is higher than the detected value, the DO terminal outputs an active signal. When the running frequency is lower than the result of the detected value minus the frequency detection hysteresis value (F8-28 x F8-29), the active signal is canceled.
26	Frequency 1 reach	The DO terminal outputs an active signal when the running frequency of the AC drive is within the frequency detection range of F8-30 (detection value 1 for frequency reach). The frequency detection range is as follows: (F8-30 - F8-31 x F0-10) to (F8-30 + F8-31 x F0-10).
27	Frequency 2 reach	The DO terminal outputs an active signal when the running frequency of the AC drive is within the frequency detection range of F8-32 (detection value 2 for frequency reach). The frequency detection range is as follows: (F8-32 - F8-33 x F0-10) to (F8-32 + F8-33 x F0-10).
28	Current 1 reach	The DO terminal outputs an active signal when the output current of the AC drive is within the detection range of F8-38 (detection level of current 1). The current detection range is as follows: (F8-38 - F8-39 x F1-03) to (F8-38 + F8-39 x F1-03).
29	Current 2 reach	The DO terminal outputs an active signal when the output current of the AC drive is within the detection range of F8-40 (detection level of current 2). The current detection range is as follows: (F8-40 - F8-41 x F1-03) to (F8-40 + F8-41 x F1-03).
30	Timing reach	When the timing function (F8-42) is enabled, the DO terminal outputs an active signal when the current running duration of the $A C$ drive reaches the timing duration defined by F8-43 and F8-44.
31	Al1 input overlimit	The DO terminal outputs an active signal when the AII input is higher than the setpoint of F8-46 (AI1 input voltage upper limit) or lower than the setpoint of F8-45 (AI1 input voltage lower limit).
32	Load loss	The DO terminal outputs an active signal when load loss occurs.
33	Reverse running	The DO terminal outputs an active signal when the AC drive runs in the reverse direction.
34	Zero current state	The DO terminal outputs an active signal when the output current of the AC drive is within the zero-current range for a period longer than the setpoint of F8-35 (zero current detection delay). The zero current detection range is 0 to (F8-34 x F1-03).
35	IGBT temperature reach	The DO terminal outputs an active signal when the IGBT heatsink temperature (F7-07) reaches the IGBT temperature threshold (F8-47).
36	Output overcurrent	The DO terminal outputs an active signal when the output current of the AC drive remains higher than the setpoint of F8-36 (output overcurrent threshold) for a period longer than the setpoint of F8-37 (output overcurrent detection delay).
37	Frequency lower limit reach (output at stop)	The DO terminal outputs an active signal when the running frequency reaches the frequency lower limit (F0-14). The DO terminal also outputs an active signal when the AC drive is stopped.
38	Alarm (all faults)	The DO terminal outputs an active signal when a fault occurs on the $A C$ drive and the AC drive continues to run upon the fault. For details about fault protection actions, see the description of parameters F9-47 to F9-50.
39	Motor overtemperature	The DO terminal outputs an active signal when the motor temperature reaches the setpoint of F9-58 (motor overtemperature pre-warning threshold). (You can check the motor temperature in U0-34.)
40	Current running duration reach	The DO terminal outputs an active signal when the current running duration of the AC drive exceeds the setpoint of F8-53 (current running duration threshold).

Refer ence	Function	Description
41	Fault output (no output at undervoltage)	The DO terminal outputs an active signal when an AC drive fault (except the undervoltage fault) occurs.
42	STO output	The DO terminal outputs an active signal when the AC drive triggers STO.
43	Running with limits	The DO terminal outputs an active signal when the AC drive generates a minor fault of running with limits and the operating panel displays "LXXX.XX".

1.3.3 VDI

The virtual digital input (VDI) terminals have similar functions as those of DI terminals on the control board and can be used as multi-function DI terminals.

The AC drive supports four VDI sources:

- A1-06 and A1-42. You can directly set A1-06 and A1-42 to activate the DI. This mode mainly applies to communication scenarios in which physical DIs are not used and DI functions are implemented by writing to A1-06 and A1-42. The ones place of A1-06 corresponds to VDI1, the tens place corresponds to VDI2, and so on. The ten thousands place of A1-06 corresponds to VDI5, and A1-42 corresponds to VDI6.
- VDO state. There are six VDOs, and VDOx corresponds to VDIx (x=1, 2, 3, 4, 5, or 6).
- DI state. DI1 corresponds to VDI1, DI2 corresponds to VDI2, and so on.
- Al state. Al1 corresponds to VDI1, AI2 corresponds to VDI2, and AI3 corresponds to VDI3. The other three virtual terminals are AIIAsDI, AI2AsDI, and AI3AsDI

Application

The following examples illustrate how to use the VDI.

- Example 1: When A1-05 (VDI1 active state source) is set to 00001 (DO is used as the source), to enable the AC drive to generate an alarm and stop when the AI1 input exceeds the upper limit or lower limit, set as follows.

Step	Settings
1	Set A1-00 to 44 to assign VDI1 with the function of "user-defined fault 1".
2	Set F5-04 to 31 to assign DO1 with the function of "AI input overlimit".
3	Set A1-05 to 00001 to use DO as the VDI1 state source.

After the setting, when the AI1 input exceeds the upper or lower limit, DO1 becomes ON. At this moment, VDII becomes active and the AC drive receives user-defined fault 1 . Then the AC drive reports E27.00 and stops.

- Example 2: To use the VDI to implement the emergency stop function without physical DIs in a communication scenario, set as follows:

Step	Settings
1	Set A1-00 to 47 to assign VDI1 with the function of "emergency stop".
2	Set A1-05 to 00000 to use the parameter as the VDI1 active state source.
3	Change the value of the ones place of A1-06 through communication.

After the setting, the emergency stop function can be implemented when the ones place of A1-06 is set to 1 through communication.

Related Parameters

Para.	Name	Default	Value Range	Description
A1-00	VDI1 function	0	0 to 80	Same as F4-00
A1-01	VDI2 function	0		
A1-02	VDI3 function	0		
A1-03	VDI4 function	0		
A1-04	VDI5 function	0		
A1-05	VDI active state source	00000	Ones: VDI1 0: VDO1 1: A1-06 2: DII 3: Communication setpoint (bit10 of F4-50) 4: Al1 5: Reserved Tens: VDI2 0: VDO2 1: A1-06 2: DI2 3: Communication setpoint (bit11 of F4-50) 4: Al2 5: Reserved (To be continued)	This parameter defines the state of VDIx (x ranges from 1 to 5). 0 : VDOx The VDI state depends on the corresponding VDO output. VDIx (x ranges from 1 to 5) is uniquely bound to VDOx (x ranges from 1 to 5). 1: A1-06 The state of VDIX (x ranges from 1 to 5) is set through the binary bits of A1-06. 2: DIx (x ranges from 1 to 5) The VDI state depends on the corresponding DI output. VDIx (x ranges from 1 to 5) is uniquely bound to DIx (x ranges from 1 to 5). 3: Communication setpoint (bit10 to bit14 of F4-50) 4: Alx (x ranges from 1 to 3) The VDI state depends on the corresponding Al output. VDIx (x ranges from 1 to 3) is bound to Alx (x ranges from 1 to 3). 5: Reserved

Para.	Name	Default	Value Range	Description
(Continued)	(Continued)	(Continued)	(continued) Hundreds: VDI3 0: VDO3 1: A1-06 2: DI3 3: Communication setpoint (bit12 of F4-50) 4: Al3 5: Reserved Thousands: VDI4 0: VDO4 1: A1-06 2: DI4 3: Communication setpoint (bit13 of F4-50) 4-5: Reserved Ten thousands: VDI5 0: VDO5 1: A1-06 2: DI5 3: Communication setpoint (bit14 of F4-50) 4-5: Reserved	(Continued)
A1-06	VDI state	00000	Ones: VDI1 0 : Inactive 1: Active Tens: VDI2 0 : Inactive 1: Active Hundreds: VDI3 0 : Inactive 1: Active Thousands: VDI4 0 : Inactive 1: Active Ten thousands: VDI5 0 : Inactive 1: Active	This parameter defines whether VDIx (x ranges from 1 to 5) is active or inactive.
A1-40	VDI6 function	0	0 to 80	Same as F4-00

Para.	Name	Default	Value Range	Description
A1-41	VDI6 hardware source	0	Ones: VDI6 0: VDO6 1: A1-42 2: DI6 3: Communication setpoint (bit15 of F4-50) 4-5: Reserved	Same as A1-05
A1-42	VDI6 state	0	Ones: VDI6 0 : Inactive 1: Active	Same as A1-06
A1-43	VDI1-VDI5 active mode	0	Ones: VDI1 0 : Active low 1: Active high Tens: VDI2 0: Active low 1: Active high Hundreds: VDI3 0 : Active low 1: Active high Thousands: VDI4 0 : Active low 1: Active high Ten thousands: VDI5 0 : Active low 1: Active high	This parameter defines the active mode of VDIx (x ranges from 1 to 5).
A1-44	VDI6 active mode	0	Ones: VDI6 0 : Active low 1: Active high	Same as A1-43

1.3.4

VDO

The virtual digital output (VDO) terminals have similar functions as those of DO terminals on the control board. They can be used together with VDI terminals to implement some simple logic control. VDO and VDI terminals can work together to implement flexible control. For details about the usage, see the examples in the VDI section.

Related Parameters

Para.	Name	Default	Value Range	Description
A1-11	VDO1 function	0	0 to 43	Same as F5-01
A1-12	VDO2 function	0		
A1-13	VDO3 function	0		
A1-14	VDO4 function	0		
A1-15	VD05 function	0		
A1-21	VDO active mode	0	Ones: VDO1 0 : Positive logic active 1: Negative logic active Tens: VDO2 0 : Positive logic active 1: Negative logic active Hundreds: VDO3 0 : Positive logic active 1: Negative logic active Thousands: VDO4 0 : Positive logic active 1: Negative logic active Ten thousands: VDO5 0 : Positive logic active 1: Negative logic active	Positive logic: The terminal outputs 0 when it is inactive. The terminal outputs 1 when it is active. Negative logic: The terminal outputs 1 when it is inactive. The terminal outputs 0 when it is active.
A1-22	VDO1 output switch-on delay	0.0	0.0s to 3600.0s	-
A1-23	VDO2 output switch-on delay	0.0	0.0s to 3600.0s	
A1-24	VDO3 output switch-on delay	0.0	0.0s to 3600.0s	
A1-25	VDO4 output switch-on delay	0.0	0.0s to 3600.0s	
A1-26	VDO5 output switch-on delay	0.0	0.0s to 3600.0s	
A1-27	VDO1 output switch-off delay	0.0	0.0s to 3600.0s	
A1-28	VDO2 output switch-off delay	0.0	0.0s to 3600.0s	
A1-29	VDO3 output switch-off delay	0.0	0.0s to 3600.0s	
A1-30	VDO4 output switch-off delay	0.0	0.0s to 3600.0s	
A1-31	VDO5 output switch-off delay	0.0	0.0s to 3600.0s	
A1-32	VDO6 function	0	0 to 43	Same as F5-01
A1-33	VDO7 function	0		
A1-34	VD08 function	0		
A1-35	VD09 function	0		
A1-36	VDO10 function	0		
A1-37	VDO11 function	0		

Para.	Name	Default	Value Range	Description
A1-38	VDO6-VDO10 active mode	0	Ones: VDO6 0 : Positive logic active 1: Negative logic active Tens: VDO7 0 : Positive logic active 1: Negative logic active Hundreds: VDO8 0 : Positive logic active 1: Negative logic active Thousands: VDO9 0 : Positive logic active 1: Negative logic active Ten thousands: VDO10 0 : Positive logic active 1: Negative logic active	Positive logic: The terminal outputs 0 when it is inactive. The terminal outputs 1 when it is active. Negative logic: The terminal outputs 1 when it is inactive. The terminal outputs 0 when it is active.
A1-39	VDO11 active mode	0	0 : Positive logic active 1: Negative logic active	

1.3.5 DIO

The DIO counting function, that is, DIO edge statistics, can help users to record the number of active level actions (retentive at power failure), so as to meet application requirements such as device lifetime measurement and level jump count pre-warning.

Application

The following example illustrates how to use the DIO counting function.
The AC drive provides four counting modules (which can count at the same time without affecting each other) and 32 counting channels (DI/VDI/DO/RO/VDO). They are used as follows.

Step	Settings
1	1. Select a target counting module (out of 4 modules) and reset it by setting A1-50. 2. Set A1-50 to 0 (not reset).
2	Specify the pre-warning threshold for the target counting module by using A1-55/A1-56/A1-57/A1-58.
3	Select a target counting channel (out of 32 channels) and set its active mode (that is, level jump direction, "from inactive to active/positive logic" or "from active to inactive/negative logic") by using F4-38/F4-39/A1-43/A1-44/F5-22/ A1-21/A1-38/A1-39.
4	Set the target counting channel by using A1-51/A1-52/A1-53/A1-54.

-Example 1: To use counting module 1 to count the times that DO1 level jumps from active to inactive with a pre-warning threshold of 100 , set as follows.

Step	Settings
1	1. Set A1-50 to 1 to reset counting module 1. 2. After the reset, set A1-50 to 0 (not reset).
2	Set A1-55 to 100 (pre-warning threshold of counting module 1).
3	Set F5-22 to 1 (negative logic).
4	Set A1-51 to 19 (counting channel DO1 of counting module 1).
5	After the program runs for a period of time, check the count value in A1-59 and check the comparison result in L1-03.

Related Parameters

Para.	Name	Default	Value Range	Description
A1-50	DIO edge count reset	0	0: Not reset 1: Counting module 1 2: Counting module 2 3: Counting module 3 4: Counting module 4 5: All counting modules	This parameter is used to reset the counting modules. You can select the corresponding value to clear a counting module. Note: Set this parameter again after the reset.
A1-51	DIO edge counting channel selection 1	0	0: None 1: DI1 2: DI2 3: DI3 4: DI4 5: DI5 6: DI6 7: DI7 8: DI8 9: DI9 10: DI10 11: VDI1 12: VDI2 13: VDI3 14: VDI4 15: VDI5 16: VDI6 17: Relay 1 (DO3) 18: FMR 19: DO1 20: Relay 2 (DO4) 21: DO2 22: VDO1 23: VDO2 24: VDO3 25: VDO4 26: VDO5 27: VDO6 28: VDO7 29: VDO8 30:	This parameter is used to select the channel (counting object) for counting module 1.
A1-52	DIO edge counting channel selection 2	0	30: VDO9	This parameter is used to select the channel (counting object) for counting module 2.

Para.	Name	Default	Value Range	Description
A1-53	DIO edge counting channel selection 3	0	31: VDO10	This parameter is used to select the channel (counting object) for counting module 3.
A1-54	DIO edge counting channel selection 4	0	32: VDO11	This parameter is used to select the channel (counting object) for counting module 4.
A1-55	DIO edge counting comparison value 1	0	0 to 65535	This parameter is used to set the comparison value.
A1-56	DIO edge counting comparison value 2	0	0 to 65535	-
A1-57	DIO edge counting comparison value 3	0	0 to 65535	-
A1-58	DIO edge counting comparison value 4	0	0 to 65535	-
A1-59	DIO edge counting module count value 1	0	0 to 65535	This parameter is used to display the current count value.
A1-60	DIO edge counting module count value 2	0	0 to 65535	-
A1-61	DIO edge counting module count value 3	0	0 to 65535	-
A1-62	DIO edge counting module count value 4	0	0 to 65535	-

1.3.6
 AI

MD520 provides two Al terminals. If the Al terminals cannot meet requirements of field application, you can install an I/O expansion card. (For the quantity of Al terminals on the expansion card, see the optional expansion card section.) For example, MD38IO1 provides one AI terminal (AI3).

To use Als as DIs, the following parameters need to be set. When an AI is used as an DI, the AI state is high level if the input voltage is higher than 7 V and is low level if the input voltage is lower than 3 V . The Al is in hysteresis state if the input voltage is between 3 V and 7 V . The following figure shows the relationship between AI input voltages and DI states.

Figure 1-42 Relationship between AI input voltages and DI states

Table 1-17 Related parameters

Terminal	Name	Type	Input Voltage Range
AII-GND	Control board Al terminal 1	Voltage type	0 V to 10 V DC
AI2-GND	Control board AI terminal 2	Voltage type	0 V to 10 V DC
		Current type (impedance: 500Ω	0 mA to 20 mA
		Current type (impedance: $250 \Omega)$	0 mA to 40 mA
		Temperature type	Select different input types and temperature sensors by using the DIP switch on the main control board and F9-75: PT100: $-25^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ PT1000: $-25^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ KTY84-130: $-40^{\circ} \mathrm{C}$ to $+260^{\circ} \mathrm{C}$ PTC130: $-20^{\circ} \mathrm{C}$ to $+180^{\circ} \mathrm{C}$
AI3-GND	I/O expansion card Al terminal	Voltage type	0 V to 10 V DC
		Temperature type	Select different input types and temperature sensors by using the DIP switch on the expansion board and F9-56: PT100: $0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ PT1000: $0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$

Functions of the Al terminals are switched by using the DIP switches on the main control board.
Table 1-18 DIP switches

Port Definition				Pin Description
Pin	1	2	3	
S1	NC	Al_I	AI_I1	$1-2$: Al 2 uses the voltage input mode. 2-3: Al2 uses the current input mode (impedance: 500Ω).
S2	NC	Al_I1	AI_I2	$1-2$: The input mode of Al 2 is controlled by S 1 . 2-3: Al2 uses the current input mode (impedance: 25Ω).
S3	NC	AI_I	AI_T1	1-2: The input mode of AI2 is controlled by S1 and S2. $2-3$: Al2 uses the temperature sensor input mode.
S4	AO_U	AO1	AO_I	$1-2$: The AO mode is the voltage output mode. $2-3$: The AO mode is the current output mode.

Notes2 and S3 cannot be set to 2-3 at the same time; otherwise, a sampling error may occur.

The sensors for temperature-type AI terminals can be switched by using F9-56 and F9-75. Note that if AI2/AI3 is not used for temperature input, these two parameters need to be set to 0 (no sensor type).

Table 1-19 Related parameters

Para.	Name	Default	Value Range	Description
A1-07	AI1 (used as DI) function	0	0 to 80	Same as F4-00; function selection for Als used as DIs.
A1-08	AI2 (used as DI) function	0		
A1-09	AI3 (used as DI) function	0		
A1-10	AI (used as DI) active mode	000	Ones: Al1 0: Active low 1: Active high Tens: Al2 0 : Active low 1: Active high Hundreds: Al3 0 : Active low 1: Active high	If the Al terminal inputs high level, it is inactive when the corresponding bit of $\mathrm{A} 1-10$ is set to 0 and active when set to 1. If the Al terminal inputs low level, it is active when the corresponding bit of A1-10 is set to 0 and inactive when set to 1 .
F4-13	Minimum input of Al curve 1	0.00 V	-10.00 V to F4-15	These parameters are used to set AI curve 1. F4-13 and F4-15 are interlocked.
F4-14	Percentage corresponding to minimum input of Al curve 1	0.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	
F4-15	Maximum input of AI curve 1	10.00 V	F4-13 to 10.00 V	
F4-16	Percentage corresponding to maximum input of Al curve 1	100.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	
F4-17	Al1 filter time	0.10s	0.00 s to 10.00 s	This parameter is used to set the time coefficient of Al1 filtering.
F4-18	Minimum input of Al curve 2	0.00 V	-10.00 V to F4-20	These parameters are used to set AI curve 2. F4-18 and F4-20 are interlocked.
F4-19	Percentage corresponding to minimum input of AI curve 2	0.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	
F4-20	Maximum input of AI curve 2	10.00 V	F4-18 to 10.00 V	
F4-21	Percentage corresponding to maximum input of AI curve 2	100.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	
F4-22	AI2 filter time	0.10s	0.00 s to 10.00 s	This parameter is used to set the time coefficient of Al2 filtering.
F4-23	Minimum input of Al curve 3	0.00 V	-10.00 V to F4-25	These parameters are used to set AI curve 3. F4-23 and F4-25 are interlocked.
F4-24	Percentage corresponding to minimum input of Al curve 3	0.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	
F4-25	Maximum input of AI curve 3	10.00 V	F4-23 to 10.00 V	
F4-26	Percentage corresponding to maximum input of Al curve 3	100.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	
F4-27	Al3 fitter time	0.10s	0.00 s to 10.00 s	This parameter is used to set the time coefficient of AI3 filtering.

Para.	Name	Default	Value Range	Description
(Continued)	(Continued)	(Continued)	(continued) Hundreds: Al3 curve 1: Curve 1 (2-point curve; F4-13 to F416) 2: Curve 2 (2-point curve; F4-18 to F421) 3: Curve 3 (2-point curve; F4-23 to F426) 4: Curve 4 (4-point curve; A6-00 to A607) 5: Curve 5 (4-point curve; A6-08 to A615)	This parameter defines the curve model of Alx (x ranges from 1 to 3).
F4-34	Al lower limit	0x0	Ones: Setting for AI less than minimum input 0: Percentage corresponding to minimum input 1: 0.0\% Tens: Setting for AI2 less than minimum input 0: Percentage corresponding to minimum input 1: 0.0\% Hundreds: Setting for AI3 less than minimum input 0: Percentage corresponding to minimum input 1: 0.0\%	This parameter defines the lower limit of Alx (x ranges from 1 to 3).
F9-56	Al3 temperature mode motor temperature sensor type	0	0: No temperature sensor (Al channel used as analog input) 1: PT100 2: PT1000	This parameter is used to select the sensor type when AI3 is used for temperature input.
F9-57	Al3 temperature mode motor overheat protection threshold	$110^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	This parameter is used to define the overheat protection threshold when AI3 is used for temperature sampling.

Para.	Name	Default	Value Range	Description
F9-58	Al3 temperature mode motor overheat prewarning threshold	$90^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	This parameter is used to define the overheat pre-warning threshold when AI3 is used for temperature sampling.
F9-75	Al2 temperature mode motor temperature sensor type	0	0 : No temperature sensor (Al channel used as analog input) 1: PT100 2: PT1000 3: KTY84-130 4: PTC130	This parameter is used to select the sensor type when Al2 is used for temperature input.
F9-76	Al2 temperature mode motor overheat protection threshold	$110^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	This parameter is used to define the overheat protection threshold when AI2 is used for temperature sampling.
F9-77	Al2 temperature mode motor overheat prewarning threshold	$90^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	This parameter is used to define the overheat pre-warning threshold when AI2 is used for temperature sampling.
F9-78	Al2 temperature mode motor temperature reach	$75^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	This parameter is used to define the temperature threshold when AI2 is used for temperature sampling.
F9-80	Al3 temperature mode motor temperature reach	$75^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	This parameter is used to define the temperature threshold when AI3 is used for temperature sampling.
A6-00	Minimum input of Al curve 4	0.00 V	-10.00 V to A6-02	These parameters are used to set AI curve 4. A6-00, A6-02, A6-04, and A6-06 are interlocked.
A6-01	Percentage corresponding to minimum input of Al curve 4	0.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	
A6-02	Inflection 1 input of Al curve 4	3.00 V	A6-00 to A6-04	
A6-03	Percentage corresponding to inflection 1 input of AI curve 4	30.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	
A6-04	Inflection 2 input of Al curve 4	6.00 V	A6-02 to A6-06	
A6-05	Percentage corresponding to inflection 2 input of Al curve 4	60.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	
A6-06	Maximum input of Al curve 4	10.00 V	A6-04 to 10.00 V	
A6-07	Percentage corresponding to maximum input of Al curve 4	100.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	

Para.	Name	Default	Value Range	Description
A6-08	Minimum input of Al curve 5	-10.00 V	-10.00 V to A6-10	These parameters are used to set Al curve 5. A6-08, A6-10, A6-12, and A6-14 are interlocked.
A6-09	Percentage corresponding to minimum input of Al curve 5	-100.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	
A6-10	Inflection 1 input of Al curve 5	-3.00 V	A6-08 to A6-12	
A6-11	Percentage corresponding to inflection 1 input of AI curve 5	-30.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	
A6-12	Inflection 2 input of Al curve 5	3.00 V	A6-10 to A6-14	
A6-13	Percentage corresponding to inflection 2 input of AI curve 5	30.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	
A6-14	Maximum input of AI curve 5	10.00 V	A6-12 to 10.00 V	
A6-15	Percentage corresponding to maximum input of AI curve 5	100.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	
A6-24	Al1 skip point	0.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	This parameter is used to set the AI1 skip point. If the input relative skip point falls within the skip amplitude defined by A6-25, the value of the skip point is output.
A6-25	Al1 skip amplitude	0.1\%	0.0\% to +100.0\%	This parameter is used to set the Al1 skip amplitude. If the input relative skip point defined by A6-24 falls within the skip amplitude defined by A6-25, the value of the skip point is output.
A6-26	Al2 skip point	0.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	This parameter is used to set the AI2 skip point. If the input relative skip point falls within the skip amplitude defined by A6-27, the value of the skip point is output.
A6-27	Al2 skip amplitude	0.1\%	0.0\% to +100.0\%	This parameter is used to set the AI2 skip amplitude. If the input relative skip point defined by A6-26 falls within the skip amplitude defined by A6-27, the value of the skip point is output.
A6-28	Al3 skip point	0.0\%	$\begin{aligned} & -100.0 \% \text { to } \\ & +100.0 \% \end{aligned}$	This parameter is used to set the AI3 skip point. If the input relative skip point falls within the skip amplitude defined by A6-29, the value of the skip point is output.
A6-29	Al3 skip amplitude	0.1\%	0.0\% to +100.0\%	This parameter is used to set the AI3 skip amplitude. If the input relative skip point defined by A6-28 falls within the skip amplitude defined by A6-29, the value of the skip point is output.

Para.	Name	Default	Value Range	Description
A6-30	Al automatic curve calibration	0	Ones: Point selection (for setting) 0: Disabled 1: Point 1 2: Point 2 3: Point 3 4: Point 4 Tens: Al channel selection (for setting) 0: Disabled 1: Al1 2: Al2 3: Al3 Hundreds: Enable control (for setting) 0: Disabled 1: Enabled Thousands: X-point curve (for display) 0 : The function is disabled or the channel is not selected. 2: 2-point curve 4: 4-point curve Ten thousands: Reserved	-
A6-31	Al1 input enable	0	0: Disabled 1: Enabled Others: B connector	-
A6-32	Al2 input enable	0	0: Disabled 1: Enabled Others: B connector	-
A6-33	Al3 input enable	0	0 : Disabled 1: Enabled Others: B connector	-

Para.	Name	Default	Value Range	Description
A6-34	Al polarity	0	Ones: Al1 0: Normal 1: Absolute value 2: Negated value 3: Negated absolute value Tens: Al2 0: Normal 1: Absolute value 2: Negated value 3: Negated absolute value Hundreds: AI3 0: Normal 1: Absolute value 2: Negated value 3: Negated absolute value	-
A6-35	Al hardware source	0	Ones: Al1 source 0: Hardware sampling 1: Force setpoint Tens: Al2 source 0: Hardware sampling 1: Force setpoint Hundreds: AI3 source 0: Hardware sampling 1: Force setpoint	When this parameter is set to 0 , the Al values are obtained by hardware sampling. When this parameter is set to 1 , the Al values can be set forcibly by using A636 to A6-38.
A6-36	Al1 force setpoint	0.00 V	-10.00 V to +10.00 V	When the ones place of A6-35 is set to 1 , the Al1 value can be set forcibly by using A6-36.
A6-37	Al2 force setpoint	0.00 V	-10.00 V to +10.00 V	When the tens place of A6-35 is set to 1 , the AI2 value can be set forcibly by using A6-37.
A6-38	Al3 force setpoint	0.00 V	-10.00 V to +10.00 V	When the hundreds place of A6-35 is set to 1 , the Al 3 value can be set forcibly by using A6-38.
A6-39	High level for Al used as DI	7.0 V	5.5 V to 9.0 V	This parameter is used to set the threshold of high level for AI used as DI.
A6-40	Low level for AI used as DI	3.0 V	1.0 V to 4.5 V	This parameter is used to set the threshold of low level for AI used as DI.
A6-41	Al1 gain	1.00	-10.00 to +10.00	This parameter defines the gain for AI1 analog sampling.

Para.	Name	Default	Value Range	Description
A6-42	Al1 offset	0.00 V	-10.00 V to +10.00 V	This parameter defines the offset for All analog sampling.
A6-43	Al1 denoising threshold	0.5\%	0.0\% to +100.0\%	This parameter defines the AI1 denoising threshold. If the absolute value of the difference between the current input and the last input does not exceed the threshold, denoising is performed.
A6-44	Al1 deadzone width	0.5\%	0.0\% to +100.0\%	This parameter defines the AI1 deadzone width. The output within the zone is 0.0%, which is used to eliminate fluctuations near zero.
A6-47	Al2 gain	1.00	-10.00 to +10.00	This parameter defines the gain for AI2 analog sampling.
A6-48	Al2 offset	0.00 V	-10.00 V to +10.00 V	This parameter defines the offset for AI2 analog sampling.
A6-49	AI2 denoising threshold	0.5\%	0.0\% to +100.0\%	This parameter defines the AI2 denoising threshold. If the absolute value of the difference between the current input and the last input does not exceed the threshold, denoising is performed.
A6-50	Al2 deadzone width	0.5\%	0.0\% to +100.0\%	This parameter defines the AI2 deadzone width. The output within the zone is 0.0%, which is used to eliminate fluctuations near zero.
A6-53	Al3 gain	1.00	-10.00 to +10.00	This parameter defines the gain for AI3 analog sampling.
A6-54	Al3 offset	0.00 V	-10.00 V to +10.00 V	This parameter defines the offset for AI3 analog sampling.
A6-55	AI3 denoising threshold	0.5\%	0.0\% to +100.0\%	This parameter defines the AI3 denoising threshold. If the absolute value of the difference between the current input and the last input does not exceed the threshold, denoising is performed.
A6-56	Al3 deadzone width	0.5\%	0.0\% to $+100.0 \%$	This parameter defines the AI3 deadzone width. The output within the zone is 0.0%, which is used to eliminate fluctuations near zero.

Table 1-20 Setting AI as the frequency reference source

Step	Related Parameters	Description	
Select an AI terminal: Select the AI terminal for setting the frequency reference based on terminal characteristics.	F0-03	F0-03 = 2	Select AI1.
		F0-03 $=3$	Select AI2.
		F0-03 $=4$	Select AI3.
Select a curve that defines mapping between Al voltages ${ }^{[1]}$ and frequencies: Select a curve out of five curves.	F4-33	Typically the default value is used ($F 4-33=321$). That is, select curve 1 for AI1, curve 2 for AI2, and curve 3 for Al3.	
Set the curve that defines mapping between the Al voltages ${ }^{[1]}$ and frequencies: Set the correspondence between Al voltage inputs and frequency setpoints.	F4-13 to F4-16 ${ }^{[2]}$	Set curve 1.	Typical curve ${ }^{[3]}$
	F4-18 to F4-21	Set curve 2.	Typical curve ${ }^{[4]}$
	F4-23 to F4-27	Set curve 3.	Typical curve ${ }^{[5]}$
	A6-00 to A6-07	Set curve 4.	
	A6-08 to A6-15	Set curve 5.	
	F4-34	Define setting for AI less than minimum input ${ }^{[2]}$.	
	F0-10	When an AI terminal is used as the frequency source, the voltage/current input setpoint 100\% indicates the percentage relative to the maximum frequency (F0-10).	
Set Al filter time.	F4-17	The default value is 0.1 s . Set this parameter based on onsite signal interference and requirements on responsiveness. Decrease the value if quick response is required, and increase it if onsite interference is large.	

${ }^{[1]}$ For the current type Al curve, 1 mA current corresponds to 0.5 V voltage, and 20 mA current corresponds to 10 V voltage.
${ }^{[2]}$ When the analog input voltage exceeds the maximum input defined by F4-15, the maximum input is used as the analog voltage. When the analog input voltage is lower than the minimum input defined by F4-13, the minimum input or 0.0% is used as the analog voltage according to the setpoint of F4-34 (setting for Al less than minimum input).
${ }^{[3]}$ The following figure shows the typical curves for AI1.

Settings involving no negative frequency reference Settings involving negative frequency reference (default)

Figure 1-43 Typical curves for AI1
${ }^{[4]}$ When AI2 is used for voltage input, the typical curve is the same as that for Al1. When it is used for current input, the input range is 4 mA to 20 mA , corresponding to 0 to 50 Hz or -50 Hz to +50 Hz .

Settings involving no negative frequency reference Settings involving negative frequency reference
Figure 1-44 Typical curves for Al2
${ }^{[5]}$ The following figure shows the typical curves for Al3. The mappings of the two setting modes within the range of 0 to 10 V are consistent. However, when a negative voltage is input, it is considered 0 V (minimum voltage defined by F4-24) in the setting mode shown on the left.

Settings involving no negative frequency reference Settings involving negative frequency reference (default)

Figure 1-45 Typical curves for AI3

Compared with manual curve calibration by users, the automatic calibration of Al curves enables automatic fill-in of voltage values at the calibration points. The parameter for setting automatic curve calibration is A6-30. The following figure shows the function of each bit of the parameter.

Figure 1-46 Bits of the parameter for setting automatic curve calibration

Figure 1-47 Automatic calibration of AI curves

1.3.7 AO and HDO

MD520 is equipped with one analog output (AO) terminal and one high-speed pulse output (HDO) terminal. If the AO terminal cannot meet requirements of field application, you can install an I/O expansion card. (For the quantity of AO terminals on the expansion card, see the optional expansion card section.) For example, MD38IO1 provides one AO terminal (AO2).

The following parameters are generally used to correct the zero drift of the analog output and the deviation of the output amplitude, and they can also be used to customize the required AO/HDO output curve.

Table 1-21 Related parameters

Para.	Name	De fault	Value Range	Description
F5-00	FM multifunction terminal output	0	0: Pulse output (FMP) 1: Digital output (FMR)	The FM terminal is a programmable multiplexing terminal, which functions as either a high-speed pulse output terminal (FMP) or an open-collector digital output terminal (FMR). When used as a high-speed pulse output terminal (FMP), the maximum frequency of the output pulse is 100 kHz . For details about the FMP function, see the description of F5-06.
F5-06	FMP output function	0	0 : Running frequency 1: Frequency reference 2: Output current 3: output torque (absolute value) 4: Output power 5: Output voltage 6: Pulse input 7: Al1 8: Al2 9: Al3 10: Length 11: Count value 12: Communication control 13: Motor speed 14: Output current 15: Bus voltage 16: Output torque (actual value) Others: F connector	See "Table 1-22 Relationship between pulse output/analog output functions and ranges" on page 95.
F5-07	AO1 function	0		
F5-08	Expansion card AO2 function	1		
F5-09	Maximum FMP output frequency	$\begin{aligned} & 50.00 \\ & \mathrm{kHz} \end{aligned}$	0.01 kHz to 100.00 kHz	This parameter defines the maximum pulse output frequency when the FM terminal is used for pulse output.

Para.	Name	De fault	Value Range	Description
F5-10	AO1 zero offset coefficient	0.0\%	-100.0% to +100.0\%	On the AO curve, if b indicates zero offset, k indicates gain, and X indicates standard output, the actual output Y is $(\mathrm{kX}+\mathrm{b})$.
F5-11	AO1 gain	1.00	-10.00 to +10.00	The zero offset coefficient 100% of AO1 and AO2 corresponds to 10 V (or 20 mA). The standard output refers to the value corresponding to the analog output of 0 to 10 V (or 0 to 20 mA) with no zero offset or gain adjustment. Zero offset = Zero offset coefficient x 10 V (or 20 $\mathrm{mA})$ The AC drive supports two AO output channels, of which AO1 is equipped on the control board, and AO2 needs to be provided through an expansion card. AO1 and AO2 can be used to indicate the internal running parameters in the analog mode. The indicated parameters are defined by F5-07 and F5-08.
F5-12	AO2 zero offset coefficient	0.0\%	-100.0% to +100.0\%	On the AO curve, if b indicates zero offset, k indicates gain, and X indicates standard output, the actual output Y is $(k X+b)$. The zero offset coefficient 100% of AO1 and AO2 corresponds to 10 V (or 20 mA). The standard output refers to the value corresponding to the analog output of 0 to 10 V (or 0 to 20 mA) with no zero offset or gain adjustment. Zero offset = Zero offset coefficient x 10 V (or 20 mA) The AC drive supports two AO output channels, of which AO1 is equipped on the control board, and AO2 needs to be provided through an expansion card. AO1 and AO2 can be used to indicate the internal running parameters in the analog mode. The indicated parameters are defined by F5-07 and F5-08.
F5-13	AO2 gain	1.00	-10.00 to +10.00	On the AO curve, if b indicates zero offset, k indicates gain, and X indicates standard output, the actual output Y is $(k X+b)$. The zero offset coefficient 100% of AO1 and AO2 corresponds to 10 V (or 20 mA). The standard output refers to the value corresponding to the analog output of 0 to 10 V (or 0 to 20 mA) with no zero offset or gain adjustment. Zero offset = Zero offset coefficient $\times 10 \mathrm{~V}$ (or 20 mA) The AC drive supports two AO output channels, of which AO1 is equipped on the control board, and AO2 needs to be provided through an expansion card. AO1 and AO2 can be used to indicate the internal running parameters in the analog mode. The indicated parameters are defined by F5-07 and F5-08.

Para.	Name	De fault	Value Range	Description
F5-36	Minimum input of AO1 curve	0.0\%	-100.0\% to F5-38	These parameters are used to set the AO1 curve. F5-36 and F5-38 are interlocked.
F5-37	Setpoint corresponding to minimum input of AO1 curve	0.00 V	0.00 V to 10.00 V	
F5-38	Maximum input of AO1 curve	$\begin{aligned} & 100.0- \\ & \% \end{aligned}$	F5-36 to 100.0\%	
F5-39	Setpoint corresponding to maximum input of AO1 curve	$\begin{aligned} & 10.00 \\ & \mathrm{~V} \end{aligned}$	0.00 V to 10.00 V	
F5-40	AO1 output offset	0.00 V	-10.00 V to +10.00 V	-
F5-41	Minimum input of AO2 curve	0.0\%	-100.0\% to F5-43	These parameters are used to set the AO2 curve. F5-41 and F5-43 are interlocked.
F5-42	Setpoint corresponding to minimum input of AO2 curve	0.00 V	0.00 V to 10.00 V	
F5-43	Maximum input of AO2 curve	$\begin{aligned} & 100.0- \\ & \% \end{aligned}$	F5-41 to 100.0\%	
F5-44	Setpoint corresponding to maximum input of AO2 curve	$\begin{aligned} & 10.00 \\ & \mathrm{~V} \end{aligned}$	0.00 V to 10.00 V	
F5-45	AO2 output offset	0.00 V	-10.00 V to +10.00 V	-
F5-46	AO curve	11	Ones: AO1 curve 0: 2-point curve 1: Gain+offset Tens: AO2 curve 0: 2-point curve 1: Gain+offset	When this parameter is set to 0 , you can set the AO curves by using F5-36 to F5-39 and F5-41 to F5-44. When this parameter is set to 1 , you can set the AO curves by using F5-10 to F5-13.

Para.	Name	De fault	Value Range	Description
44F5-47	AO polarity	00	Ones: AO1 0 : Normal 1: Absolute value 2: Negated value 3: Negated absolute value Tens: AO2 0 : Normal 1: Absolute value 2: Negated value 3: Negated absolute value	-
F5-48	AO hardware source	00	Ones: AO1 source 0 : Output function 1: Force setpoint Tens: AO2 source 0 : Output function 1: Force setpoint	When this parameter is set to 0 , the $A O$ values are determined by function setting. When this parameter is set to 1 , the AO values can be set forcibly by using F5-49 and F5-50.
F5-49	AO force setpoint 1	0.00 V	0.00 V to 10.00 V	When the ones place of A5-48 is set to 1 , the AO1 force output value can be set by using A5-49.
F5-50	AO force setpoint 2	0.00 V	0.00 V to 10.00 V	When the tens place of A5-48 is set to 1 , the AO2 force output value can be set by using A5-50.
F5-51	Minimum input of HDO curve	0.00\%	-100.00\% to F5-53	These parameters are used to set the HDO curve. F5-51 and F5-53 are interlocked.
F5-52	Percentage corresponding to minimum input of HDO curve	0.00\%	0.00\% to 100.00\%	
F5-53	Maximum input of HDO curve	$\begin{aligned} & 100.0- \\ & 0 \% \end{aligned}$	F5-51 to 100.00\%	
F5-54	Percentage corresponding to maximum input of HDO curve	$\begin{aligned} & 100.0- \\ & 0 \% \end{aligned}$	0.00\% to 100.00\%	
F5-55	HDO polarity	0	Ones: 0: Normal 1: Absolute value 2: Negated value 3: Negated absolute value	-
F5-56	HDO hardware source	0	0 : Output function 1: Force value	When this parameter is set to 0 , the HDO output value is determined by function setting. When this parameter is set to 1 , the HDO output value can be set forcibly by using F5-57.
F5-57	HDO force setpoint	0	0.00\% to 100.00\%	When F5-56 is set to 1 , the HDO force output value can be set by using F5-57.

The analog output (AO) 0 to 10 V corresponds to 0% to 100%. When the AO function is set to 1 (frequency reference), if the frequency reference of the AC drive is 50% of the maximum frequency, the AO output voltage is calculated as follows: $50 \% \times 10 \mathrm{~V}=5 \mathrm{~V}$.

The pulse output (FM) 0 to 100 kHz corresponds to 0% to 100%. When the FM output function is set to 1 (frequency reference), if the frequency reference of the AC drive is 50% of the maximum frequency and F5-09 is set to 100 kHz , the FM output frequency is calculated as follows: $50 \% \times 100 \mathrm{kHz}=50 \mathrm{kHz}$.

Table 1-22 Relationship between pulse output/analog output functions and ranges

Reference	Name	Value Range
0	Running frequency	0 to maximum output frequency; 100.0% corresponds to the maximum frequency (F0-10)
1	Frequency reference	0 to maximum output frequency
2	Output current	0 to twice the rated motor current; 100.0% corresponds to twice the rated motor current
3	Motor output torque	0 to rated motor torque; 100.0\% corresponds to the rated motor torque (absolute value, percentage relative to the rated torque)
4	Output power	0 to twice the rated power; 100.0% corresponds to twice the rated motor power
5	Output voltage	0 to 1.2 times the rated motor voltage; 100.0% corresponds to 1.2 times the rated motor voltage
6	Pulse input	0.01 kHz to $100.00 \mathrm{kHz} ; 100.0 \%$ corresponds to 100.0 kHz
7	Al1	-10 V to +10 V; 100.0\% corresponds to 10 V
8	Al2	-10 V to +10 V (or 0 to 20 mA or 0 to 40 mA); 100.0\% corresponds to 10 V
9	Al3	-10 V to +10 V; 100.0\% corresponds to 10 V
10	Length	0 to maximum length; 100.0\% corresponds to FB-05
11	Count value	0 to maximum count value; 100.0\% corresponds to FB-08
12	Communication control	0.0\% to 100.0%; 100.0% corresponds to AO communication control
13	Motor speed	0 to rotation speed corresponding to the maximum output frequency; 100.0% corresponds to the maximum frequency (F0-10)
14	Output current	0.0 A to 1000.0 A; 100.0\% corresponds to 1000.0 A
15	Output voltage	0.0 V to $1000.0 \mathrm{~V} ; 100.0 \%$ corresponds to 1000.0 V
16	Output torque of the motor (actual value, percentage relative to the rated motor torque)	-2 times the rated motor torque to 2 times the rated motor torque; 100.0\% corresponds to 2 times the rated motor torque, 50% corresponds to 0 , and 0 corresponds to -2 times the rated motor torque

The following describes how to calculate the AO zero offset coefficient (F5-10) and AO gain (F5-11):
Assume that the $A O$ terminal is used for output of the running frequency and you want to obtain the output of $8 \mathrm{~V}(\mathrm{Y} 1)$ at $0 \mathrm{~Hz}(\mathrm{X} 1)$ and output of $4 \mathrm{~V}(\mathrm{Y} 2)$ at $40 \mathrm{~Hz}(\mathrm{X} 2)$.

The gain is calculated as follows:

$$
K=\frac{(Y 1-Y 2) x X \max }{(X 1-X 2) x Y \max }
$$

The zero offset coefficient is calculated as follows:

$$
\mathrm{b}=\frac{(\mathrm{X} 1 \times \mathrm{Y} 2)(-\mathrm{X} 2 \times \mathrm{Y} 1)}{(\mathrm{X} 1-\mathrm{X} 2) \times \mathrm{Ymax}} \times 100 \%
$$

$X \max$ (maximum output frequency) is 50 Hz (assuming that the maximum frequency $\mathrm{F} 0-10$ is 50 Hz), and $Y \max$ (voltage) is 10 V .

In this case, the AO gain (F5-11) is -0.5 and AO zero offset coefficient (F5-10) is 80%.
Table 1-23 Relationship between AO signal types and maximum values (Ymax)

Output Signal	Maximum Value (Ymax)
Voltage	10 V
Current	$20 \mathrm{~mA} / 40 \mathrm{~mA}$

Table 1-24 Relationship between AO outputs and maximum values (Xmax)

AO Output	Maximum Value (Xmax)
Running frequency	Maximum output frequency
Frequency reference	Maximum output frequency
Output current	Twice the rated motor current
Output torque (absolute value)	Twice the rated motor torque
Output power	Twice the rated power
Output voltage	1.2 times the rated AC drive voltage
Pulse input	100.00 kHz
Al1	10 V
Al2	10 V or 20 mA or 40 mA
Al3	10 V
Length	Maximum length
Count value	Maximum count value
Communication	100.0%
Motor speed	Rotation speed corresponding to the maximum output frequency
Output current	1000.0 A
Output voltage	1000.0 V
Output torque (actual value)	Twice the rated motor torque

1.4 Control Performance

1.4.1 V/f Curve

Table 1-25 Straight-line, multi-point, and square V/f curve setting parameters

Para.	Name	Default	Value Range	Description
F3-00	V/f curve	0	0 : Straight-line V/f curve 1: Multi-point V/f curve 2-9: Reserved 10: V/f complete separation 11: V/f half separation	0: Straight-line V/f curve Below the rated frequency, the output voltage of the AC drive changes linearly with the output frequency. This curve is applicable to general mechanical drive applications such as large-inertia fan acceleration, punch presses, centrifuges, and water pumps. 1: Multi-point V/f curve The range of the frequency points is 0.00 Hz to the rated motor frequency. The range of the voltage points is 0.0% to 100.0%, which corresponds to the range of 0 V to the rated motor voltage. The multipoint V/f curve references are typically determined based on load characteristics of the motor. Ensure that the following conditions are met: F3-03 \leqslant F3-05 \leqslant F3-07. 2-9: Reserved 10: V/f complete separation The output frequency and output voltage of the $A C$ drive are independent of each other. The output frequency is determined by the frequency source, and the output voltage is determined by voltage source for V / f separation. This curve is generally applicable to scenarios such as motor torque control. 11: V/f half separation In this mode, the voltage (V) is proportional to the frequency (f). The relationship between V and f can be set by the voltage source, and it is also related to the rated motor voltage and rated motor frequency in group F1. Assuming that the voltage source input is X (X ranges from 0% to 100%), the relationship between V and f is as follows: $\mathrm{V} / \mathrm{f}=2 \times \mathrm{X} \times$ (Rated motor voltage)/(Rated motor frequency).
F3-01	Torque boost	Model dependent	$0.0 \text { to } 30.0$ 0.0\%: Automatic torque boost	The torque boost function generally applies to the AC drive at low frequency. The output torque of the $A C$ drive in V / f control mode is proportional to the frequency. Under the condition of low frequency, the torque is very low when the motor is running at a low speed. In this case, you can set this parameter to increase the output voltage of the AC drive, thereby increasing the current and output torque. Do not set this parameter to a large value, otherwise, overload protection may be triggered.
F3-02	Cut-off frequency of torque boost	$\begin{aligned} & 50.00 \\ & \mathrm{~Hz} \end{aligned}$	0.00 Hz to maximum frequency	When the running frequency reaches the cutoff frequency of torque boost, the torque boost function is disabled.

Para.	Name	Default	Value Range	
F3-03	Multi-point V/f frequency 1	0.00 Hz	0.00 Hz to F3-05	-
F3-04	Multi-point V/f voltage 1	0.0%	0.0% to +100.0\%	
F3-05	Multi-point V/f frequency 2	0.00 Hz	F3-03 to F3-07	
F3-06	Multi-point V/f voltage 2	0.0%	0.0\% to +100.0\%	
F3-07	Multi-point V/f frequency 3	0.00 Hz	F3-05 to F1-04 (rated motor frequency)	
F3-08	Multi-point V/f voltage 3	0.0%	0.0% to +100.0\%	

Straight-line V/f Curve

The following figure shows the general constant-torque straight-line V / f curve.

Figure 1-48 General constant-torque straight-line V/f curve
Below the rated frequency, the output voltage changes linearly with the frequency. This curve is applicable to general mechanical drive applications such as large-inertia fan acceleration, punch presses, centrifuges and water pumps.

Multi-point V/f Curve

The following figure shows a user-defined multi-point V / f curve.

Figure 1-49 User-defined multi-point V / f curve

The multi-point V/f curve is defined by F3-03 to F3-08. The range of the frequency points is 0.00 Hz to the rated motor frequency. The range of the voltage points is 0.0% to 100%, which corresponds to the range of 0 V to the rated motor voltage. The multi-point V / f curve references are typically determined based on load characteristics of the motor. Ensure that the following conditions are met: F3-03 \leqslant F3$05 \leqslant$ F3-07. To ensure correct setting, this AC drive has restrictions on the relationship between the upper and lower limits of the frequency points F3-03, F3-05, and F3-07. F3-07, F3-05, and F3-03 must be set in sequence.

Table 1-26 V/f separation curve parameters

Para.	Name	De fault	Value Range	Description
F3-13	Voltage source for V/f separation	0	0: F3-14 1: Al1 2: Al2 3: Al3 4: Pulse reference (DI5) 5: Multi-reference 6: Simple PLC 7: PID 8: Communication Others: F connector	This parameter defines the source of the target voltage in V / f separation mode. 0: F3-14 The V / f separation voltage is set by F3-14 (voltage digital setting of V / f separation). 1: Al1 The V/f separation voltage is input with current or voltage signals through the Al1 terminal. The frequency is calculated according to the preset AI curve. 2: Al2 The V/f separation voltage is input with current or voltage signals through the AI2 terminal. The frequency is calculated according to the preset AI curve. 3: Al3 The V/f separation voltage is input with current or voltage signals through the Al3 terminal. The frequency is calculated according to the preset AI curve. 4: Pulse reference (DI5) The V / f separation voltage is set through DI5. The frequency is calculated based on the curve reflecting the relationship between the pulse frequency and running frequency. 5: Multi-reference When multi-reference is used as the source of the V / f separation voltage, different combinations of DI terminal states correspond to different reference values. The four multi-reference terminals can provide 16 state combinations, corresponding to 16 reference values (percentage x maximum frequency) of parameters in group FC. 6: Simple PLC The V / f separation voltage is set by simple PLC. For details, see the function description of simple PLC. 7: PID The V/f separation voltage is set by PID. For details, see the PID function description. 8: Communication The main frequency is set through communication. The running frequency is input through remote communication. The AC drive must be equipped with a communication card to implement communication with the host controller. This mode applies to remote control or centralized control of multiple equipment. Others: F connector
F3-14	V/f separation voltage	0 V	0 V to rated motor voltage (F1-02)	The reference value is between 0 V and the rated voltage.

Para.	Name	De fault	Value Range	Description
F3-15	Voltage rise time of V/f separation	0.0s	0.0 s to 1000.0 s Note: This parameter indicates the time required for the voltage to change from 0 V to the rated motor voltage.	This parameter indicates the time required for the output voltage to rise from 0 to the V/f separation voltage reference.
F3-16	Voltage fall time of V/f separation	0.0s	0.0 s to 1000.0 s Note: This parameter indicates the time required for the voltage to change from 0 V to the rated motor voltage.	This parameter indicates the time required for the output voltage to fall from the V/f separation voltage reference to 0 .
F3-17	Stop mode for V/f separation	0	0 : The frequency and voltage decrease to 0 independently. 1: The frequency decreases to 0 after the voltage decreases to 0 .	0 : The frequency and voltage decrease to 0 independently. 1: The frequency decreases to 0 after the voltage decreases to 0 .

The voltage rise time of V / f separation indicates the time required for the voltage to rise from 0 to the rated motor voltage. See t 1 in the following figure.

The voltage fall time of V / f separation indicates the time required for the voltage to fall from rated motor voltage to 0 . See t 2 in the following figure.

Figure 1-50 Schematic diagram of V / f separation

1.4.2 Output Current (Torque) Limit

During acceleration, operation at constant speed, or deceleration, if the current exceeds the overcurrent stall suppression action current (150\% by default, indicating 1.5 times the rated AC drive
current), the overcurrent stall suppression mechanism is activated. In this case, the output frequency decreases until the current drops below the overcurrent stall suppression action current. Then, the output frequency increases toward the target frequency. Therefore, the acceleration is prolonged. If the actual acceleration time cannot meet your requirement, increase the value of F3-18 (overcurrent stall suppression action current) accordingly.

Figure 1-51 Overcurrent stall suppression action

Table 1-27 Related parameters

Para.	Name	Default	Value Range	Description
F3-18	V/f overcurrent stall suppression action current	150%	50% to 200\%	When the motor current reaches the value of this parameter, the AC drive starts overcurrent stall suppression. The default value is 150%, indicating 1.5 times the rated current of the AC drive.
F3-19	V/f overcurrent stall suppression	1	0: Disabled 1: Enabled	This parameter defines whether to enable V/f overcurrent stall suppression.
F3-20	V/f overcurrent stall suppression gain	20	0 to 100	When the current exceeds the overcurrent stall suppression action current, the overcurrent stall suppression function is triggered. The output frequency decreases until the current drops below the overcurrent stall suppression action current, and then the output frequency increases to the target frequency, which prolongs the actual acceleration time automatically. A larger setpoint indicates better suppression effect.
F3-21	Compensation coefficient of V / f speed multiplying overcurrent stall suppression action current	50%	50% to 200\%	This parameter is used to reduce the overcurrent stall suppression action current during high-speed operation. It is invalid when set to 50\%. The recommended value for F3-18 in the field- weakening range is 100%.

When the frequency is high, the motor drive current is small, and the overcurrent stall suppression action current can result in greater motor speed dip compared with situations when the frequency is below the rated level. To improve motor running performance, you can lower the overcurrent stall suppression action current for situations when the frequency is above the rated level. This helps to improve acceleration performance and prevent motor stall in high-frequency applications with large load inertia and multiple field weakening requirements, such as centrifuges.

Overcurrent stall suppression action current when the frequency is above the rated level $=(\mathrm{fn} / \mathrm{fs}) \mathrm{xkx}$ LimitCur

In the formula, fs is the running frequency, fn is the rated motor frequency, k is the value of $\mathrm{F} 3-21$ (compensation coefficient of V / f speed multiplying overcurrent stall suppression action current), and LimitCur is the value of F3-18 (overcurrent stall suppression action current).

Figure 1-52 Speed multiplying overcurrent stall suppression action current

Note

For high-power motors with carrier frequency below 2 kHz , lower the overcurrent stall action current. Otherwise, the pulse-by-pulse current limit function is enabled before the overcurrent stall prevention function as ripple current increases, resulting in insufficient torque output.

1.4.3 Overvoltage Stall Suppression

When the bus voltage rises above the overvoltage stall suppression action voltage (F3-22), the motor becomes regenerative (motor speed > output frequency). In this case, overvoltage stall suppression is triggered to prevent overvoltage trips by adjusting the output frequency to extend the deceleration time. If the actual deceleration time cannot satisfy the requirement, increase the overexcitation gain as appropriate.

Figure 1-53 Overvoltage stall suppression action

Para.	Name	Default	Value Range	Description
F3-22	V/f overvoltage stall suppression action voltage	770.0 V	200.0 V to 2000.0 V	F3-22 functions the same as F9-04.
F3-23	V/f overvoltage stall suppression	1	0: Disabled 1: Enabled	0: Disabled 1: Enabled (default)

Para.	Name	Default	Value Range	Description
F3-24	Frequency gain for V/f overvoltage stall suppression	30	0 to 100	Increasing F9-03 will improve the control effect of the bus voltage but cause fluctuations in the output frequency. If the output frequency fluctuates greatly, you can reduce F3- 24 as appropriate.
F3-25	Voltage gain for V/f overvoltage stall suppression	30	0 to 100	This parameter is used to suppress the bus voltage. Increasing the parameter value reduces the overshoot of the bus voltage.
F3-26	Frequency rise threshold during overvoltage stall suppression	5 Hz	0 Hz to 50 Hz	The running frequency may increase when overvoltage stall suppression is enabled. This parameter limits the increase of the running frequency.
F3-10	V/f overexcitation gain	64	0 to 200	A larger overexcitation gain indicates better suppression effect. When a braking resistor, braking unit, or energy feedback unit is used, set this parameter to 0 0. Otherwise, overcurrent may occur during operation.
F3-11	V/f oscillation suppression gain	Model dependent	0 to 100	A larger oscillation gain indicates better suppression effect.

Note

Observe the following requirements when using the braking resistor or energy feedback unit.

- Set F3-10 (Overexcitation gain) to 0 . Failure to comply may lead to overcurrent during operation.
- Set F3-23 (Overvoltage stall selection) to 0 . Failure to comply may prolong the deceleration time.

1.4.4 Speed Loop

The speed loop PI parameters are divided into two groups: low speed and high speed. When the running frequency is lower than switchover frequency 1 (F2-02), the speed loop PI is adjusted by F2-00 and F2-01. When the running frequency is higher than switchover frequency 2 (F2-05), the speed loop PI is adjusted by F2-03 and F2-04. When the running frequency is between switchover frequency 1 and switchover frequency 2, PI parameters are obtained from linear switchover between the two groups of PI parameters, as shown in the following figure.

Figure 1-54 Speed loop PI parameters

By setting the proportional gain and integral time of the speed regulator, you can adjust the dynamic response to speed changes in vector control.

Increasing the proportional gain or reducing the integral time can speed up dynamic response of the speed loop. However, excessively large proportional gain or excessively short integral time may cause system oscillation.

In this case, you are advised to perform dynamic auto-tuning on all parameters of the motor to obtain a set of parameters. If the parameters obtained by auto-tuning cannot meet the requirements, make fine adjustments based on the parameter values. Increase the proportional gain first to ensure that the system does not oscillate, and then reduce the integral time to ensure that the system has quick response and small overshoot.

Note

Improper PI parameter settings may lead to a high overshoot. Even worse, overvoltage may occur when overshoot drops.

Increasing the value of F2-07 can improve motor stability, but this may also slow dynamic response. Decreasing it will bring faster system response but also motor oscillation if the value is too small. No adjustment is required under normal circumstances.

Para.	Name	Default	Value Range	Description
F2-00	Low-speed speed loop Kp	30	1 to 300	This parameter indicates the speed loop PID control parameter Kp, which affects the response to the motor speed. A larger Kp value indicates higher adjustment sensitivity and adjustment intensity. A smaller Kp value indicates lower adjustment sensitivity and adjustment intensity. The low-speed speed loop Kp is used in the case of low speed.
F2-01	Low-speed speed loop Ti	0.500s	0.001 s to 10.000 s	The reciprocal of the speed loop integral time constant is the integral gain. The speed loop integral time constant affects the steady-state speed error of the motor and the stability of the speed loop system. Increasing the speed loop integral time constant slows down the response of the speed loop. In this case, increase the speed loop proportional gain to shorten the response time of the speed loop. The lowspeed speed loop Ti is used in the case of low speed.
F2-02	Switchover frequency 1	5.00 Hz	0.00 to F2-05	The speed loop PI parameters are divided into two groups: low speed and high speed. When the running frequency is lower than switchover frequency 1 (F202), the speed loop PI is adjusted by F2-00 and F2-01. When the running frequency is higher than switchover frequency 2 (F2-05), the speed loop PI is adjusted by F2-03 and F3-04. When the running frequency falls between switchover frequency 1 and switchover frequency 2, PI parameters are obtained from linear switchover between the two groups of PI parameters. The value of this parameter must be smaller than F2-05 (switchover frequency 2).

Para.	Name	Default	Value Range	Description
F2-03	High-speed speed loop Kp	20	1 to 300	
	High-speed speed loop Ti	1.00 s		This parameter indicates the speed loop PID control parameter Kp, which affects the response to the motor speed. A larger Kp value indicates higher adjustment sensitivity and adjustment intensity. A smaller Kp value indicates lower adjustment sensitivity and adjustment intensity. The high-speed speed loop Kp is used in the case of high speed.
F2-04				

1.4.5 Vector Control Slip Auto-tuning

In vector control mode (F0-01 = 0 or 1), this parameter is used to adjust the speed stability accuracy of the motor. For example, when the running frequency of the motor is lower than the output frequency of the AC drive, you can increase the value of this parameter.

In FVC control mode (F0-01 = 1), this parameter is used to adjust the output current of the AC drive with the same load. For example, you can decrease the value of this parameter gradually when a high-rate AC drive is used to control a motor with low load capacity. Note: No adjustment is required under normal circumstances.

Para.	Name	Default	Value Range	Description
F2-06	VC slip compensation gain	100%	50% to 200\%	In SVC control mode, this parameter is used to adjust the speed stability accuracy of the motor. For example, when the running frequency of the motor is lower than the output frequency of the AC drive, you can increase the value of this parameter. In FVC control mode, this parameter is used to adjust the output current of the AC drive with the same load. For example, you can decrease the value of this parameter gradually when a high-rate AC drive is used to control a motor with low load capacity. No adjustment is required under normal circumstances.

1.4.6 Vector Control Overexcitation

In the case of large inertia, over-excitation in vector control mode can speed up the deceleration process of the motor. A larger overexcitation gain indicates better improvement. However, overexcitation in vector control mode increases the output current of the AC drive.

The following table describes the parameters of motor 1 as an example. The parameters of other motors need to be modified in the corresponding motor parameter group.

Para.	Name	De fault	Value Range	Description
F6-23	Overexcita- tion active mode	0	0 to 2	This parameter defines the active mode of overexcitation in vector control mode for asynchronous motors. When it is set to 2, overexcitation takes effect during acceleration, operation at constant speed, and deceleration.
F6-24	Overexcita- tion suppres- sion current	100	0 to 150	This parameter defines the target current after overexcitation takes effect and is a percentage relative to the rated motor current.
F6-25	Overexcita- tion gain	1.25	0.01 to 2.5	-

1.4.7 Torque Upper Limit

The following table describes the torque upper limit settings in vector control mode (FVC or SVC).

Para.	Name	De fault	Value Range	Description
F2-09	Torque upper limit source in speed control (motoring)	0	$\begin{aligned} & \text { 0: F2-10 } \\ & \text { 1: Al1 } \\ & \text { 2: Al2 } \\ & \text { 3: Al3 } \\ & \text { 4: Pulse reference } \\ & \text { (DI5) } \\ & \text { 5: Communication } \\ & \text { 6: MIN (Al1, AI2) } \\ & \text { 7: MAX (AI1, Al2) } \\ & \text { Others: F connector } \end{aligned}$	0: F2-10 The torque upper limit in speed control mode is set by F2-10 (digital setting of torque upper limit in speed control). 1: AI1 The torque upper limit is input with the current or voltage signal through the AI1 terminal. The frequency is calculated according to the preset Al curve. 2: Al2 The torque upper limit is input with the current or voltage signal through the AI2 terminal. The frequency is calculated according to the preset AI curve. 3: AI3 The torque upper limit is input with the current or voltage signal through the Al 3 terminal. The frequency is calculated according to the preset Al curve. 4: Pulse reference (DI5) The torque upper limit in speed control is set through DI5. The frequency is calculated based on the curve reflecting the relationship between the pulse frequency and running frequency. 5: Communication The main frequency is set through communication. The running frequency is input through remote communication. The AC drive must be equipped with a communication card to implement communication with the host controller. This mode applies to remote control or centralized control of multiple equipment. 6: MIN (AI1, AI2) The torque upper limit in speed control mode is the smaller value between AI1 and AI2 inputs. 7: MAX (AI1, Al2) The torque upper limit in speed control mode is the larger value between AI1 and Al2 inputs. Others: F connector
F2-10	Torque upper limit reference in speed control (motoring)	$\begin{aligned} & 150.0- \\ & \% \end{aligned}$	0.0\% to 200.0\%	The torque upper limit under motoring state takes the rated current of the motor as the base value. Note: When the AC drive and the motor are wellmatched, the limit value must be smaller than the default value. The limit can be set to 200% only when the power class of the $A C$ drive is higher than that of the motor.

Para.	Name	De fault	Value Range	Description
F2-11	Torque upper limit source in speed control (generating)	0	0: F2-10 1: AI1 2: Al2 3: Al3 4: Pulse reference (DI5) 5: Communication 6: MIN (AI1, AI2) 7: MAX (Al1, AI2) 8: F2-12 Others: F connector	0: F2-10 The torque upper limit in speed control mode is set by F2-10 (digital setting of torque upper limit in speed control). 1: Al1 The torque upper limit is input with the current or voltage signal through the AII terminal. The frequency is calculated according to the preset Al curve. 2: Al2 The torque upper limit is input with the current or voltage signal through the AI2 terminal. The frequency is calculated according to the preset AI curve. 3: Al3 The torque upper limit is input with the current or voltage signal through the Al3 terminal. The frequency is calculated according to the preset AI curve. 4: Pulse reference (DI5) The torque upper limit in speed control is set through DI5. The frequency is calculated based on the curve reflecting the relationship between the pulse frequency and running frequency. 5: Communication The main frequency is set through communication. The running frequency is input through remote communication. The AC drive must be equipped with a communication card to implement communication with the host controller. This mode applies to remote control or centralized control of multiple equipment. 6: MIN (AI1, AI2) The torque upper limit in speed control mode is the smaller value between AI1 and AI2 inputs. 7: MAX (AI1, AI2) The torque upper limit in speed control mode is the larger value between AI1 and AI2 inputs. 8: F2-12 The torque upper limit in speed control mode is set by F2-12 (torque upper limit reference in speed control (generating)). Others: F connector
F2-12	Torque upper limit reference in speed control (generating)	$\begin{aligned} & 150.0- \\ & \% \end{aligned}$	0.0\% to 200.0\%	The torque upper limit under generating state takes the rated current of the motor as the base value.

There are eight torque upper limit sources available in speed control mode. In motoring state, the torque upper limit source is determined by F2-09; in generating state, the torque upper limit source is defined by F2-11.

In speed control mode, if F2-11 is set to 1 to 8 , the torque upper limit differs in motoring state and generating state. The torque upper limit FS in motoring state is defined by F2-10, and that in generating state is defined by F2-12, as shown in the following figure.

Figure 1-55 Torque upper limit in speed control mode

Para.	Name	Default	Value Range	Description
F2-53	Generating power limiting	0	0: Disabled 1: Enabled	-
F2-54	Generating power upper limit	Model dependent	0.0% to 200.0\%	-

For scenarios with cam load, quick acceleration/deceleration, and sudden unloading in which braking resistors are not used, enabling power limit during generating can effectively reduce bus voltage overshoot during motor braking so as to prevent overvoltage. F2-54 (generating power upper limit) is a percentage relative to the rated motor power. If overvoltage still occurs after power limit during generating is enabled, decrease the value of F2-54.

1.4.8 Torque Control

1. Selecting speed/torque control mode (A0-00)

The speed or torque control mode is defined by A0-00.
The multi-function DI terminals have two functions related to torque control: torque control disable (function 29) and switchover between speed control and torque control (function 46). The two DI terminals work with A0-00 to implement switchover between speed control and torque control.

When the terminal assigned with function 46 (switchover between speed control and torque control) is inactive, the control mode is determined by A0-00; when it is active, the control mode is reverse to A0-00.

When the terminal assigned with function 29 (torque control disable) is active, the AC drive always runs in speed control mode.

2. Selecting torque mode (A0-00)

The AC drive supports two torque control modes: speed loop output limiting torque mode (A0-10 = 0) and direct torque setting mode ($\mathrm{A} 0-10=1$).
a. Speed loop output limiting torque mode

You can select this mode by setting A0-10 to 0 .

Figure 1-56 System diagram of speed loop limiting torque control mode
The following table describes the related parameters.

Para.	Name	Default	Value Range	Description
A0-01	Torque reference source	0	0: A0-03 1: Al1 2: Al2 3: Al3 4: Pulse 5: Communication (1000H) 6: MIN (AI1, AI2) 7: MAX (Al1, Al2) Others: F connector	This parameter defines the torque reference source. There are a total of nine torque reference sources. Extension by using connectors is supported.
A0-03	Torque digital setting	100.0\%	$\begin{aligned} & -200.0 \% \text { to } \\ & +200.0 \% \end{aligned}$	This parameter defines the torque in torque control mode. The torque reference is a relative value. The value 100.0% corresponds to the rated torque of the AC drive. The value range is -200.0% to $+200.0 \%$, indicating that the maximum torque is twice the rated torque. When the torque reference is a positive value, the $A C$ drive runs in the forward direction. When it is a negative value, the AC drive runs in the reverse direction. When the torque reference is a positive value, the AC drive runs in the forward direction. When it is a negative value, the AC drive runs in the reverse direction.
A0-04	Torque filter time	0.000s	0 to 5.000s	This parameter defines the torque reference filter time.
A0-05	Maximum forward frequency in torque control	0 Hz	0.00 to F0-10	This parameter defines the maximum running frequency of the AC drive in forward direction in torque control mode.
A0-06	Maximum reverse frequency in torque control	0 Hz	0.00 to F0-10	This parameter defines the maximum running frequency of the AC drive in reverse direction in torque control mode.
A0-07	Torque rising filter time	0.00s	0.00s to 650.00s	This parameter defines the torque reference rampup time (relative to the rated torque).

Para.	Name	Default	Value Range	Description
A0-08	Torque falling filter time	0.00 s	0.00 s to 650.00 s	This parameter defines the torque reference ramp- down time (relative to the rated torque).
A4-77	Frequency acceleration time in torque control	0.00 s	0.00 s to 650.00s	This parameter defines the frequency acceleration time in torque control mode. It is invalid when A4- 79 is set to 1.
A4-78	Frequency deceleration time in torque control	0.00 s	0.00 s to 650.00s	This parameter defines the frequency deceleration time in torque control mode. It is invalid when A4- 79 is set to 1.
A4-79	Forced use of the fourth set of time in torque control	0	0: Disabled	1: Enabled

b. Direct torque setting mode

You can select this mode by setting A0-10 to 1 .

Figure 1-57 System diagram of direct torque setting control mode

Table 1-28 Speed limit/speed limit offset

Item	Operation Conditions			
Operation command	Forward RUN	Forward RUN	Forward RUN	Forward RUN
Torque reference direction	+	-	-	+
Speed limit direction	+	-	+	-
Normal running direction	Forward RUN	Reverse RUN	Forward RUN	Reverse RUN
Uni-directional speed limit offset (A0-17 = 1)				

Item

3. Setting torque reference in torque control mode

A0-13 and A0-14 are used to set the torque reference in direct torque setting mode. In addition, this mode also supports setting of the supplementary torque by using A0-20 and A0-23.

The torque reference is a relative value. The value 100.0% corresponds to the rated motor torque. (The output torque of the motor can be viewed in U0-06, where the value 100% corresponds to the rated torque of the motor.)

A0-05, A0-09, A0-10, and A0-11 define the frequency upper limit in torque control mode.
In torque control mode, the frequency upper limit can be set by A0-05 or the frequency source and switched by A0-09.

4. Setting frequency upper limit in torque control mode

In torque control mode, if the load torque is smaller than the output torque of the motor, the motor speed keeps rising. Therefore, to prevent accidents such as runaway in the mechanical system, the maximum motor speed must be controlled within a proper range. That is, the frequency upper limit must be set in torque control mode.

In speed loop output limiting mode, the frequency upper limit is defined by A0-05 and A0-06.
In direct torque setting mode, the frequency limit and limit offset are set by using $\mathrm{A} 0-15, \mathrm{~A}-16, \mathrm{~A} 0-17$, A0-18, and A0-19.

The torque upper limit acceleration and deceleration time are defined by A4-77, A4-78, and A4-79.

5. Setting torque reference acceleration/deceleration time

In speed loop output limiting mode, the torque reference filter time and acceleration/deceleration time are defined by A0-04, A0-07, and A0-08.

In direct torque setting mode, the torque reference filter time and acceleration/deceleration time are defined by A0-24, A0-25, and A0-26.

In torque control mode, the difference between the output torque of the motor and the torque of the load determines the speed change rate of the motor and load. The motor speed may change rapidly, causing excessive noise or mechanical stress. Setting the acceleration and deceleration time in torque control mode as appropriate can ensure smooth change of the motor speed. The torque acceleration time corresponds to the time required for the torque to rise from 0 to the rated torque of the motor, and the deceleration time corresponds to the time required for the torque to fall from the rated torque to 0 .

However, setting the torque acceleration/deceleration time is not recommended in scenarios in which the startup torque is small. For scenarios where rapid torque response is required, set the torque acceleration/deceleration time to 0.00 s.

For example, when two motors are rigidly connected to drive the same load, one AC drive is set as the master in speed control and the other is set as the slave in torque control to ensure balanced load distribution. The slave uses the master's output torque as its torque reference, which requires quick response to the output torque. In this case, the acceleration/deceleration time of the slave in torque control needs to be set to 0.00 s .

In torque control mode, the difference between the output torque of the motor and the torque of the load determines the speed change rate of the motor and load. The motor speed may change rapidly, causing excessive noise or mechanical stress. Setting the acceleration and deceleration time in torque control mode as appropriate can ensure smooth change of the motor speed. The torque acceleration time corresponds to the time required for the torque to rise from 0 to the setpoint of A003.

However, setting the torque acceleration/deceleration time is not recommended in scenarios in which the startup torque is small. For scenarios where rapid torque response is required, set the torque acceleration/deceleration time to 0.00 s.

For example, when two motors are rigidly connected to drive the same load, one AC drive is set as the master in speed control and the other is set as the slave in torque control to ensure balanced load distribution. The slave uses the master's output torque as its torque reference, which requires quick response to the output torque. In this case, the acceleration/deceleration time of the slave in torque control needs to be set to 0.00 s.

1.4.9 Current Loop

Current loop PI parameters for vector control are automatically calculated based on motor parameters and do not need not be modified in normal cases. The parameters indicate magnification relative to the calculated values, and 1.0 corresponds to the calculated value.

Note that an excessively large current loop PI gain may lead to oscillation of the entire control loop. Therefore, when current oscillation or torque fluctuation is large, you can manually decrease the proportional gain or integral gain here.

The following table describes the parameters of motor 1 as an example. The parameters of other motors need to be modified in the corresponding motor parameter group.

Para.	Name	De fault	Value Range	Description
AB-59	Low-speed current loop Kp adjustment	1.0	0.1 to 10.0	The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.
AB-60	High-speed current loop Kp adjustment	1.0	0.1 to 10.0	The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.

Para.	Name	De fault	Value Range	Description
AB-61	Low-speed current loop Ki adjustment	1.0	0.1 to 10.0	The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.
AB-62	High-speed current loop Ki adjustment	1.0	0.1 to 10.0	The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.
AB-63	D-axis current loop complex vector adjustment	1.0	0.1 to 10.0	-
AB-64	Q-axis current loop complex vector adjustment	1.0	0.1 to 10.0	-

1.4.10 Performance of Field Weakening Region

Para.	Name	Default	Value Range	Description
F2-19	Field weakening gain	5	1 to 50	This parameter corresponds to the voltage loop bandwidth. Increasing the setpoint can improve dynamic response. However, an excessively large setpoint may also cause current oscillation.
A5-05	Voltage overmodula- tion coefficient	105%	100% to 110%	This parameter indicates the boost capacity of the maximum output voltage of the AC drive. Increasing the setpoint can improve the maximum load capacity of the motor field weakening region but also increase current harmonics and aggravate motor heating. Decreasing the setpoint will reduce the maximum load capacity of the motor field weakening region but also alleviate motor heating.
No adjustment is required under normal circumstances.				

1.4.11 FVC Control Mode and Performance Improvement

Table 1-29 Setting FVC speed control mode

Step	Related Parameters	Description
Check the AC drive wiring.	-	F1-01, F1-02, F1-03, F1- 04, and F1-05
Set motor parameters.	Chetting if E19.xx is reported during auto-tuning. Set the encoder type and pulses per revolution.	F1-27 and F1-28
Select a control mode.	F0-01	Check the encoder and PG card if E20.xx is reported.
Select a motor auto-tuning method.	F1-37	-
	Select dynamic auto-tuning on all parameters (set the parameter to 2 for asynchronous motors or 12 for synchronous motors) if possible, and disconnect the load to allow the motor to run at a high speed. Select static auto-tuning on all parameters if the load cannot be disconnected (such as hoisting scenarios).	
Set the command source and	F0-02, F0-03, and F0-08	
frequency reference source.		

Table 1-30 Setting FVC torque control mode

Step	Related Parameters	Description
Check the AC drive wiring.	-	Check the AC drive wiring and motor parameter setting if E 19.00 is reported during auto-tuning.
Set motor parameters.	$\begin{aligned} & \text { F1-01, F1-02, F1-03, F1- } \\ & \text { 04, and F1-05 } \end{aligned}$	
Set the encoder type and pulses per revolution.	F1-27 and F1-28	Check the encoder and PG card if E20.00 is reported.
Select a control mode.	F0-01	-
Select a motor auto-tuning method.	F1-37	Select dynamic auto-tuning on all parameters (set the parameter to 2 for asynchronous motors or 12 for synchronous motors) if possible, and disconnect the load to allow the motor to run at a high speed. Select static auto-tuning on all parameters if the load cannot be disconnected (such as hoisting scenarios). Dynamic auto-tuning on all parameters may take some time. Wait until auto-tuning is complete before proceeding to the next step.
Set the command source.	F0-02	-
Set the torque control parameters.	$\begin{aligned} & \text { A0-00, A0-01, A0-03, and } \\ & \text { A0-05 } \end{aligned}$	-
Perform a trial run.	-	-

Setting Speed Loop

The motor may oscillate or generate abnormal noise when running below the rated frequency if the speed loop gains are set too high. In this case, reduce the speed loop gains (decrease the values of F200 and F2-03 and increase the values of F2-01 and F2-04).

If the system speed overshoot is high during rapid acceleration, increase the speed loop proportional gain Kp (increase the values of F2-00 and F2-03) and reduce the speed loop integral gain Ki (increase the values of F2-01 and F2-04).

In a winding/unwinding scenario, the roll diameter changes in inverse proportion to the motor speed. Therefore, when the roll diameter is large, increase the speed loop gain at low speed to ensure dynamic response of the system (increase the value of F2-00 and reduce the value of F2-01).

For a load running at an extremely low speed (for example, a milling machine running at 0.01 Hz), increase the speed loop gains, especially the integral gain (increase the value of F2-00 and reduce the value of F2-01) to ensure smooth running.

Note

In scenarios with poor encoder feedback signals, the speed loop gains cannot be too high. Otherwise, the dynamic response speed of the system is affected. In this case, first take measures to improve the quality of encoder feedback signals (for example, separate power cables of the motor from signal cables of the encoder, and ensure good grounding of the system). Otherwise, directly reducing the speed loop gains will slow down dynamic response of the system, degrading the system operation performance.

Setting Current Loop

Current loop parameters are automatically obtained through complete auto-tuning and do not need to be modified. However, you can fine tune these parameters in the following conditions:

The motor oscillates or generates abnormal noise in FVC mode, and the situation does not improve much after the speed loop parameters are reduced. In this case, decrease the values of current loop parameters as appropriate.

The system requires a small overshoot, and therefore the speed loop gains cannot be too small. In this case, if the motor oscillates or generates abnormal noise in FVC mode, decrease the values of current loop parameters as appropriate.

Troubleshooting Exceptions During High-Speed Running in FVC Control Mode

Oscillation or running exceptions may occur when a motor runs at a high frequency (for example, above 200 Hz) in FVC mode. In this case, run the motor at the same frequency in V/f control mode and check whether the feedback frequency (U0-29) is the same as the frequency reference. If the deviation is large (for example, more than 4 Hz), the exceptions are caused by encoder signal distortion (quadrature distortion or abnormal duty cycle). Do as follows:

Replace the encoder. Check whether the encoder is damaged or installed incorrectly, and whether the encoder model supports the current pulse frequency.

Shortening Acceleration/Deceleration Time in FVC Control Mode

During rapid acceleration/deceleration, the actual acceleration/deceleration time is longer than the preset value. To shorten the acceleration/deceleration time, take the following measures:

To shorten the motor acceleration time, increase the torque upper limit in FVC control mode (moderately increase the value of F2-10, but in no case greater than 180\%).

Although increasing the torque upper limit can shorten the motor acceleration time, this operation leads to an increase of the motor current, which is more likely to cause faults such as overload.

Limiting Bus Voltage to Prevent Overvoltage in FVC Control Mode

In high inertia or rapid deceleration scenarios, overvoltage often occurs during deceleration. The solutions are the same as those in V / f control mode:

1. Enable overvoltage suppression. For motor 1 , set bit01 of AB-25 to 1 . For other motors, set B9-25, BE25 , or CE-25 accordingly.
2. Enable overexcitation by setting F6-23.
3. Select a suitable braking resistor to reduce the deceleration time.

1.4.12 Auxiliary Control

Para.	Name	Default	Value Range	Description
A5-00	DPWM switchover frequency upper limit	12.00 Hz	0 to maximum frequency (FO-10)	The AC drive supports two PWM modes: CPWM and DPWM. When the running frequency is higher than A5-00 (switchover frequency), the DPWM mode is used. When the running frequency is lower than A5-00 (switchover frequency), the CPWM mode is used. The DPWM mode can improve the AC drive efficiency, whereas the CPWM mode can reduce the motor noise. Increasing the value of this parameter to the maximum frequency will reduce the motor noise.
A5-01	PWM modulation mode	0	0: Asynchronous modulation 1: Synchronous modulation	Output current oscillation or high harmonics can occur if the carrier frequency divided by the running frequency is less than 10 . In this case, you can use the synchronous modulation mode to reduce current harmonics. 0 : Asynchronous modulation In this mode, the carrier frequency and signal wave frequency are not synchronized. The carrier frequency usually remains unchanged. The carrier ratio changes with the signal wave frequency. 1: Synchronous modulation In this mode, the carrier frequency and signal wave frequency are synchronized. The carrier frequency and signal frequency change simultaneously, and the carrier ratio remains unchanged. Therefore, the number of transverse SPWM pulses formed in one cycle is fixed, and the equivalent sine wave has good symmetry.

Para.	Name	Default	Value Range	Description
A5-02	Deadzone compensation	1	0: Disabled 1: Enabled (compensation mode 1)	During PWM modulation of the AC drive, a deadzone is set to ensure turn-off before turn-on, so as to avoid bridge arm shoot-through. However, this deadzone causes additional voltage loss during PWM modulation, resulting in output current distortion. The lower the running frequency, the more obvious the current distortion. Therefore, deadzone compensation is required to alleviate the impact exerted by the deadzone.
0: Disabled				

Para.	Name	Default	Value Range	Description
A5-08	Low speed carrier frequency upper limit	0	0 to 8.0 kHz : Carrier frequency upper limit	This parameter defines the upper limit of the carrier frequency when the AC drive is running at a low speed. The limit takes effect when the setpoint is greater than 0. In SVC control mode, the smaller one between A5-08 and F2-37 is used. In non-SVC control mode, A5-08 is used.
A5-10	Energy conservation control	Disabled Dis	1 Enabled	This function is only valid for asynchronous motors in V/f control mode. Enabling energy conservation control can reduce energy consumption of the asynchronous motor when running with no load or light load. Note that this function applies to working conditions with stable loads. In scenarios with frequent sudden loading and unloading, exercise caution when enabling this function.

1.4.13 Encoder Signal Processing

The following table describes the parameters of motor 1 as an example. The parameters of other motors need to be modified in the corresponding motor parameter group.

Para.	Name	Default	Value Range	Description
A9-07	Encoder speed measurement filter time constant	0.004 s	0.000 to 10.000 s	This parameter is used to adjust the filter time of encoder signals.

Adjusting the encoder speed measurement filter time constant can change the encoder signal filtering effect. Longer filter time indicates smoother encoder feedback speed but longer feedback delay. Shorter filter time indicates shorter feedback delay but larger encoder feedback speed fluctuations. The filter time constant needs to be adjusted based on the actual working conditions and encoder signal quality. It cannot be too small if the signal quality of the resolver and other encoders is poor.

Table 1-31 Encoder wire breakage detection

Para.	Name	Default	Value Range	Description
F1-36	PG wire breakage detection	0	0: Disabled $1:$ Enabled	-

The PG card provides the function of hardware detection of encoder wire breakage. This function only supports encoders with differential interfaces. To use this function, you need to enable PG fault detection by using bit02 of AA-30. When the AC drive detects a wire breakage fault and the fault lasts for a period longer than the time specified by F1-36, it reports ERR20.

1.4.14 Synchronous Motor PMVVC

Para.	Name	Value Range	Default	Description
F0-01	Motor 1 control mode	0: SVC	0	The SVC mode is a type of openloop vector control applicable to high-performance control applications in which one AC drive can drive only one motor, such as machine tools, centrifuges, wire drawing machines, and injection molding machines.
		1: FVC		The FVC mode is a type of closedloop vector control. An encoder must be installed at the motor end, and the AC drive must be equipped with a PG card of the same type as the encoder. This mode is applicable to scenarios requiring high-precision speed control and torque control, in which one AC drive can drive only one motor, such as high-speed paper machines, cranes, and elevators.
		2: V/f control		The V/f control mode (open-loop speed control) is applicable to scenarios with no high requirement on loads (such as fans and pumps). The V/f control mode is the only choice if one AC drive needs to drive multiple motors.
F3-01	Torque boost	0.0\%: Automatic torque boost $0.1 \% \text { to } 30.0 \%$	Model dependent	The torque boost function generally applies to the AC drive at low frequency. The output torque of the AC drive in V/f control mode is proportional to the frequency. Under the condition of low frequency, the torque is very low when the motor is running at a low speed. In this case, you can set this parameter to increase the output voltage of the AC drive, thereby increasing the current and output torque. Do not set this parameter to a large value, otherwise, overload protection may be triggered.
A9-40	Low-speed closed-loop current selection (for VVC)	0 : Disabled 1: Enabled	0	-
A9-41	Low-speed closed-loop current (for WC)	30\% to 200\% (rated motor current as the base value)	50\%	-

Para.	Name	Value Range	Default	Description
A9-42	Oscillation suppression damping coefficient (for VVC)	0 to 500	100%	-
A9-43	Initial position compensation angle (for VVC)	0 to 5	0	-

Note

- When F1-00 is set to 0 or 1 (asynchronous motor) and F0-01 is set to 2 , the V/f control mode is used.
- When F1-00 is set to 2 (synchronous motor) and F0-01 is set to 2 , the PMVVC mode is used.

1.4.15 PID Adjustment

This section describes general rules for PID parameter adjustment, which can be used as reference for adjusting closed-loop control PID parameters (FA-05 to FA-07 and FA-15 to FA-17) and speed loop PI parameters (F2-00, F2-01, F2-03, and F2-04).

1. If the response is slow, increase Kp .

Figure 1-58 Response-time trend after increasing Kp
2. If fast oscillation occurs, decrease Kp.

Figure 1-59 Response-time trend after decreasing Kp
3. If the overshoot is large and the fluctuation is slow, increase Ti.

Figure 1-60 Response-time trend after increasing Ti
4. If the static difference is large and the recovery is slow when the load fluctuates, increase Kp or decrease Ti.

Figure 1-61 Response-time trend after increasing Kp at load fluctuation

Figure 1-62 Response-time trend after decreasing Ti at load fluctuation
5. The system stability can be improved by incorporating derivative time Td properly (excessive proportion may cause interference and oscillation).

Figure 1-63 Response-time trend after incorporating Td

1.5 Application Control

1.5.1 Jogging

Jogging applies to applications in which the AC drive needs to run at low speed temporarily to facilitate equipment testing. The following figure shows the relationship between the output frequency and acceleration/deceleration time during running.

Figure 1-64 Schematic diagram of jogging

Related Parameters

Para.	Name	Default	Value Range	Description
F0-02	Operation command source	0	0: Operating panel control 1: Terminal I/O control 2: Communication control	-
F0-25	Acceleration/ Deceleration time base frequency	1	0: Maximum frequency (F0-10) $1:$ Target frequency $2: 100 ~ H z$	-

Para.	Name	Default	Value Range	Description
F7-01	MF.K key function	0	0: MF.K key disabled 1: Switchover between operating panel control and remote control (terminal I/O control or communication control) 2: Switchover between forward and reverse run 3: Forward jogging 4: Reverse jogging	-
F8-00	Jog frequency	2.00 Hz	0 to maximum frequency (F0-10)	
F8-01	Jog acceleration time	20.0s	0.0s to 6500.0s	
F8-02	Jog deceleration time	20.0s	0.0s to 6500.0s	
F8-13	Reverse frequency inhibition	0	0: Disabled 1: Enabled	
F8-27	Jog preferred	0	0: No priority (Respond to the operation command that arrives first) 1: Jog preferred 2: OFF1 preferred	-
A4-62	JOG1 speed source	0	0: F8-00 1: Al1 2: Al2 3: Al3 4: Pulse 5: Communication 6: Multi-reference 7: Motor-driven potentiometer 8: PID Others: F connector	-
A4-66	Jog ramp source	1	0 : Normal running ramp time 1: Jog ramp time	-

Application

The following introduces how to set parameters related to jogging by taking implementation of jogging using the operating panel as an example.

Table 1-32 Setting parameters related to jogging

Step	Forward Jogging	Reverse Jogging
1	Set F7-01 to 3 to assign the forward jogging function to the MF.K key.	Set F7-01 to 4 to assign the reverse jogging function to the MF.K key.
2	Set F0-02 to 0 to select the operating panel as (reverse frequency inhibition) to 0 the command source.	Set F0-02 to 0 to select the operating panel as the command source.

Step	Forward Jogging	Reverse Jogging
3	Set F8-00 (jog frequency), F8-01 (jog acceleration time), and F8-02 (jog deceleration time) properly.	Set F8-00 (jog frequency), F8-01 (jog acceleration time), and F8-02 (jog deceleration time) properly.
4	Press down the MF.K key when the AC drive is in stop state. The AC drive starts to jog in the forward direction. Release the MF.K key. The AC drive decelerates to stop.	Press down the MF.K key when the AC drive is in stop state. The AC drive starts to jog in the reverse direction. Release the MF.K key. The AC drive decelerates to stop.

1.5.2 Frequency Detection

1.5.2.1 Multi-speed Reference

In the multi-reference mode, different combinations of DI terminal states correspond to different frequency references.

Table 1-33 Using multi-reference as the frequency reference source

Step	Related Parameters	Description
Step 1: Select multi-reference as the frequency reference source.	F0-03	Set F0-03 to 6.
Step 2: Determine the number of speed references required.	None	A total of 16 speed references are supported, which are defined by using four DI terminals. The relationship between the number of speed references and the number of DI terminals is as follows: 2 speed references: 1 DI terminal (K1) 3 to 4 speed references: 2 DI terminals (K1 and K2) 5 to 8 speed references: 3 DI terminals (K1, K2, and K3) 9 to 16 speed references: 4 DI terminals (K1, K2, K3, and K4)
Step 3-1: Assign the DI terminals with the multi-reference function by setting parameters in group F4.	F4-00 to F4-09	Multi-reference terminal K1: Set the parameter to 12.
		Multi-reference terminal K2: Set the parameter to 13.
		Multi-reference terminal K3: Set the parameter to 14.
		Multi-reference terminal K4: Set the parameter to 15.

Step	Related Parameters	Description
Step 3-2: Assign the DI terminals with the multi-reference function by setting parameters in group F4.	FC-55	0: Disabled 1: Enabled 2: Terminal function input 3-18: DI1 to DI16 Others: B connector
	FC-56	0: Disabled 1: Enabled 2: Terminal function input 3-18: DI1 to DI16 Others: B connector
	FC-57	0: Disabled 1: Enabled 2: Terminal function input 3-18: DI1 to DI16 Others: B connector
	FC-58	0: Disabled 1: Enabled 3-18: DI1 to DI16 Others: B connector
Step 4: Set the frequency corresponding to each speed reference. ${ }^{\text {[Note] }}$	FC-00 to FC-15	The frequency corresponding to each speed reference is set to a percentage value. 100% corresponds to the maximum frequency (F0-10).
	F0-10	When multi-reference is used as the frequency reference source, the value 100% of FC-00 to FC-15 corresponds to the maximum frequency (F0-10).

[Note] The four multi-reference terminals can provide 16 state combinations, corresponding to 16 frequency reference values, as listed in the following table.

Table 1-34 State combinations of the four multi-speed reference terminals

K4	K3	K2	Reference Relative to Max. Frequency		
OFF	OFF	OFF	OFF	Multi-reference 0	FC-00
OFF	OFF	OFF	ON	Multi-reference 1	FC-01
OFF	OFF	ON	OFF	Multi-reference 2	FC-02
OFF	OFF	ON	ON	Multi-reference 3	FC-03
OFF	ON	OFF	OFF	Multi-reference 4	FC-04
OFF	ON	OFF	ON	Multi-reference 5	FC-05
OFF	ON	ON	OFF	Multi-reference 6	FC-06
OFF	OFF	ON	ON	Multi-reference 7	FC-07
ON	OFF	OFF	OFF	Multi-reference 8	FC-08
ON	OFF	OFF	ON	Multi-reference 9	FC-09
ON		OF	Multi-reference	FC-10	

K4	K3	K2	K1	Reference	Percentage Relative to Max. Frequency
ON	OFF	ON	ON	Multi-reference 11	FC-11
ON	ON	OFF	OFF	Multi-reference 12	FC-12
ON	ON	OFF	ON	Multi-reference 13	FC-13
ON	ON	ON	OFF	Multi-reference 14	FC-14
ON		ON	Multi-reference 15	FC-15	

1.5.2.2 Frequency Detection (FDT)

This function allows you to set the detection value of the output frequency as well as the hysteresis value upon output cancellation. The hysteresis value is valid only during deceleration. Hysteresis does not occur in detection during acceleration. The following figure shows the frequency detection function.

Figure 1-65 Frequency detection

Table 1-35 Parameters related to frequency detection

Para.	Name	Default	Value Range	Description
F8-19	Frequency detection value (FDT1)	50.00 Hz	0 to maximum frequency (F0- $10)$	When the running frequency is higher than the frequency detection value (FDT1), the DO terminal outputs an active signal; when the running frequency is lower than the result of the frequency detection value (FDT1) minus the frequency detection hysteresis (FDT1), the DO terminal outputs an inactive signal. The valid value range is 0.00 Hz to F0-10 (maximum frequency).
F8-20	Frequency detection hysteresis (FDT1)	5.0%	0.0% to +100.0\%	The frequency detection hysteresis (FDT1) is F8- 19 multiplied by F8-20. When the running frequency is higher than F8-19, the DO terminal outputs an active signal. When the running frequency is lower than a specific value (F8-19 - F8-19 x F8-20), the DO terminal outputs an inactive signal.

Para.	Name	Default	Value Range	Description
F8-28	Frequency detection value (FDT2)	50.00 Hz	0 to maximum frequency (F0- 10)	When the running frequency is higher than the frequency detection value (FDT2), the DO terminal outputs an active signal; when the running frequency is lower than the result of the frequency detection value (FDT2) minus the frequency detection hysteresis (FDT2), the DO terminal outputs an inactive signal. The valid value range is 0.00 Hz to F0-10 (maximum frequency).
F8-29	Frequency detection hysteresis (FDT2)	5.0%	0.0% to +100.0\%	The frequency detection hysteresis (FDT2) is F8- 28 multiplied by F8-29. When the running frequency is higher than F8-28, the DO terminal outputs an active signal. When the running frequency is lower than a specific value (F8-28- F8-28 x F8-29), the DO terminal outputs an inactive signal.

1.5.2.3 Skip Frequency

The skip frequency enables the AC drive to avoid any frequency at which a mechanical resonance may occur. The AC drive supports four skip frequencies. If they are all set to 0 , the frequency skip function is disabled.

Figure 1-66 Skip frequency
During acceleration, when the running frequency increases to a value that is close to the skip frequency, the AC drive runs for a period at the current frequency and then skips over the skip frequency. The skip range is twice the value of F8-11 (skip frequency band).

During deceleration, when the running frequency decreases to a value that is close to the skip frequency, the AC drive runs for a period at the current frequency and then skips over the skip frequency. The skip range is twice the value of F8-11 (skip frequency band).

Related Parameters

Para.	Name	Default	Value Range	Description
F8-09	Skip frequency 1	0.00 Hz	0.00 to maximum frequency (F0-10)	The skip frequency enables the AC drive to avoid any frequency at which a mechanical resonance may occur. This parameter defines the first skip frequency. If it is set to 0 , the first skip frequency is canceled.
F8-10	$\begin{aligned} & \text { Skip frequency } \\ & 2 \end{aligned}$	0.00 Hz	0.00 to maximum frequency (F0-10)	The skip frequency enables the AC drive to avoid any frequency at which a mechanical resonance may occur. This parameter defines the second skip frequency. If it is set to 0 , the second skip frequency is canceled.
F8-72	Skip frequency 3	0.00 Hz	0.00 to maximum frequency (F0-10)	The skip frequency enables the AC drive to avoid any frequency at which a mechanical resonance may occur. This parameter defines the third skip frequency. If it is set to 0 , the third skip frequency is canceled.
F8-73	Skip frequency 4	0.00 Hz	0.00 to maximum frequency (F0-10)	The skip frequency enables the AC drive to avoid any frequency at which a mechanical resonance may occur. This parameter defines the fourth skip frequency. If it is set to 0 , the fourth skip frequency is canceled.
F8-11	Skip frequency band	0.00 Hz	$\begin{aligned} & 0.00 \mathrm{~Hz} \text { to } \\ & 5.00 \mathrm{~Hz} \end{aligned}$	During acceleration, when the running frequency increases to a value that is close to the skip frequency, the AC drive runs for a period at the current frequency and then skips over the skip frequency. The skip range is twice the value of F8-11 (skip frequency band). During deceleration, when the running frequency decreases to a value that is close to the skip frequency, the AC drive runs for a period at the current frequency and then skips over the skip frequency. The skip range is twice the value of F8-11 (skip frequency band).
F8-22	Skip frequency enable during acceleration/ deceleration	0	0: Disabled 1: Enabled	This parameter defines whether the skip frequency function is enabled during acceleration/deceleration. 0: During acceleration/deceleration, when the running frequency reaches the skip frequency boundary, the AC drive continues to run at the running frequency. 1: During acceleration/deceleration, when the running frequency reaches the skip frequency boundary, the AC drive skips over the skip frequency. The skip range is twice the value of F8-11 (skip frequency band).

1.5.2.4 Reverse Frequency Inhibition

You can set F8-13 to inhibit reverse frequency. The following figure shows the diagram of reverse frequency inhibition.

F0-09 defines the running direction of the motor. You can change the rotation direction of the motor by modifying this parameter without changing the motor wiring. Modifying this parameter is equivalent to exchanging any two of the motor's $\mathrm{U}, \mathrm{V}, \mathrm{W}$ wires.

Note

After the parameter is initialized, the original rotation direction of the motor is resumed. Exercise cautions when using this function if motor rotation direction change is prohibited after system commissioning is complete.

Figure 1-67 Reverse frequency inhibition

Related Parameters

Para.	Name	Default	Value Range	Description
F8-13	Reverse frequency inhibition	0	0: Disabled 1: Enabled	When F8-13 is set to 1, the motor runs at zero frequency when a reverse run command is input to the AC drive.
F0-09	Running direction	0	0: Default direction 1: Direction opposite to the default direction	You can change the rotation direction of the motor by modifying this parameter without changing the motor wiring. Modifying this parameter is equivalent to exchanging any two of the motor's U, V, W wires.

1.5.2.5 Frequency Reach Detection Range

F8-21 defines the frequency reach detection range. The following figure shows the timing diagram of this function

Figure 1-68 Timing diagram of the frequency reach detection range

Related Parameters

Para.	Name	Default	Value Range	Description
F8-21	Frequency reach detection range	0.00%	0.00% to 100% (maximum frequency)	Frequency reach detection limit is F8-21 (frequency reach detection range) multiplied by
F0-10 (maximum frequency). The DO terminal				
outputs an active signal when the running				
frequency of the AC drive falls within the				
specific range (Frequency reference \pm F0-10 x				
F8-21).				

1.5.2.6 Acceleration/Deceleration Time Switchover Frequency

This function is used to switch the acceleration/deceleration time based on the running frequency range when the $A C$ drive is running.

The following figure shows the schematic diagram of acceleration/deceleration time switchover. During acceleration, acceleration time 2 is selected if the running frequency is lower than F8-25, and acceleration time 1 is selected if the running frequency is higher than F8-25. During deceleration, deceleration time 1 is selected if the running frequency is higher than F8-26, and deceleration time 2 is selected if the running frequency is lower than F8-26.

Figure 1-69 Acceleration/Deceleration time switchover

This function is valid only when the DI terminal is not assigned with function 16 (acceleration/ deceleration time selection terminal 1) or 17 (acceleration/deceleration time selection terminal 2).

Related Parameters

Para.	Name	Default	Value Range	Description
F8-25	Switchover frequency of acceleration time 1 and acceleration time 2	0.00 Hz	0 to maximum frequency (F0- $10)$	This function is used to switch the acceleration/deceleration time based on the running frequency range when the AC drive is running. This function is valid only when the DI terminal is not assigned with function 16 (acceleration/deceleration time selection terminal 1) or 17 (acceleration/deceleration time selection terminal 2). F8-26
Switchover frequency of deceleration time 1 and deceleration time 2	0.00 Hz	0 to maximum value range is 0.00 Hz to F0-10 frequency (F0- (maximum frequency).		

1.5.2.7 Frequency Reach Detection Value

When the running frequency of the $A C$ drive is within the range of frequency reach detection value \pm frequency reach detection range, the DO terminal outputs an active signal.

Figure 1-70 Frequency reach detection

Related Parameters

Para.	Name	Default	Value Range	Description
F8-30	Frequency reach detection value 1	50.00 Hz	0 to maximum frequency (F0- 10)	When the running frequency of the $A C$ drive is within the frequency detection range, the DO terminal outputs an active signal. The valid value range is 0.00 Hz to F0-10 (maximum frequency).
F8-31	Frequency reach detection range 1	0.0\%	0.0\% to +100.0\%	Frequency reach detection range 1 is F010 (maximum frequency) multiplied by F8-31, and the frequency detection range is F8-30 (frequency reach detection value 1) \pm F8-31 (frequency reach detection range 1), that is, $\mathrm{F} 8-30 \pm \mathrm{F} 8-31 \times \mathrm{F0}-10$.
F8-32	Frequency reach detection value 2	50.00 Hz	0 to maximum frequency (FO10)	When the running frequency of the AC drive is within the frequency detection range, the DO terminal outputs an active signal. The valid value range is 0.00 Hz to F0-10 (maximum frequency).
F8-33	Frequency reach detection range 2	0.0\%	0.0\% to $+100.0 \%$	Frequency reach detection range 2 is F010 (maximum frequency) multiplied by F8-33, and the frequency detection range is frequency reach detection value \pm frequency reach detection range, that is, (F8-32 - F8-33 x F0-10) to (F8-32 + F8$33 \times$ F0-10).

1.5.3 Current Detection

1.5.3.1 Zero Current Detection

When the output current of the AC drive is lower than or equal to F8-34 (zero current detection level) for a period longer than the time defined by F8-35 (zero current detection delay), the DO terminal outputs an active signal.

Figure 1-71 Zero current detection

Related Parameters

Para.	Name	Default	Value Range	Description
F8-34	Zero current detection level	5.0%	0.0% to 300.0% (rated motor current)	When the output current of the AC drive is lower than or equal to F8-34 (zero current detection level) for a period longer than the time defined by F8-35 (zero current detection delay
F85 dero current DO terminal outputs delay), the an active signal.				

1.5.3.2 Output Overcurrent Threshold

When the output current of the AC drive is higher than F8-36 (output current threshold) for a period longer than the time defined by F8-37 (output overcurrent detection delay), the DO terminal outputs an active signal.

Figure 1-72 Output overcurrent threshold

Related Parameters

Para.	Name	Default	Value Range	Description
F8-36	Output overcurrent threshold	200.0%	0.0% (no detection) 0.1% to 300.0% (rated motor current)	When the output current of the AC drive is higher than F8-36 (output current threshold) for a period longer than F8-37 (output overcurrent detection delay), the DO terminal outputs an active signal.
F8-37	Output overcurrent detection delay	0.00 s	0.00 s to 600.00s	

1.5.3.3 Current Detection Level

When the output current of the AC drive is within the range of Detection level of current $1 \pm$ Detection width of current $1 \times$ Rated motor current, the DO terminal outputs an active signal.

The AC drive provides two groups of current detection level and width parameters. The following figure shows the timing diagram.

Figure 1-73 Current detection timing diagram

Related Parameters

Para.	Name	Default	Value Range	Description
F8-38	Detection level of current 1	100.0%	0.0% to 300.0% (rated motor current)	When the output current of the AC drive is within the range of F8-38 (detection level of current 1) \pm F8-39 (detection width of current 1) x F1-03 (rated motor current), the DO terminal outputs an active signal.
F8-39	Detection width of current 1	0.0%	0.0% to 300.0\% (rated motor current)	The detection width of current 1 is F8-39 (detection width of current 1) multiplied by F1- 03 (rated motor current).
F8-40	Detection level of current 2	100.0%	0.0% to 300.0\% (rated motor current)	When the output current of the AC drive is within the range of F8-40 (detection level of current 2) \pm F8-41 (detection width of current 2) x F1-03 (rated motor current), the DO terminal outputs an active signal.
F8-41	Detection width of current 2	0.0%	0.0% to 300.0\% (rated motor current)	The detection width of current 2 is F8-41 (detection width of current 2) multiplied by F1- 03 (rated motor current).

1.5.2 FWD/REV Switchover Deadzone Time

FWD/REV switchover deadzone time (F8-12) indicates the transition time at 0 Hz output during transition between forward running and reverse running of the AC drive.

Figure 1-74 FWD/REV switchover deadzone time

Related Parameters

Para.	Name	Default	Value Range	Description
F8-12	FWD/REV switchover deadzone time	0.0 s	0.0s to 3000.0s	This parameter defines the transition time at 0 Hz output during transition between forward running and reverse running.

1.5.3 Timing Function

The AC drive starts timing from 0 each time it starts. When the timing duration defined by F8-44 is reached, the AC drive stops automatically and the DO terminal outputs an active signal. You can view the remaining timing duration by using U0-20.

Related Parameters

Para.	Name	Default	Value Range	Description
F8-42	Timing function	0	0: Disabled 1: Enabled	If F8-42 (timing function) is set to 1 , the DO terminal outputs an active signal when the current running duration of the $A C$ drive reaches the timing duration defined by F8-43 and F8-44.
F8-43	Timing duration source	0	$\begin{aligned} & \text { 0: F8-44 } \\ & \text { 1: Al1 } \\ & \text { 2: Al2 } \end{aligned}$	0 : The timing duration is defined by F8-44. 1: Timing duration $=($ Al1 voltage $/ 10 \mathrm{~V}) \times \mathrm{F} 8-44$. 100% of analog input corresponds to the value of F8-44. 2: Timing duration $=($ Al2 voltage $/ 10 \mathrm{~V}) \times \mathrm{F} 8-44$. 100% of analog input corresponds to the value of F8-44.
F8-44	Timing duration	0.0 min	0.0 min to 6500.0 min	The timing duration is defined by F8-43 and F844.

1.5.4 Accumulative Duration Reach

The DO terminal outputs an active signal when the following condition is met: F7-13 (accumulative power-on duration (hour)) x $3600+$ F7-29 (accumulative power-on duration (second)) $>$ F8-16 (poweron duration threshold (hour)) x $3600+$ F8-74 (power-on duration threshold (second)).

Related Parameters

Para.	Name	Default	$\begin{array}{l}\text { Value } \\ \text { Range }\end{array}$	Description		
F8-16	$\begin{array}{l}\text { Power-on } \\ \text { duration } \\ \text { threshold } \\ \text { (hour) }\end{array}$	0 h	$\begin{array}{l}0 \mathrm{~h} \text { to } \\ 65000 \mathrm{~h}\end{array}$	$\begin{array}{l}\text { The DO terminal outputs an active signal when the } \\ \text { following condition is met: F7-13 (accumulative power-on } \\ \text { duration (hour)) } \times 3600+\text { F7-29 (accumulative power-on } \\ \text { duration (second)) }>\text { F8-16 (power-on duration threshold }\end{array}$		
(hour)) x 3600 + F8-74 (power-on duration threshold					$]$	F8-74
:---						
Power-on (second)). duration (second)						

The DO terminal outputs an active signal when the following condition is met: F7-09 (accumulative running duration (hour)) $\times 3600+$ F7-28 (accumulative running duration (second)) $>$ F8-17 (running duration threshold (hour)) $\times 3600+$ F8-75 (running duration threshold (second)).

Related Parameters

Para.	Name	Default	Value Range	Description
F8-17	Running duration threshold (hour)	0 h	0 h to 65000 h	The DO terminal outputs an active signal when the following condition is met: F7-09 (accumulative running duration (hour)) $\times 3600+\mathrm{F7}-28$ (accumulative running duration (second)) $>$ F8-17 (running duration threshold
F8-75	Running duration threshold (second)	0s	0s to 3599s	(hour)) $\times 3600+$ F8-75 (running duration threshold (second)).

1.5.5 Current Running Duration Threshold

Current Running Duration Threshold

Para.	Name	Default	Value Range	Description
F8-53	Current running duration threshold	0.0 min	0.0 min to 6500.0 min	The DO terminal outputs an active signal when the current running duration reaches the value of F8-53. Only the current running duration counts. The previous running duration is not included.

1.5.6 Al1 Voltage Upper/Lower Limit

Para.	Name	Default	Value Range	Description
F8-45	Al1 input voltage lower limit	3.10 V	$\begin{aligned} & 0.00 \mathrm{~V} \text { to } \\ & \text { F8-46 } \end{aligned}$	When the AI1 input is greater than F8-46 or smaller than F8-45, the DO terminal of the AC drive outputs an "AI1 input overlimit" active signal to indicate whether the AI1 input voltage is within the setting range.
F8-46	AI1 input voltage upper limit	6.80 V	$\begin{aligned} & \text { F8-45 to } \\ & 10.00 \mathrm{~V} \end{aligned}$	
A6-51	Al2 input voltage lower limit	8.00 V	$\begin{aligned} & \text { A6-52 to } \\ & 10.00 \mathrm{~V} \end{aligned}$	When the Al 2 input is greater than $\mathrm{A} 6-51$ or smaller than A6-52, the DO terminal of the AC drive outputs an "Al2 input overlimit" active signal to indicate whether the Al 2 input voltage is within the setting range.
A6-52	Al2 input voltage upper limit	2.00 V	$\begin{aligned} & 0.00 \mathrm{~V} \text { to } \\ & \mathrm{A} 6-51 \end{aligned}$	
A6-57	AI3 input voltage lower limit	8.00 V	$\begin{aligned} & \text { A6-58 to } \\ & 10.00 \mathrm{~V} \end{aligned}$	When the Al 3 input is greater than A6-57 or smaller than A6-58, the DO terminal of the AC drive outputs an "AI3 input overlimit" active signal to indicate whether the Al 3 input voltage is within the setting range.
A6-58	AI3 input voltage upper limit	2.00 V	$\begin{aligned} & 0.00 \mathrm{~V} \text { to } \\ & \mathrm{A} 6-57 \end{aligned}$	
A6-59	Al input protection time	0.01s	$\begin{aligned} & \text { 0.00s to } \\ & 1.00 \mathrm{~s} \end{aligned}$	The fault flag is set only when the Al input exceeds the limit for a continuous duration greater than or equal to the setpoint of this parameter.

1.5.7 IGBT Temperature

Para.	Name	Default	Value Range	Description
F8-47	IGBT temperature reach	$75^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	The DO terminal outputs an active signal when the heatsink temperature of the IGBT reaches the setpoint of F8-47.
F7-07	IGBT heatsink temperature	-	$-20^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$	This parameter defines the heatsink temperature of the IGBT.

1.5.8 Cooling Fan Control

Para.	Name	Default	Value Range	Description
F8-48	Cooling fan control	0	0 : Working during drive running	When the AC drive is running, the fan keeps working until the AC drive stops for 10 s. When the AC drive is in stop state, the fan works if the heatsink temperature is higher than $40^{\circ} \mathrm{C}$ and stops if the heatsink temperature is lower than $40^{\circ} \mathrm{C}$.
			1: Working always	The fan keeps working after poweron.
			2: Working under temperature-based control	The fan works when the temperature is higher than $45^{\circ} \mathrm{C}$ and stops when the temperature is lower than $43^{\circ} \mathrm{C}$ regardless of the AC drive state.

1.5.9 Output Power Correction

Para.	Name	Default	Value Range	Description
F8-54	Output power correction coefficient	100.0%	0.0% to 200.0%	This parameter defines the correction coefficient of linear correction on the output power when the output power (U0-05) is not equal to expected value.

1.5.10 User-defined Parameters

Group FE consists of user-defined parameters (FE-00 to FE-31). Users can define commonly used parameters for easier check and modification. Up to 30 user-defined parameters are supported.

- If F0.00 is displayed, the corresponding user-defined parameter is empty. In the user-defined parameter mode, the displayed parameters are defined by FE-00 to FE-31, and the sequence is consistent with that in group FE. The parameters are skipped if the displayed value is F0.00.
- Displayed values U3-17 and U3-16 indicate PZD1 (AC drive command word) in communication control and PZD2 (AC drive target frequency) in communication control, respectively.

Related Parameters

Para.	Name	Default	Value Range	Description
FP-03	Display of individualized parameters	111	Ones:	This parameter determines whether to display the user-defined parameters, usermodified parameters, and error menus on the operating panel.
			0 : Hide user mode	
			1: Display user mod	
			Tens:	
			0 : Hide correction mode	
			1: Display correction mode	
			Hundreds:	
			0 : Hide error menu	
			1: Display error menu	
FE-00	User-defined parameter 0	F0-00	F0-00 to FP-xx A0-00 to Ax-xx U0-xx to U0-xx U3-00 to U3-xx	-
FE-01	User-defined parameter 1	$\begin{aligned} & \text { Same as } \\ & \text { FE-00 } \end{aligned}$	Same as FE-00	-
FE-02	User-defined parameter 2	$\begin{aligned} & \text { Same as } \\ & \text { FE-00 } \end{aligned}$	Same as FE-00	-
FE-03	User-defined parameter 3	$\begin{aligned} & \text { Same as } \\ & \text { FE-00 } \end{aligned}$	Same as FE-00	-
FE-04	User-defined parameter 4	Same as FE-00	Same as FE-00	-
FE-05	User-defined parameter 5	$\begin{aligned} & \text { Same as } \\ & \text { FE-00 } \end{aligned}$	Same as FE-00	-
FE-06	User-defined parameter 6	Same as FE-00	Same as FE-00	-
FE-07	User-defined parameter 7	$\begin{aligned} & \text { Same as } \\ & \text { FE-00 } \end{aligned}$	Same as FE-00	-
FE-08	User-defined parameter 8	$\begin{aligned} & \text { Same as } \\ & \text { FE-00 } \end{aligned}$	Same as FE-00	-
FE-09	User-defined parameter 9	Same as FE-00	Same as FE-00	-
FE-10	User-defined parameter 10	Same as FE-00	Same as FE-00	-
FE-11	User-defined parameter 11	Same as FE-00	Same as FE-00	-
FE-12	User-defined parameter 12	Same as FE-00	Same as FE-00	-
FE-13	User-defined parameter 13	Same as FE-00	Same as FE-00	-
FE-14	User-defined parameter 14	$\begin{aligned} & \text { Same as } \\ & \text { FE-00 } \end{aligned}$	Same as FE-00	-
FE-15	User-defined parameter 15	Same as FE-00	Same as FE-00	-
FE-16	User-defined parameter 16	Same as FE-00	Same as FE-00	-

Para.	Name	Default	Value Range	Description
FE-17	User-defined parameter 17	Same as FE-00	Same as FE-00	-
FE-18	User-defined parameter 18	Same as FE-00	Same as FE-00	-
FE-19	User-defined parameter 19	Same as FE-00	Same as FE-00	-
FE-20	User-defined parameter 20	Same as FE-00	Same as FE-00	-
FE-21	User-defined parameter 21	Same as FE-00	Same as FE-00	-
FE-22	User-defined parameter 22	Same as FE-00	Same as FE-00	-
FE-23	User-defined parameter 23	Same as FE-00	Same as FE-00	-
FE-24	User-defined parameter 24	Same as FE-00	Same as FE-00	-
FE-25	User-defined parameter 25	Same as FE-00	Same as FE-00	-
FE-26	User-defined parameter 26	Same as FE-00	Same as FE-00	-
FE-27	User-defined parameter 27	Same as FE-00	Same as FE-00	-
FE-28	User-defined parameter 28	Same as FE-00	Same as FE-00	-
FE-29	User-defined parameter 29	Same as FE-00	Same as FE-00	-
FE-30	User-defined parameter 30	Same as FE-00	Same as FE-00	-
FE-31	User-defined parameter 31	Same as FE-00	Same as FE-00	-

1.5.11 Hibernation and Wakeup

Hibernation is also known as sleep. Any time period within 24 hours can be set as a hibernation period, during which the AC drive stops running and enters hibernation state.

Wakeup is a process that the AC drive wakes up from the hibernation state and starts to run.
Parameters related to hibernation and wakeup include the wakeup frequency, hibernation frequency, and hibernation time. Generally, the wakeup frequency (F8-49) should be higher than or equal to the hibernation frequency (F8-51). The hibernation and wakeup function is disabled if both the wakeup frequency and hibernation frequency are set to 0.00 Hz .

Figure 1-75 Hibernation and wakeup

Note

When sleep is enabled during PID operation, you can set FA-28 (selection of PID operation at stop) to 1 to continue the PID operation or to 0 to stop PID operation.

Related Parameters

Para.	Name	Default	Value Range	Description		
F8-49	Wakeup frequency	0.00 Hz	$\begin{array}{l}\text { Hibernation } \\ \text { frequency (F8-51) to } \\ \text { maximum frequency } \\ \text { (F0-10) }\end{array}$	$\begin{array}{l}\text { In hibernation state, } \\ \text { when the frequency } \\ \text { reference is greater } \\ \text { than or equal to F8- } \\ 49 \text { (wakeup } \\ \text { frequency) and the } \\ \text { current running } \\ \text { command is valid, }\end{array}$		
	Wakeup delay	0.0 s	0.0s to 6500.0s			
the AC drive starts						
directly after the						
delay defined by F8-					$]$	50 (wakeup delay)
:---						
elapses.						

1.6 Faults and Protection

1.6.1 Startup Protection

When F8-18 is set to 1 , startup protection is enabled to prevent the motor from responding to a command upon unexpected power-on or fault reset of the AC drive.

The startup protection works in the following two scenarios:

- If a command is issued upon power-on of the AC drive (for example, the terminal used as the command source are ON before power-on), the AC drive does not respond to the command. Instead, the AC drive responds only after the command is revoked and re-issued.
- If a command is issued upon fault reset of the AC drive, the AC drive does not respond to the command. Instead, the AC drive responds only after the command is revoked and re-issued.

Related Parameters

Para.	Name	Default	Value Range	Description
F8-18	Startup protection	0	0: Disabled	The AC drive is equipped with the startup protection function to prevent the motor from responding to a command upon unexpected power-on or fault reset.

1.6.2 Undervoltage/Overvoltage Threshold and Fast Current Limiting

When the bus voltage falls below A5-06 or exceeds A5-09, the AC drive reports a fault.

Related Parameters

Para.	Name	Default	Value Range	Description
A5-06	Undervoltage threshold	350.0 V	140.0 V to 420.0 V	
A5-09	Overvoltage threshold	820 V	When the bus voltage is lower than the setpoint of A5-06, the AC drive reports E005.1.	
A5-04	Fast current limiting	1	0: Disabled 1: Enabled	When the bus voltage is higher than the setpoint of A5-09, the AC drive reports E009.1/E009.3.

1.6.3 Phase Loss Protection

Para.	Name	De fault	Value Range	Description
F9-12	Input phase loss/ Contactor pickup protection	11	Ones: Input phase loss protection 0 : Disabled 1: Enabled Tens: Contactor pickup protection 0 : Disabled 1: Enabled	This parameter defines whether to enable input phase loss or contactor pickup protection.
F9-13	Output phase loss protection	01	Ones: Output phase loss protection 0 : Disabled 1: Enabled Tens: Output phase loss protection before running 0 : Disabled 1: Enabled	Ones: This bit defines whether to enable output phase loss protection. If the protection is disabled and output phase loss occurs, the AC drive will not report the fault. In this case, the actual current is larger than the current displayed on the operating panel, which is risky. Exercise caution when disabling this function. Tens: Output phase loss detection during running takes about several seconds. For lowfrequency running applications or applications where risks exist in start with phase loss, this function enables quick detection of output phase loss during startup. However, it is not recommended for applications that have strict requirements on startup time.

1.6.4 Motor Overheat Protection

You can view motor temperature by using U0-34. Parameters related to motor overheat protection are described as follows.

Related Parameters

Para.	Name	Default	Value Range	Description
F9-56	Motor temperature sensor type	0	0: No temperature sensor 1: PT100 2: PT1000	The motor temperature sensor signal needs to connect to AI3 and PGND on the MD38IO1 expansion card. The drive supports both PT100 and PT1000. You must set the sensor type correctly. You can view motor temperature by using U0-34.
F9-57	Motor overheat protection threshold	$110^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	When the motor temperature exceeds the motor overheat protection threshold (f9-57), the AC drive reports Err45 and handles the fault according to the fault protection action defined by F9-48.
F9-58	Motor overheat pre-warning threshold	$90^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	When the motor temperature exceeds the motor overheat pre-warning threshold (F9-58), the DO terminal assigned with function 39 (motor overheat pre-warning) outputs an active signal.

1.6.5 Motor Overload Protection

Related Parameters

Para.	Name	Default	Value Range	Description
F9-00	Motor overload protection	1	0: Disabled	Motor overload protection is disabled. In this case, you are advised to install a thermal relay before the motor.
		1: Enabled	The AC drive determines whether the motor is overloaded according to the inverse time delay curve of motor overload protection.	
F9-01	Motor overload protection gain	1	0.20 to 10.00	This parameter can be used to adjust the motor overload current level and overload protection time.
F9-02	Motor overload pre- warning coefficient	80%	50% to 100\%	The pre-warning coefficient is used to determine how early to send the pre-warning signal before the motor overload protection starts. The larger the value is, the later the pre- warning signal is sent.

To effectively protect motors with different loads, you need to set the overload protection gain of motors based on their overload capacity. The motor overload protection curve is an inverse time delay curve, as shown in the following figure.

Figure 1-76 Inverse time delay curve of protection

When the motor runs at 175% of the rated motor current for 2 minutes, or when it runs at 115% of the rated motor current for 80 minutes, the AC drive reports the motor overload fault (E11.00).

1. Example 1

- Assume that the rated motor current is 100 A . If F9-01 is set to 1.00 , the AC drive reports a motor overload fault (E11.00) after the motor runs at $125 \mathrm{~A}(125 \%$ of 100 A) continuously for 40 minutes, according to the preceding curve.
- If F9-01 is set to 1.20 , the AC drive reports a motor overload fault (E11.00) after the motor runs at 125 A (125% of 100 A) continuously for 48 minutes (40×1.2), according to the preceding curve.

Note

The maximum overload time is 80 minutes and the minimum overload time is 10 seconds.

2. Example 2

The AC drive reports a motor overload fault after the motor runs at 150% of the rated current for 2 minutes. As shown in the overload curve, 150% (I) of the rated current falls between 145% (I1) and 155% (I2) of the rated current. The overload fault report delay for 145% of the rated current is 6 minutes (T1), and that for 155% of the rated current is 4 minutes (T2). Therefore, the overload fault report delay for 150% of the rated current is 5 minutes by default. The calculation is as follows.
$" T=T 1+(T 2-T 1) \times(I-I 1) /(I 2-I 1)=4+(6-4) \times(150 \%-145 \%) /(155 \%-145 \%)=5$ (minutes)"
To report the overload fault after the motor runs continuously at 150\% of the rated current for 2 minutes, set the motor overload protection gain as follows: F9-01 = Desired overload protection time/Default overload protection delay $=2 / 5=0.4$.

Caution

Set F9-01 properly based on the actual overload capacity of the motor. Note that setting F9-01 to an excessively high value may easily result in motor damage caused by overtemperature without warning.

When the motor overload detection level reaches the set motor overload pre-warning coefficient, the DO or fault relay outputs the motor overload pre-warning signal. The motor overload pre-warning coefficient is the percentage of time during which the motor runs at an overload threshold continuously without reporting an overload fault

For example, if the motor overload protection gain is set to 1.00 and the motor overload pre-warning coefficient is set to 80%, the DO terminal or fault relay outputs the motor overload pre-warning signal after the motor runs at 145% of the rated motor current for 4.8 minutes $(80 \% \times 6)$.

The motor overload pre-warning function enables the AC drive to send a pre-warning signal to the control system through the DO before motor overload protection starts. The pre-warning coefficient is used to determine how early to send the pre-warning signal before the motor overload protection starts. The larger the value is, the later the pre-warning signal is sent. When the accumulative output current of the AC drive is greater than the overload time (value Y of the motor overload protection inverse time delay curve) multiplied by the motor overload pre-warning coefficient (F9-02), the multifunction DO terminal of the AC drive outputs a motor overload pre-warning signal. When F9-02 is set to 100%, motor overload pre-warning and motor overload protection are performed simultaneously.

Related Parameters

Para.	Name	Default	Value Range	Description
F9-00	AC drive overload protection	0	0: Disabled 1: Enabled	This parameter specifies whether to enable or disable the motor overload protection function. The AC drive determines whether the motor is overloaded according to the inverse time delay curve. When motor overload is detected, the AC drive will report an overload fault. 0 : Disabled The motor overload protection function is disabled. If this parameter is set to 0 , you are advised to install a thermal relay before the motor for protection. 1: Enabled The motor overload protection function is enabled.
F9-01	Motor overload protection gain	1.00	0.20 to 10.00	The motor overload protection gain is calculated according to the percentage of time during which the motor runs continuously at an overload threshold without reporting an overload fault. It is used to adjust the actual overload fault report time of the AC drive when motor overload occurs.
F9-02	Motor overload pre-warning coefficient	80\%	$\begin{aligned} & \text { 50\% to } \\ & 100 \% \end{aligned}$	The motor overload pre-warning coefficient is the percentage of time during which the motor runs at an overload threshold continuously without reporting an overload fault. The AC drive sends a pre-warning signal to the control system through DO before motor overload protection starts. This signal is used to determine how early to send the pre-warning signal before the motor overload protection starts. The larger the value is, the later the pre-warning signal is sent. When the accumulative output current of the AC drive is greater than the overload time (value Y of the motor overload protection inverse time delay curve) multiplied by the motor overload pre-warning coefficient (F9-02), the multi-function DO terminal of the AC drive outputs a motor overload pre-warning signal.

1.6.6 Load Loss Protection

You can set the ten thousands place of F9-51 to enable load loss detection. When the output current of the AC drive stays below F9-64 (load loss detection level) for a period longer than the time set by F9-65 (load loss detection time), the AC drive performs the load loss protection action. Once the load recovers during protection, the AC drive automatically runs at the reference frequency.

Para.	Name	Default	Value Range	Description
F9-51	Fault protection action 4	10111	-	-
F9-64	Load loss detection level	10.0%	0.0% to $+100.0 \%$	
F9-65	Load loss detection time	1.0 s	0.1 s to 60.0s	

1.6.7 Overspeed Protection

Overspeed protection is valid only when the AC drive works in FVC mode (F0-01 = 1).
When this protection is enabled, if the AC drive detects that the actual motor speed exceeds the maximum frequency (F0-10) by a percentage greater than the overspeed detection level (F9-67) for a period longer than the overspeed detection time (F9-68), the AC drive reports the motor overspeed fault (E43.00) and acts according to the fault protection action defined by F9-50.

When F9-68 (overspeed detection time) is set to 0.0 s , overspeed detection is disabled.
Related Parameters

Para.	Name	Default	Value Range	Description
F9-67	Over- speed detection level	20.0%	0.0% to 50.0\% (maximum frequency)	When the AC drive detects that the actual motor speed exceeds the maximum frequency (F0-10) by a percentage greater than the overspeed detection level (F9-67) for a period longer than the overspeed detection time (F9-68), the AC drive reports Err43.1 and acts according to the fault protection action defined by F9-50. F9-68Over- speed detection time

1.6.8 Protection Against Excessive Speed Deviation

The excessive speed deviation protection function is valid only when the FVC mode is selected for the AC drive (F0-01 is set to 1).

When this protection is enabled, if the AC drive detects that the deviation between the actual motor running frequency and the frequency reference stays above the detection level of excessive speed deviation (F9-69) for a period longer than the detection time of excessive speed deviation (F9-70), the AC drive reports E42.00 (excessive speed deviation) and acts according to the fault protection action defined by F9-50.

If F9-70 (detection time of excessive speed deviation) is set to 0.0 s , the excessive speed deviation detection function is disabled.

Related Parameters

Para.	Name	Default	Value Range	Description
F9-69	Detection level of excessive speed deviation	20.0%	0.0% to 50.0% (maximum frequency)	-
F9-70	Detection time of excessive speed deviation	5.0 s	0.0 sto 60.0 s	

1.6.9 Motor Locked-rotor Protection

Take motor 1 as an example:

Para.	Name	Default	Value Range	Description
AA-30	Bit05: motor locked-rotor protection	0	$0-01$	When motor locked-rotor protection is enabled by setting bit05 of AA-30, the motor locked-rotor fault E093.1 is reported when the output torque of the
AA-31	Motor locked- rotor protection time	2 s	0.0 s to 65.0s	mas reached the torque limit and the feedback speed stays lower than AA-32 (percentage relative to the rated motor speed) for a time period defined by AA-31.
AA-32	Motor locked- rotor protection speed	6.0%	This fault is reported only in vector control mode.	

1.6.10 Motor Stall Protection

Para.	Name	Default	Value Range	Description
AA-30	Bit04: motor stall protection	1	$0-01$	When motor stall protection is enabled by setting bit04 of AA-30, E093.2 is reported when the stall protection threshold (AA-34) and stall protection time (AA-33) are reached.
AA-33	Motor stall protection time	0.5 s	0.0 s to 10.0s	
AA-34	Motor stall protection threshold	30.0%	0.0\% to 100.0%	

1.6.11 Current Control Fault Protection

Para.	Name	Default	Value Range	Description
AA-30	Bit03: current control fault protection	1	$0-01$	When current control fault protection is enabled by setting bit03 of AA-30, E093.3 is reported when the current control fault protection threshold (AA- $36)$ and protection time (AA-35) are reached.
AA-35	Motor control fault protection time	0.05 s	0.0 s to 1.00 s	
AA-36	Motor control fault protection threshold	25.0%	0.0% to 200.0%	

1.6.12 Power Dip Ride-Through

The power dip ride-through function ensures continuous system running upon instantaneous power failure. When instantaneous power failure occurs, the AC drive keeps the motor in the power generating state to keep the bus voltage around the "voltage threshold for enabling power dip ridethrough". This prevents the AC drive from stopping due to undervoltage. See the following figure.

Figure 1-77 Power dip ride-through
In the "keep bus voltage constant" mode, when the grid resumes power supply, the AC drive restores the target output frequency based on the acceleration time. In the "decelerate to stop" mode, when the grid resumes power supply, the AC drive continues to decelerate to 0 Hz and stops, and will restart only after receiving a start command.

Related Parameters

Para.	Name	Default	Value Range	Description F9-59
	Power dip ride-through	0	0: Disabled 1: Keep bus voltage constant 2: Decelerate to stop 3: Suppress voltage dip	This parameter defines whether the AC drive runs continuously upon instantaneous power failure. When instantaneous power failure occurs, the AC drive keeps the motor in the power generating state to keep the bus voltage around the "voltage threshold for enabling power dip ride-through". This prevents the AC drive from stopping due to undervoltage.
F9-61				

Para.	Name	Default	Value Range	Description		
F9-62	Voltage threshold for enabling power dip ride-through	80%	60% to 100%	This parameter defines the voltage level at which the bus voltage is maintained upon power failure. Upon power failure, the bus voltage is maintained around F9-62 (voltage threshold for enabling power dip ride- through).		
F9-71	Power dip ride-through gain	0 to 100	40	This parameter is valid only in the "keep bus voltage constant" mode (F9-59 $=1$).		
F9-72	Power dip ride-through integral coefficient	0 to 100	30	undervoltage occurs frequently during power dip ride-through, increase the power dip ride-through gain and integral coefficient.		
F9-73	Deceleration time of power dip ride-through	0 to 300.0s	20.0 s	This parameter is valid only in the "decelerate to stop" mode (F9-59 $=2$).		
When the bus voltage is lower than the					,	value of F9-62, the AC drive decelerates to
:---						
stop. The deceleration time is determined						
by this parameter but not F0-18.						

1.6.13 Fault Reset

The undervoltage fault (E009.1) is automatically reset when the bus voltage resumes normal, and the reset is not included in the auto reset count. The short-to-ground fault (E023.1) and STO buffer chip fault (E047.5) cannot be reset automatically or manually. They can only be reset after the AC drive is completely powered off and then powered on again. Fault protection action selection is required when the set number of fault auto reset times is reached.

Related Parameters

Para.	Name	Default	Value Range	Description
F9-09	Auto reset attempts	0	0 to 20	This parameter defines the maximum number of auto resets allowed for the AC drive when the fault protection action is set to auto reset. If the number of reset attempts exceeds the value of this parameter, the AC drive will remain in the faulty state.
F9-10	DO action during auto reset	1	0: Disabled 1: Enabled	This parameter defines whether the faulty DO (assigned with function 2) acts during auto fault reset if the auto fault reset function is enabled.
F9-11	Auto reset interval	1.0s	0.1 s to 100.0 s	This parameter defines the delay of auto reset after the AC drive reports a fault.
H2-12	Auto reset enable	1	0: Disabled 1: Enabled	This parameter defines whether to enable the auto fault reset function.
H2-15	Auto reset disabled upon manual reset	1	$\begin{aligned} & \text { 0: Yes } \\ & \text { 1: No } \end{aligned}$	This parameter defines the effect of manual reset on auto reset. When it is set to 0 , faults are not reset automatically after manual reset. When it is set to 1 , faults are still reset automatically after manual reset.
H2-16	Interval for clearing auto reset count	10 min	0 min to 6000 min	After the interval for clearing auto reset count, the number of auto reset attempts is restored to that defined by F9.09.

Para.	Name	Default	Value Range	Description
H2-17	Active fault reset attempt count	0	0 to 65535	This parameter shows the number of auto resets that have occurred so far.
H2-18	Clearing upon fault reset count reach	0	0: Enabled 1: Disabled	This parameter defines whether to automatically clear the auto reset count when the set number of auto reset attempts is reached after the interval defined by H2-16.

You can set an auto reset blacklist to forbid auto reset of some faults. The AC drive supports 10 nonresettable fault codes, which can be set as required.

Related Parameters

Para.	Name	Default	Value Range	Description
H2-10	Code of nonresettable exception 1	0	0 to 200	The AC drive supports 10 groups of main codes and subcodes of non-resettable faults. The main codes and subcodes are combined to form specific fault codes. These faults cannot be reset automatically.
H2-11	Subcode of non-resettable exception 1	0	0 to 9	
H2-12	Code of nonresettable exception 2	0	0 to 200	
H2-13	Subcode of non-resettable exception 2	0	0 to 9	
H2-14	Code of nonresettable exception 3	0	0 to 200	
H2-15	Subcode of non-resettable exception 3	0	0 to 9	
H2-16	Code of nonresettable exception 4	0	0 to 200	Continued
H2-17	Subcode of non-resettable exception 4	0	0 to 9	
H2-18	Code of nonresettable exception 5	0	0 to 200	
H2-19	Subcode of non-resettable exception 5	0	0 to 9	
H2-20	Code of nonresettable exception 6	0	0 to 200	

Para.	Name	Default	Value Range	Description
H2-21	Subcode of non-resettable exception 6	0	0 to 9	Continued
H2-20	Code of nonresettable exception 7	0	0 to 200	
H2-21	Subcode of non-resettable exception 7	0	0 to 9	
H2-20	Code of nonresettable exception 8	0	0 to 200	
H2-21	Subcode of non-resettable exception 8	0	0 to 9	
H2-20	Code of nonresettable exception 9	0	0 to 200	Continued
H2-21	Subcode of non-resettable exception 9	0	0 to 9	
H2-20	Code of nonresettable exception 10	0	0 to 200	
H2-21	Subcode of non-resettable exception 10	0	0 to 9	

1.6.14 Auto Restart Upon Fault

If auto reset and restart upon fault is enabled, when a fault is reported during running and reset automatically, the AC drive automatically restarts after the delay of restart after auto reset. During restart, the AC drive will stop if a stop or manual reset command is received.

Related Parameters

Para.	Name	Default	Value Range	Description
H2-42	Restart after auto reset	0	0: Disabled 1: Enabled	This parameter defines whether to enable restart after auto reset. The AC drive can restart upon auto fault reset only after this function is enabled (on the premise that an operation command is received and fault auto reset is successful).
H2-43	Waiting time of restart after auto reset	0.5 s	0 to 600.0s	This parameter defines the waiting time of auto restart of the AC drive after auto reset.
H2-44	Forced flying start during auto restart	0	0 to 1	This parameter defines whether to force flying start during auto restart upon fault.

You can set an auto restart blacklist or whitelist to forbid or allow auto restart upon auto reset of some faults. The AC drive supports 6 fault codes for which auto restart upon auto reset is allowed, which can be set as required.

Related Parameters

Para.	Name	Default	Value Range	Description
H2-45	Source of exceptions that allow restart		0 : Whitelist 0: Blacklist	This parameter defines the source for allowing restart after fault auto reset. When it is set to 0 , restart after fault auto reset is allowed only for faults with fault codes defined by H2-46 to H2-57. When it is set to 1 , restart after fault auto reset is not allowed for faults with fault codes defined by H2-46 to H2-57.
H2-46	Code of specified exception 1	0	0 to 200	The AC drive supports 6 groups of main codes and subcodes of special faults. The main codes and subcodes are combined to form specific fault codes. $\mathrm{H} 2-45$ (source of exceptions that allow restart) determines whether restart after fault auto reset is allowed for these faults.
H2-47	Subcode of specified exception 1	0	0 to 9	
H2-48	Code of specified exception 2	0	0 to 200	
H2-49	Subcode of specified exception 2	0	0 to 9	
H2-50	Code of specified exception 3	0	0 to 200	
H2-51	Subcode of specified exception 3	0	0 to 9	
H2-52	Code of specified exception 4	0	0 to 200	
H2-53	Subcode of specified exception 4	0	0 to 9	
H2-54	Code of specified exception 5	0	0 to 200	
H2-55	Subcode of specified exception 5	0	0 to 9	
H2-56	Code of specified exception 6	0	0 to 200	
H2-57	Subcode of specified exception 6	0	0 to 9	

1.6.15 Fault Protection Actions

The AC drive supports six fault protection actions: coast to stop, stop according to the stop mode, continue to run, run with power limit, run with current limit, and ignore.

The protection actions are arranged as follows based on severity (from high to low) of corresponding faults: coast to stop, stop according to the stop mode, run with limit (continue to run, run with power limit, and run with current limit), and ignore.

Continue to run, run with power limit, and run with current limit correspond to the same severity.
When the fault protection action is continue to run, run with power limit, or run with current limit, the operating panel displays Lxxx.x, such as L042.1.

When the fault protection action is set to ignore, no message is displayed on the operating panel when a fault occurs. Exercise caution when setting this action.

Related Parameters

Para.	Name	Default	Falue Range protection action selection	

Para.	Name	Default	Value Range	Description
F9-48	Fault protection action selection 2	0	Ones: Encoder/PG card exception (Err20) 0 : Coast to stop 1: Stop according to the stop mode 2: Continue to run 3: Run with power limit 4: Run with current limit 5: Ignore Tens: Parameter read-write exception (Err21) 0 : Coast to stop 1: Stop according to the stop mode Hundreds: Reserved (Err24) 0: Coast to stop Thousands: Reserved (Err25) 0: Coast to stop Ten thousands: Running duration reach (Err26) 0: Coast to stop 1: Stop according to the stop mode 2: Continue to run 3: Run with power limit 4: Run with current limit	Same as F9-47

Para.	Name	Default	Value Range	Description
F9-49	Fault protection action selection 3	220	Ones: User-defined fault 1 (Err27)	Same as F9-47
			0: Coast to stop	
			1: Stop according to the stop mode	
			2: Continue to run	
			3: Run with power limit	
			4: Run with current limit	
			Tens: User-defined fault 2 (Err28)	
			0: Coast to stop	
			1: Stop according to the stop mode	
			2: Continue to run	
			3: Run with power limit	
			4: Run with current limit	
			Hundreds: Power-on duration reach (Err29)	
			0: Coast to stop	
			1: Stop according to the stop mode	
			2: Continue to run	
			3: Run with power limit	
			4: Run with current limit	
			Thousands: Load loss (Err30)	
			0: Coast to stop	
			1: Stop according to the stop mode	
			2: Continue to run	
			3: Run with power limit	
			4: Run with current limit	
			5: Ignore	
			Ten thousands: PID loss during running (Err31)	
			0: Coast to stop	
			1: Stop according to the stop mode	
			2: Continue to run	
			3: Run with power limit	
			4: Run with current limit	

Para.	Name	Default	Value Range	Description
F9-50	Fault protection action selection 4	55	Ones: Excessive speed deviation (Err42) 0 : Coast to stop 1: Stop according to the stop mode 2: Continue to run 3: Run with power limit 4: Run with current limit 5: Ignore Tens: Motor overspeed (Err43) 0: Coast to stop 1: Stop according to the stop mode 2: Continue to run 3: Run with power limit 4: Run with current limit 5: Ignore Thousands: Pole position auto-tuning error (Err55) 0: Coast to stop	Same as F9-47
F9-54	Frequency for continuing to run upon fault	1	0 : Current running frequency 1: Frequency reference 2: Frequency upper limit 3: Frequency lower limit 4: Alternative frequency upon exception	This parameter defines the frequency at which the AC drive continues to run upon fault. If a fault occurs during running of the AC drive and the fault protection action is set to "Continue to run", the AC drive displays "Lxxx.x" and continues to run at the frequency defined by F9-54.
F9-55	Alternative frequency upon exception	100.0\%	0.0% to 100.0% (100.0% corresponds to the maximum frequency defined by F010)	This parameter defines the alternative frequency of the AC drive upon fault. If a fault occurs during running and the fault protection action is to run at the alternative frequency upon exception (F9-54 = 4), the AC drive displays "Lxxx.x" and continues to run at the alternative frequency.
A4-80	Speed limited running mode	-	0 : Run with a maximum speed limit 1: Run at a specified safe speed	This parameter defines the mode in which the AC drive continues to run upon fault.
A4-81	Forward speed limit in restricted running mode	100.0\%	0\% to 600.0\%	-
A4-82	Reverse speed limit in restricted running mode	100.0\%	0\% to 600.0\%	-

Para.	Name	Default	Value Range	Description
A4-83	Maximum motoring power in restricted running mode	50.0%	0% to 400.0%	-
A4-84	Maximum regenerative power in restricted running mode	50.0%	0% to 400.0\%	-
A4-87	Maximum allowable current in restricted running mode	90.0%	50.0% to 400.0%	-

1.6.16 Self-check

The self-check function is used to automatically detect some exceptions that may occur on the AC drive. You are advised to perform a manual static self-check before using the system for the first time to confirm whether the AC drive and external wiring are normal.

Self-check items include IGBT shoot-through check, short-to-ground check, output phase loss check, and encoder check.

There are two self-check modes: manual self-check and self-check before running.

- Manual self-check

Manual self-check involves static self-check and full self-check, which can be selected by setting F629. The following table lists the sub-items of static self-check and full self-check. Each sub-item can be enabled or disabled separately by setting corresponding bit of F6-28.

F6-28 Self-check Item	Static Self-check (F6-28 = 1)	Full Self-check (F6-29 = 2)
IGBT shoot-through self-check (bit1)	$\sqrt{ }$	$\sqrt{ }$
Short-to-ground self-check (bit2)	$\sqrt{ }$	$\sqrt{ }$
Output phase loss self-check (bit3)	$\sqrt{ }$	$\sqrt{ }$
Encoder self-check (bit4)	-	$\sqrt{ }$

During static self-check, the motor does not rotate. During encoder self-check, the motor accelerates to 50% of the rated speed, performs self-check, and then decelerates to 0 according to the acceleration/deceleration time defined by F0-17 and F0-18.

1. If encoder self-check is selected during full self-check, check the following before self-check to ensure that the motor can rotate freely:

- Check that there is no construction going on around the motor.
- Check that there are no obstacles around the motor shaft.
- Check whether the motor has a brake. If yes, open it forcibly.
- Check that the motor fan works properly.
- Check whether devices connected to the motor, if any, meet operating conditions, for example, whether lubrication is required.

2. The motor runs in vector control mode without an encoder during encoder self-check. Therefore, ensure that parameter auto-tuning has ever been performed before auto-tuning.

- Self-check before running

Self-check is performed each time before the AC drive runs. Self-check before running involves IGBT shoot-through check, short-to-ground check, and output phase loss check, but not encoder check.

Each sub-item can be enabled or disabled separately by setting the corresponding parameter:

- IGBT shoot-through self-check before running is set by bit4 of AA-00.
- Short-to-ground self-check before running is set by bit2 of F9-07.
- Output phase loss self-check before running is set by bit2 of F9-13.

Note the following for self-check before running:
When the motor start mode is set to flying start, self-check before running is forcibly disabled and not performed.

Note the following for self-check:

1. When using the self-check function, ensure that the rated current of the motor is greater than 0.2 times the rated current of the AC drive. If the motor power is far less than the power of the AC drive, self-check may fail. In this case, self-check is not recommended.
2. Do not perform self-check when the motor is rotating. If the motor has back EMF, a fault will be reported falsely during self-check.
3. When the power grid is an IT system, short-to-ground cannot be detected during self-check. In this case, an insulation monitoring device is required. The following describes different grids.

- TT system

- TN system

- IT system

Related Parameters

Para.	Name	Default	Value Range	Description
F6-28	Manual selfcheck enable	0xF	Bit00: IGBT shoot-through selfcheck 0: Disabled 1: Enabled Bit01: Short-to-ground self-check 0: Disabled 1: Enabled Bit02: Output phase loss self-check 0: Disabled 1: Enabled Bit03: Encoder self-check 0: Disabled 1: Enabled	
F6-28	Manual selfcheck command	2	0: None 1: Static self-check 2: Full self-check	-
F9-07	Short-toground detection	11	Ones: Short-to-ground detection upon power-on 0 : Disabled 1: Enabled Tens: Short-to-ground detection before running 0: Disabled 1: Enabled	-

Para.	Name	Default	Value Range	Description
F9-13	Output phase loss protection	11	Ones: Output phase loss protection during running 0: Disabled 1: Enabled Tens: Output phase loss protection before running 0: Disabled 1: Enabled	
AA-00	Parameter auto-tuning upon startup	1	Bit00: Synchronous motor pole position auto-tuning upon startup 0: Disabled 1: Enabled Bit01: Quick stator resistance autotuning upon startup 0: Disabled 1: Enabled Bit02 and bit03: HFI pole position auto-tuning 0: Disabled 1: Enabled 2: Adaptive Bit04: IGBT shoot-through selfcheck upon startup 0: Disabled 1: Enabled Bit05: Short-to-ground self-check upon startup (reserved) 0: Disabled 1: Enabled Bit06: Phase loss self-check upon startup (reserved) 0: Disabled 1: Enabled	

1.7 Monitoring

The monitoring function enables you to view the AC drive state in the LED display area on the operating panel. You can monitor AC drive status in the following two ways:

1. When the AC drive is in the stop or running state, press the key on the operating panel to switch between bytes of F7-03, F7-04, and F7-05 to view state parameters on the panel.
There are 32 running state parameters available. You can select whether to display a parameter by setting the corresponding binary bit of F7-03 (LED display 1 in running state) and F7-04 (LED display 2 in running state). There are 16 stop state parameters available. You can select whether to display a parameter by setting the corresponding binary bit of F7-05 (LED display in stop state)

For example, to view the running frequency, bus voltage, output voltage, output current, output power, and PID reference on the panel, perform the following operations:

Set corresponding bits to 1 according to the mapping between each byte of F7-03 (LED display 1 in running state) and the preceding parameters. Convert the binary number into a hexadecimal equivalent, and set the hexadecimal number in F7-03. For details about the conversion, see "Table 137 Converting a binary number into the hexadecimal equivalent" on page 168. Press the key on the operating panel to switch between bytes of F7-03 to view parameter settings.

You can view other monitoring parameters in the same way. The following table describes the mapping between the monitoring parameters and bytes of F7-03, F7-04, and F7-05.

Table 1-36 Mapping between monitoring parameters and bytes of F7-03, F7-04, and F7-05

Para.	Name	Default	Value Range	Description
F7-03	LED display 1 in running state	0x1F	0000 to 0xFFFF	To display a parameter during running, set the corresponding bit to 1 , convert the binary number to a hexadecimal equivalent, and set it in F7-03. Note: Shaded parameters are displayed by default.
F7-04	LED display 2 in running state	0	0000 to 0xFFFF	To display a parameter during running, set the corresponding bit to 1 , convert the binary number to a hexadecimal equivalent, and set it in F7-04.
F7-05	LED display in stop state	0x33	0000 to 0xFFFF	To display a parameter upon stop, set the corresponding bit to 1 , convert the binary number to a hexadecimal equivalent, and set it in F7-05. Note: Shaded parameters are displayed by default.

Note

When the AC drive is powered on again after power-off, the parameters selected before power-off are displayed.
The monitoring parameters corresponding to each bit in F7-03, F7-04, and F7-05 do not completely correspond to all the monitoring parameters in group U0. If parameters to be monitored cannot be found in F7-03, F7-04 and F705 , view them in group U0.

The following describes how to convert a binary number into a hexadecimal equivalent.
Divide the binary number into groups of 4 digits from right to left. Each digit group corresponds to a hexadecimal number. If the MSB is not the fourth bit, add 0s. Then, convert the divided binary bits into the decimal equivalent. 0000 to 1111 correspond to 0 to 15 in decimal and 0 to F in hexadecimal. Convert the decimal number into the hexadecimal equivalent according to the mapping between decimal and hexadecimal. (See the following table.)

For example, the binary number 011110111111001 can be divided into 0011110111111001. According to the following table, its hexadecimal equivalent is 3DF9.

Table 1-37 Converting a binary number into the hexadecimal equivalent

Bi- nary	1111	1110	1101	1100	1011	1010	1001	1000	0111	0110	0101	0100	0011	0010	0001	0000
Dec- imal	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Hex- ade- ci- mal	F E	D	C	B	A	9	8	7	6	5	4	3	2	1	0	

2. Select group U0 on the operating panel to view monitoring parameters. "Table 1-38 Monitoring parameters in group U0" on page 168 lists the monitoring parameters, which are read-only.

Table 1-38 Monitoring parameters in group U0

Para.	Name	Basic Unit	Value Range	Description
U0-00	Running frequency (Hz)	Deter- mined by F0- 22	0.0 to 500.0 Hz (F0- $22=1$) 0.00 to 500.00 Hz (F0-22 = 2 by default)	Absolute value of the running frequency of the AC drive
U0-01	Frequency reference (Hz)	Deter- mined by F0- 22	0.0 to 500.0 Hz (F0- $22=1$) 0.00 to 500.00 Hz (F0-22 = 2 by default)	Absolute value of the frequency reference of the AC drive
U0-02	Bus voltage (V)	0.1 V	0.00 to 6553.5 V	Bus voltage of the AC drive
U0-03	Output voltage (V)	1 V	0.00 to 65535 V	Output voltage of the AC drive during running
U0-04	Output current (A)	0.01 A	0.00 A to 655.35 A (AC drive power \leqslant 55 kW) 0.0 A to $6553.5 \mathrm{~A} \mathrm{(AC}$ drive power 55 kW)	Output current of the AC drive during running

Para.	Name		Value Range	Description
U0-05	Output power (kW)	0.1 kW	$\begin{aligned} & -3276.8 \mathrm{~kW} \text { to } \\ & +3276.7 \mathrm{~kW} \end{aligned}$	Output power of the AC drive during running
U0-06	Output torque (\%)	0.10\%	$\begin{aligned} & \text {-3276.8\% to } \\ & +3276.7 \% \end{aligned}$	Output torque of the AC drive during running. The value is a percentage of the rated motor torque.
U0-07	DI state	1	0x0000 to 0x7FFF	Current DI terminal input state. Each bit of the binary number converted from this value corresponds to one DI signal. The value 1 indicates that the input is high level. The value 0 indicates that the input is low level. Each bit maps to an input terminal as follows:
U0-08	DO state	1	0x0000 to 0x03FF	Current DO terminal output state. Each bit of the binary number converted from this value corresponds to one DO signal. The value 1 indicates that the output is high level. The value 0 indicates that the output is low level. Each bit maps to an output terminal as follows:
U0-09	Al1 voltage (V)	0.01 V	-10.57 V to +10.57 V	-
U0-10	Al2 voltage (V)	0.01 V	-10.57 V to +10.57 V	-
U0-11	Al3 voltage (V)	0.01 V	-10.57 V to +10.57 V	-

Para.	Name	Basic Unit	Value Range	Description
U0-12	Count value	1	0 to 65535	Count value in the count function
U0-13	Length value	1	0 to 65535	Length value in the fixed length function
U0-14	Load speed	Determined by the ones place of F712	0 to 65535 RPM (the ones place of F7-12 is 0) 0 to 6553.5 RPM (the ones place of F7-12 is 1) 0 to 655.35 RPM (the ones place of F7-12 is 2)	Target load speed, which is affected by the load speed display coefficient defined by F7-06
U0-15	PID reference	1	0 to 65535	PID reference $=$ PID reference (percentage) \times FA-04 (PID reference feedback range)
U0-16	PID feedback	1	0 to 65535	PID feedback = PID feedback (percentage) x FA-04 (PID reference feedback range)
U0-17	PLC stage	1	0 to 15	16 speeds in total
U0-18	Pulse input reference (kHz)	$\begin{aligned} & 0.01 \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 0.00 \mathrm{kHz} \text { to } 100.00 \\ & \mathrm{kHz} \end{aligned}$	High-speed pulse sampling frequency of DI5
U0-19	Feedback speed (Hz)	Determined by the tens place of F7- 12	$\begin{aligned} & -5000.0 \mathrm{~Hz} \text { to } \\ & +5000.0 \mathrm{~Hz} \text { (the tens } \\ & \text { place of } \mathrm{F}-12 \text { is } 1 \text {) } \\ & -500.00 \mathrm{~Hz} \text { to } \\ & +500.00 \mathrm{~Hz} \text { (the tens } \\ & \text { place of } \mathrm{F}-12 \text { is } 2 \text { by } \\ & \text { default) } \end{aligned}$	Feedback speed (Hz)
U0-20	Remaining running duration	$\begin{aligned} & \hline 0.1 \\ & \mathrm{~min} \end{aligned}$	0.0 to 6553.5 min	Remaining runtime during timed running
U0-21	Al1 voltage before correction	0.001 V	$\begin{aligned} & -10.570 \mathrm{~V} \text { to }+10.570 \\ & \mathrm{~V} \end{aligned}$	Actual AI sampling voltage/current Linear correction is performed to reduce the deviation between the sampling voltage/current
U0-22	Al2 voltage (V)/current (mA) before correction	$\begin{array}{\|l} 0.001 \\ \mathrm{~V} / 0.01 \\ \mathrm{~mA} \end{array}$	$\begin{aligned} & -10.570 \mathrm{~V} \text { to }+10.570 \\ & \mathrm{~V} \end{aligned}$	and the actual voltage/current. For the voltage/ current after correction, see U0-09 and U0-10.
U0-23	Al3 voltage before correction	0.001 V	$\begin{aligned} & -10.570 \mathrm{~V} \text { to }+10.570 \\ & \mathrm{~V} \end{aligned}$	-
U0-24	Motor speed (RPM)	Determined by the ones place of F712	0 to 65535 RPM (the ones place of F7-12 is 0) 0 to 6553.5 RPM (the ones place of F7-12 is 1) 0 to 655.35 RPM (the ones place of F7-12 is 2)	Motor feedback speed (RPM)
U0-25	Current power-on duration	1 min	0 min to 65535 min	-

Para.	Name	Basic Unit	Value Range	Description
U0-26	Current running duration	$\begin{aligned} & 0.1 \\ & \mathrm{~min} \end{aligned}$	0.0 min to 6553.5 min	
U0-27	Pulse input reference (Hz)	1 Hz	$0-65535 \mathrm{~Hz}$	High-speed pulse sampling frequency of DI5. It is the same as U0-18, except for the unit.
U0-28	Communication	0.01\%	$\begin{aligned} & -100.00 \% \text { to } \\ & +100.00 \% \end{aligned}$	Data written through communication address 0×1000. The percentage base is determined by the value set in address 0×1000.
U0-29	Encoder feedback speed (Hz)	Deter- mined by the tens place of F7- 12	$\begin{aligned} & -5000.0 \mathrm{~Hz} \text { to } \\ & +5000.0 \mathrm{~Hz} \text { (the tens } \\ & \text { place of } \mathrm{F7}-12 \text { is } 1 \text {) } \\ & -500.00 \mathrm{~Hz} \text { to } \\ & +500.00 \mathrm{~Hz} \text { (the tens } \\ & \text { place of } \mathrm{F7}-12 \text { is } 2 \text { by } \\ & \text { default) } \end{aligned}$	Motor running frequency measured by encoder (Hz)
U0-30	Main frequency X	Deter- mined by the hun- dreds place of F7- 12	$\begin{aligned} & -5000.0 \mathrm{~Hz} \text { to } \\ & +5000.0 \mathrm{~Hz} \text { (the } \end{aligned}$ hundreds place of $\mathrm{F} 7-12 \text { is } 1 \text {) }$ $-500.00 \mathrm{~Hz} \text { to }$ $+500.00 \mathrm{~Hz} \text { (the }$ hundreds place of F7-12 is 2 by default)	Setpoint of main frequency $\mathrm{X}(\mathrm{Hz})$
U0-31	Auxiliary frequency Y	Deter- mined by the hun- dreds place of F7- 12	$\begin{aligned} & -5000.0 \mathrm{~Hz} \text { to } \\ & +5000.0 \mathrm{~Hz} \text { (the } \end{aligned}$ hundreds place of $\mathrm{F} 7-12 \text { is } 1 \text {) }$ $-500.00 \mathrm{~Hz} \text { to }$ $+500.00 \mathrm{~Hz} \text { (the }$ hundreds place of F7-12 is 2 by default)	Setpoint of auxiliary frequency $\mathrm{Y}(\mathrm{Hz})$
U0-33	Synchronous motor rotor position	0.1	0.0° to 359.9°	-
U0-34	Motor temperature	$1^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	Motor temperature sampled through AI3 For details about motor temperature measurement, see the description of F9-56 (motor temperature sensor type).
U0-35	Target torque (\%)	0.1\%	-200.0\% to +200.0\%	Current torque upper limit. The value is a percentage of the rated motor torque.
U0-36	Resolver position	1	0 to 4095	-
U0-37	Power factor angle	0.1°	0.0° to 6553.5 ${ }^{\circ}$	Current power factor angle

Para.	Name	Basic Unit	Value Range	Description
U0-38	ABZ position	1	0 to 65535	Number of phase-A and phase-B pulses of the ABZ encoder This value is four times the number of pulses that the encoder runs. For example, if the display is 4000, the actual number of pulses that the encoder runs is 1000 (4000/4). The value increases when encoder rotates in forward direction and decreases when encoder rotates in reverse direction. The count value restarts from 0 upon increasing to 65535 and restarts from 65535 upon decreasing to 0 . You can check whether the encoder is correctly installed by viewing this parameter.
U0-39	V/f separation target voltage	1 V	0 V to rated motor voltage	Target output voltage in V/f separation mode
U0-40	V/f separation output voltage	1 V	0 V to rated motor voltage	Current actual output voltage in V/f separation mode
U0-45	Fault subcode	1	0 to 51	Fault subcode
U0-46	Limit code	0.1	0 to 6553.5	Heatsink temperature of the IGBT
U0-58	Motor running revolution count	1	0 to 65535	Number of phase-Z pulses of the current ABZ or UVW encoder The value increases or decreases by 1 each time the encoder rotates one revolution in forward or reverse direction. You can check whether the encoder is correctly installed by viewing this parameter.
U0-59	Frequency reference (\%)	0.01\%	$\begin{aligned} & -100.00 \% \text { to } \\ & +100.00 \% \end{aligned}$	Current frequency reference. The value is a percentage of the maximum frequency (FO-10) of the $A C$ drive.
U0-60	Running frequency (\%)	0.01\%	$\begin{aligned} & -100.00 \% \text { to } \\ & +100.00 \% \end{aligned}$	Current running frequency. The value is a percentage of the maximum frequency (FO-10) of the AC drive.
U0-61	AC drive state	1	Bit1 and Bit0	0: Stopped; 1: Running in forward direction; 2 : Running in reverse direction
			Bit3 and Bit2	0 : Running at constant speed; 1: Accelerating; 2: Decelerating
			Bit4	0: Bus voltage normal; 1: Undervoltage
U0-62	Current fault code	1	0 to 99	-
U0-65	Torque upper limit	0.1\%	-2000.0 to +2000.0\%	-
U0-66	Model of communication expansion card	1	0 to 65535	-

Para.	Name	Basic Unit	Value Range	Software version of communica- tion expansion card

Para.	Name	Basic Unit	Value Range	Description
U0-76	Low-order bits of accumulative power consumption	0.1 $\mathrm{kW} \cdot \mathrm{h}$	0 to $6553.5 \mathrm{~kW} \cdot \mathrm{~h}$	\| -
U0-77	High-order bits of accumulative power consumption	1 $\mathrm{kW} \cdot \mathrm{h}$	0 to $65535 \mathrm{~kW} \cdot \mathrm{~h}$	-
U0-78	Linear speed	$\begin{aligned} & 1 \mathrm{~m} / \\ & \mathrm{min} \end{aligned}$	0 to $65535 \mathrm{~m} / \mathrm{min}$	-
U0-80	EtherCAT slave name	1	0 to 65535	-
U0-81	EtherCAT slave alias	1	0 to 65535	-
U0-82	EtherCAT ESM transmission error code	1	0 to 65535	-
U0-83	EtherCAT XML file version	1	0 to 65535	-
U0-84	EtherCAT synchroniza- tion loss count	1	0 to 65535	-
U0-85	Maximum errors and invalid frames of EtherCAT port 0 per unit time	1	0 to 65535	-
U0-86	Maximum errors and invalid frames of EtherCAT port 1 per unit time	1	0 to 65535	-
U0-87	Maximum forwarding errors of EtherCAT port per unit time	1	0 to 65535	-

Para.	Name	Basic Unit	Value Range	Description
U0-88	Maximum error count of EtherCAT data frame processing unit per unit time	1	0 to 65535	-
U0-89	Maximum link loss of EtherCAT port per unit time	1	0 to 65535	-
U0-90	DI function selection display 1	1	0 to 65535	DI function selection. Bit0 to bit15 show whether function 1 to function 16 are selected. When a function is selected, the corresponding bit is 1 ; otherwise, the bit is 0 .
U0-91	DI function selection display 2	1	0 to 65535	DI function selection. Bit0 to bit15 show whether function 17 to function 32 are selected. When a function is selected, the corresponding bit is 1 ; otherwise, the bit is 0 .
U0-92	DI function selection display 3	1	0 to 65535	DI function selection. Bit0 to bit15 show whether function 33 to function 48 are selected. When a function is selected, the corresponding bit is 1 ; otherwise, the bit is 0 .
U0-93	DI function selection display 4	1	0 to 65535	DI function selection. Bit0 to bit15 show whether function 49 to function 64 are selected. When a function is selected, the corresponding bit is 1 ; otherwise, the bit is 0 .
U0-94	DI function selection display 5	1	0 to 65535	DI function selection. Bit0 to bit15 show whether function 65 to function 80 are selected. When a function is selected, the corresponding bit is 1 ; otherwise, the bit is 0 .
U0-95	STO initialization flag	1	0 to 65535	-
U0-96	STO status word monitoring	1	0 to 65535	-
U0-97	STO model	1	0x0 to 0xFFFF	-
U0-98	STO 1.2 V AD sampling value	1	0 to 65535	-
U0-99	STO 5 V AD sampling value	1	0 to 65535	-

2 Process Control

2.1 Wobble Control Function

With the wobble control function, the output frequency of the AC drive wobbles up and down around the frequency reference (F0-07). This function is applicable to industries such as textile and chemical fiber as well as occasions where traverse and winding functions are required.

Figure 2-1 Application scenario of the wobble function

Figure 2-2 Schematic diagram of the wobble function

Para.	Name	Default	Value Range	Description
FB-00	Swing setting mode	0	0: Relative to center frequency 1: Relative to the maximum frequency	0: Relative to center frequency (F0-07, frequency reference superposition). This mode applies to variable swing systems, in which the swing changes with the center frequency (frequency reference). 1: Relative to the maximum frequency (F0-10). This mode applies to fixed swing systems, in which the swing is a fixed value calculated based on the maximum frequency.
FB-01	Wobble amplitude	0.00%	0.0% to 100.0%	When FB-01 is set to 0, the swing is 0, indicating that the wobble function is disabled.
FB-02	Wobble step	0.00%	0.0% to 50.0%	

Para.	Name	Default	Value Range	Description
FB-03	Wobble cycle	10.0 s	0.1 s to 3000.0 s	This parameter defines the time of a complete wobble cycle.
Fb-04	Triangular wave rise time coefficient	50.00%	0.1% to 100.0%	This parameter defines the triangular wave rise time as a percentage relative to the wobble cycle (FB-03).

1. Calculation of the swing

When FB-00 is set to 0 (relative to center frequency): Swing (Aw) $=$ F0-07 (frequency reference) \times FB01 (wobble amplitude)

When FB-00 is set to 1 (relative to maximum frequency): Swing (Aw) $=F 0-10$ (maximum frequency) x FB-01 (wobble amplitude).

2. Calculation of the jump frequency

During wobble control, the jump frequency is a value relative to the swing. That is: Jump frequency = Aw (wobble amplitude) x FB-02 (Wobble step).

When FB-00 is set to 0 (relative to center frequency), the jump frequency is a variable.
When FB-00 is set to 1 (relative to maximum frequency), the jump frequency is a fixed value.

3. Calculation of the triangular wave rise/fall time

Triangular wave rise time $=$ FB-03 (wobble cycle) x FB-04 (triangular wave rise time coefficient) (unit: s)

Triangular wave fall time $=$ FB-03 (wobble cycle) $\times[1-$ FB-04 (triangular wave rise time coefficient) $]$ (unit: s)
(Wobble cycle = Triangular wave rise time + Triangular wave fall time)

2.2 Fixed Length Control Function

The AC drive supports fixed length control in which the length pulses can be collected by DI5 only, which requires DI5 to be assigned with function 27 (length count input).

Para.	Name	Default	Value Range	Description
FB-05	Reference length	1000 m	0 m to 65535 m	This parameter specifies the length value to be controlled in fixed length control mode.
FB-06	Actual length	0 m	0 m to 65535 m	The actual length is a monitored value. Actual length (FB-06) $=$ Number of pulses sampled by DI/Number of pulses per meter (FB-07).
FB-07	Number of pulses per meter	100.0	0.1 to 6553.5	The number of pulses output per meter. The length pulses can be sampled by DI5 if DI5 is assigned with function 27 (length count input) (set F4-04 to 27).

In the following figure, the actual length is a monitored value. Actual length (FB-06) = Number of pulses sampled by DI/Number of pulses per meter (FB-07). When the actual length (FB-06) exceeds the reference length (FB-05), the relay or DO terminal (function 10) outputs the "length reach" ON signal. Length reset can be implemented through the multi-functional DI terminal assigned with function 28 (length reset). For details, see the following figure.

Figure 2-3 Schematic diagram of fixed length control

Para.	Name	Reference	Function Description
F4-04	DI5 function	27	Length count input
F4-00 to F4-09 (any one)	DI1 to DI10 function (any one)	28	Length reset
F5-01 to F5-05 (any one)	Terminal output function (any one)	10	Length reach

Only length can be calculated according to the number of pulses but the rotation direction cannot be identified in fixed length control mode. An automatic stop system can be implemented by connecting the output length reach T/A-T/B signal of the relay to the stop input terminal.

2.3 Counting Function

The count values are collected through a DI terminal (DI5 is required in the case of high pulse frequency), which must be assigned with function 25 (counter input).

Para.	Name	Default	Value Range	Description
FB-08	Reference count value	1000	1 to 65535	When the count value reaches FB-08, the DO terminal outputs an active signal indicating that the reference count value is reached.
FB-09	Designated count value	1000	1 to 65535	When the count value reaches FB-09, the DO terminal outputs an active signal indicating that the designated count value is reached. FB- 09 must be less than or equal to FB-08 (reference count value).

In the following figure, the count values need to be collected by a DI terminal, and therefore the DI terminal is assigned with function 25 (counter input). When the count value reaches FB-08, the DO terminal outputs an "ON" signal indicating that the reference count value is reached. When the count value reaches FB-09, the DO terminal outputs an "ON" signal indicating that the designated count value is reached.

Figure 2-4 Schematic diagram of the counting function

Para.	Name	Reference	Function Description
F4-00 to F4-09 (any one)	DI1 to DI10 function (any one)	25	Counter input
F4-00 to F4-09 (any one)	DI1 to DI10 function (any one)	26	Counting reset
F5-01 to F5-04 (any one)	Terminal output function (any one)	8	Reference count value reach
F5-01 to F5-04 (any one)	Terminal output function (any one)	9	Designated count value reach

- DI5 is required if the pulse frequency is high.
- A DO terminal cannot be assigned with the "reference count value reach" function and "designated count value reach" function at the same time.
- The counter keeps counting when the AC drive is in the running/stop state until the reference count value is reached.
- The count value is retentive at power failure.
- An automatic stop system can be implemented by feeding the count value reach signal output by the DO terminal to the stop input terminal of the AC drive.

2.4 Simple PLC Function

Different from the user programmable function of MD500, the simple PLC function can only complete simple combination of multi-reference. The user programmable function is more diversified and practical. For details, see descriptions of parameters in group A7.

FC-16	Simple PLC running mode	Default	0
	Value Range	0	Stop after running for one cycle
	1	Keep final values after running for one cycle	
		2	Repeat after running for one cycle

The simple PLC can be used as either the frequency source or V/f separation voltage source. The following figure shows how to use the simple PLC as the frequency source. When the simple PLC is used as the frequency source, whether the values of $\mathrm{FC}-00$ to $\mathrm{FC}-15$ are positive or negative determines the running direction. If the parameter values are negative, the $A C$ drive runs in reverse direction.

When being used as the frequency source, the PLC supports three running modes (not supported when the PLC is used as the V/f separation voltage source), which is described as follows. 0: Stop after running for one cycle The AC drive stops automatically after running for one cycle, and starts only upon another running command. 1: Keep final values after running for one cycle The AC drive automatically maintains the final running frequency and direction after running for one cycle. 2: Repeat after running for one cycle The AC drive automatically starts another cycle after running for one cycle, and stops only upon a stop command.

Figure 2-5 Simple PLC used as the frequency source
When being used as the frequency source, the PLC supports three running modes (not supported when the PLC is used as the V/f separation voltage source), which is described as follows:

- 0 : Stop after running for one cycle The AC drive stops automatically after running for one cycle, and starts only upon another running command.
- 1: Keep final values after running for one cycle The AC drive automatically maintains the final running frequency and direction after running for one cycle.
- 2: Repeat after running for one cycle The AC drive automatically starts another cycle after running for one cycle, and stops only upon a stop command.

Table 2-1

FC-17	Simple PLC memory retention upon power failure	Default	0
	Value Range	Ones	Memory retention upon power failure
	0	Non-retentive upon power failure	
	1	Retentive upon power failure	
	Tens	Memory retention upon stop	
	0	Non-retentive upon stop	
	1	Retentive upon stop	

Retentive upon power failure indicates that the AC drive retains the PLC running stage and running frequency upon power failure and continues to run from the retained values after it is powered on again. Non-retentive upon power failure indicates that the AC drive restarts the PLC process all over again upon power-on. Retentive upon stop indicates that the AC drive retains the PLC running stage and running frequency upon stop and continues to run from the retained values after it is started again. Non-retentive upon stop indicates that the AC drive restarts the PLC process all over again upon startup.

FC-18	Running duration of simple PLC reference 0	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-19	Acceleration/Deceleration time of simple PLC reference 0	Default	0
	Value Range	0 to 3	
FC-20	Running duration of simple PLC reference 1	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-21	Acceleration/Deceleration time of simple PLC reference 1	Default	0
	Value Range	0 to 3	
FC-22	Running duration of simple PLC reference 2	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-23	Acceleration/Deceleration time of simple PLC reference 2	Default	0
	Value Range	0 to 3	
FC-24	Running duration of simple PLC reference 3	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-25	Acceleration/Deceleration time of simple PLC reference 3	Default	0
	Value Range	0 to 3	

FC-26	Running duration of simple PLC reference 4	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-27	Acceleration/Deceleration time of simple PLC reference 4	Default	0
	Value Range	0 to 3	
FC-28	Running duration of simple PLC reference 5	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-29	Acceleration/Deceleration time of simple PLC reference 5	Default	0
	Value Range	0 to 3	
FC-30	Running duration of simple PLC reference 6	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-31	Acceleration/Deceleration time of simple PLC reference 6	Default	0
	Value Range	0 to 3	
FC-32	Running duration of simple PLC reference 7	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-33	Acceleration/Deceleration time of simple PLC reference 7	Default	0
	Value Range	0 to 3	
FC-34	Running duration of simple PLC reference 8	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-35	Acceleration/Deceleration time of simple PLC reference 8	Default	0
	Value Range	0 to 3	
FC-36	Running duration of simple PLC reference 9	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-37	Acceleration/Deceleration time of simple PLC reference 9	Default	0
	Value Range	0 to 3	
FC-38	Running duration of simple PLC reference 10	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-39	Acceleration/Deceleration time of simple PLC reference 10	Default	0
	Value Range	0 to 3	
FC-40	Running duration of simple PLC reference 11	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	

FC-41	Acceleration/Deceleration time of simple PLC reference 11	Default	0
	Value Range	0 to 3	
FC-42	Running duration of simple PLC reference 12	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-43	Acceleration/Deceleration time of simple PLC reference 12	Default	0
	Value Range	0 to 3	
FC-44	Running duration of simple PLC reference 13	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-45	Acceleration/Deceleration time of simple PLC reference 13	Default	0
	Value Range	0 to 3	
FC-46	Running duration of simple PLC reference 14	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-47	Acceleration/Deceleration time of simple PLC reference 14	Default	0
	Value Range	0 to 3	
FC-48	Running duration of simple PLC reference 15	Default	0.0s (h)
	Value Range	0.0s (h) to 6553.5s (h)	
FC-49	Acceleration/Deceleration time of simple PLC reference 15	Default	0
	Value Range	0 to 3	
FC-50	Time unit of simple PLC running	Default	0
	Value Range	0	s (second)
		1	h (hour)
FC-51	Multi-reference 0 source	Default	0
	Value Range	0	FC-00
		1	Al1
		2	Al2
		3	Al3
		4	Pulse reference
		5	PID
		6	Preset frequency (FO-08), modified using terminal UP/DOWN

2.5 Master-Slave Control

Rigid Connection and Flexible Connection

The master-slave control function is designed for multi-drive applications, in which the system is driven by multiple AC drives and motor shafts are coupled by gears, chains, or conveyor belts. Masterslave control enables even distribution of loads among the AC drives. External control signals are connected only to the master, and the master controls the slaves through serial communication links.

The master works in typical speed control mode and the slaves follow the torque or speed reference of the master. There are two types of master-slave control connection modes: rigid connection and flexible connection, as shown in the following figure.

- When motor shafts of the master and slaves are connected rigidly by chains or gears, the slaves must work in torque control mode to avoid speed difference among drives.
- When motor shafts of the master and slaves are connected flexibly, the slaves should work in speed control because slight speed difference among AC drives is allowed. When both the master and slaves work in speed control mode, the droop rate is required.

Master in speed control
Slave follows master's torque reference signal
$\quad \square$ Master in speed control
Slave follows master's speed reference signal

Figure 2-6 Rigid/Flexible connection

Master-slave Connection

To avoid control conflict, all drives (connected to the same mechanical equipment) should receive external control signals through the master. Therefore, connect all external control signals only to the master during wiring and do not use the operating panel or fieldbus to control the slaves, as shown in the following figure.

Figure 2-7 Master-slave connection
When a slave fails, the fault information is sent to the master in either of the following two ways. When a slave stops upon a fault, the master stops running.

1. The relay is used for slave fault feedback.
2. The slave sends the fault information to the master through communication (set the tens place of A8-02 to 1).

Droop Control

Defined by F8-15, the droop control function allows slight speed differences between the master and slaves to avoid conflict between them. This function is required only when both the master and slaves work in speed control mode. A proper droop rate is gradually obtained during drive running. Therefore, do not set F8-15 to a very large value. Otherwise, the steady-state speed will drop significantly when the load is very large. You need to set F8-15 for both the master and slaves.

Figure 2-8 Relationship between droop speed and output torque
Droop speed $=$ Sync frequency \times Output torque $\times($ F8-15/10)
For example, if $\mathrm{F} 8-15$ is set to 1.00 , the sync frequency is 50 Hz , the output torque is 50%, the actual frequency of the AC drive is calculated as follows: Actual frequency of the $A C$ drive $=50 \mathrm{~Hz}-50 \mathrm{~Hz}$ x $50 \% \times(1.00 / 10)=47.5 \mathrm{~Hz}$

Related Parameters

The related parameters include A8-00 to A8-07 and A8-11.

Application

The following describes parameter settings for rigid connection and flexible connection.

- Rigid connection

Table 2-2 Parameter settings for master in speed control mode (A0-00 = 0)

Parameter	Parameter Name	Value Range	Setting	Adjustment Required
FD-00	Baud rate	0000 to 6009	Setpoint of the thousands place Same for the master and slave	No
A8-00	Point-point lommunication	0 to 1	1	No
A8-01	Master/Slave selection	0 to 1	0	No
F0-10	Maximum frequency	5.00 Hz to 500.00 Hz	50.00 Hz (Same for the master and slave)	No
F2-10	Torque upper limit	0.0% to 200.0%	130.0%	Yes

Table 2-3 Parameter settings for slave in torque control mode (AO-00 = 1)

Parameter	Parameter Name	Value Range	Setting	Adjustment Required
FD-00	Baud rate	0000 to 6009	Setpoint of the thousands place Same for the master and slave	No
A8-00	Point-point communication	0 to 1	1	No
A8-01	Master/Slave selection	0 to 1	1	No
A8-02	Slave following master's command	Ones: Whether the slave follows the operation command of the master 0 : No 1: Yes Tens: Whether the slave sends fault information to master when a fault occurs 0 : No 1: Yes Hundreds: Whether the master reports a fault (ERR-16) upon disconnection of the slave 0 : No 1: Yes	Ones: 1 Tens: 1	No
A8-03	Function of slave RX data	0 : Running frequency 1: Target frequency	0	No
A8-11	Window width	0.20 Hz to 10.00 Hz	0.50 Hz	Yes
F0-10	Maximum frequency	5.00 Hz to 500.00 Hz	50.00 Hz (Same for the master and slave)	No

Parameter	Parameter Name	Value Range	Setting	Adjustment Required
F8-07	Acceleration time 4 (Frequency acceleration time in torque control)	0.0s to 6500.0s	0.0s	No
F8-08	Deceleration time 4 (Frequency deceleration time in torque control)	0.0s to 6500.0s	0.0s	No
F0-02	Command source	0 to 2	2	No
FD-02	Local address	0: Broadcast address 1 to 247 (valid for Modbus, PROFIBUS DP, CANlink, PROFINET, and EtherCAT)	1	No
AO-00	Speed/Torque control mode	0 to 1	1	No
A0-01	Torque reference source in torque control	0 to 7	0	No
A0-03	Torque digital setting	-200.0 to +200.0\%	130.0\%	Same as the setting of F2-10 of the master
A0-07	Torque acceleration time	0.00s to 650.00s	0.00s	No
A0-08	Torque deceleration time	0.00s to 650.00s	0.00s	No

In the torque control mode, do not set the start frequency; otherwise, the startup inrush current will become large.

You can decrease the value of A8-11 (ensure that it is greater than 0.20 Hz) of the slave as appropriate in master-slave control mode to improve startup smoothness. Meanwhile, if the system acceleration/deceleration time is very short, you can increase the value of A8-11 as appropriate. A larger value of A8-11 indicates weaker window effect.

You are advised to set the initial value of A8-11 to half of the rated motor slip. The rated motor slip is calculated as follows:

- Number of motor pole pairs $=(60 \times$ Rated motor frequency $) /$ Rated motor speed (rounded)
- Motor sync speed = (60 x Rated motor frequency)/Number of motor pole pairs
- Rated motor slip = (Motor sync speed - Rated motor speed)/Motor sync speed x Rated motor frequency
- Flexible connection

Table 2-4 Parameter settings for master in torque control mode (A0-00 = 1)

Parameter	Parameter Name	Value Range	Setting	Adjustment Required
FD-00	Baud rate	0000 to 6009	Setpoint of the thousands place Same for the master and slave	No
A8-00	Point-point communication	0 to 1	1	No
A8-01	Master/Slave selection	0 to 1	0	No
F0-10	Maximum frequency	5.00 Hz to 500.00 Hz	50.00 Hz (Same for the master and slave)	No
F8-15	Droop control	0.00 to 10.00 Hz	1.00 Hz	Yes
F0-17	Acceleration time 1	0.0s to 6500.0s	Same for the master and slave	No
F0-18	Deceleration time 1	0.0s to 6500.0s	Same for the master and slave	No

Table 2-5 Parameter settings for slave in speed control mode (A0-00 $=0$)

Parameter	Parameter Name	Value Range	Setting	Adjustment Required
FD-00	Baud rate	0000 to 6009	Setpoint of the thousands place Same for the master and slave	No
A8-00	Point-point communication	0 to 1	1	No
A8-01	Master/Slave selection	0 to 1	1	No
A8-02	Ones: 0: No 1: Yes Tens: 0 : No 1: Yes	0 to 11	Ones: 1 Tens: 1	No
A8-03	Function of slave RX data	0 : Running frequency 1: Target frequency	0	No
F0-02	Command source	0 to 2	2	No
F0-03	Main frequency reference source	0 to 9	9	No
F0-10	Maximum frequency	5.00 Hz to 500.00 Hz	50.00 Hz (Same for the master and slave)	No
F0-17	Acceleration time 1	0.0s to 6500.0s	Same for the master and slave	No
F0-18	Deceleration time 1	0.0s to 6500.0s	Same for the master and slave	No
F8-15	Droop control	0.00 to 10.00 Hz	1.00 Hz	Yes

Parameter	Parameter Name	Value Range	Setting	Adjustment Required
FD-02	Local address	0: Broadcast address 1 to 247 (valid for Modbus, PROFIBUS DP, CANlink, PROFINET, and EtherCAT)	1	No
A0-00	Speed/Torque control mode	0 to 1	0	No

2.6 Free Programming Modules

2.6.1 Word-Bit Conversion

W2B Modules (A-H)

1. Illustration

2. Operation

When the input I is a word, the outputs O 1 to O 16 correspond to bit00 to bit15 of input I.
When the input I is a DWord, the outputs 01 to 016 correspond to bit00 to bit15 of high-order 16 bits of input I .

3. Connection

Input I: word connector, DWord connector
Outputs O 1 to O16: bit connector

W2B Module		A	B	C	D	E	F	G	H
Input	I	C1-00	C1-01	C1-02	C1-03	C1-04	C1-05	C1-06	C1-07
Output	01 (bit00)	L1-76	L1-92	L2-08	L2-24	L2-40	L2-56	L2-72	L2-88
	$\begin{aligned} & \hline 02 \\ & \text { (bit01) } \end{aligned}$	L1-77	L1-93	L2-09	L2-25	L2-41	L2-57	L2-73	L2-89
	$\begin{aligned} & \hline 03 \\ & \text { (bit02) } \end{aligned}$	L1-78	L1-94	L2-10	L2-26	L2-42	L2-58	L2-74	L2-90
	04 (bit03)	L1-79	L1-95	L2-11	L2-27	L2-43	L2-59	L2-75	L2-91
	$\begin{aligned} & \hline 05 \\ & \text { (bit04) } \end{aligned}$	L1-80	L1-96	L2-12	L2-28	L2-44	L2-60	L2-76	L2-92
	06 (bit05)	L1-81	L1-97	L2-13	L2-29	L2-45	L2-61	L2-77	L2-93
	$\begin{aligned} & \hline 07 \\ & \text { (bit06) } \end{aligned}$	L1-82	L1-98	L2-14	L2-30	L2-46	L2-62	L2-78	L2-94
	$\begin{aligned} & \hline 08 \\ & \text { (bit07) } \end{aligned}$	L1-83	L1-99	L2-15	L2-31	L2-47	L2-63	L2-79	L2-95
	$\begin{array}{\|l\|} \hline 09 \\ \text { (bit08) } \end{array}$	L1-84	L2-00	L2-16	L2-32	L2-48	L2-64	L2-80	L2-96
	$\begin{array}{\|l\|} \hline \text { O10 } \\ \text { (bit09) } \end{array}$	L1-85	L2-01	L2-17	L2-33	L2-49	L2-65	L2-81	L2-97
	$\begin{aligned} & \hline \text { O11 } \\ & \text { (bit10) } \end{aligned}$	L1-86	L2-02	L2-18	L2-34	L2-50	L2-66	L2-82	L2-98
	$\begin{aligned} & \hline \text { O12 } \\ & \text { (bit11) } \end{aligned}$	L1-87	L2-03	L2-19	L2-35	L2-51	L2-67	L2-83	L2-99
	$\begin{aligned} & \text { O13 } \\ & \text { (bit12) } \end{aligned}$	L1-88	L2-04	L2-20	L2-36	L2-52	L2-68	L2-84	L3-00
	$\begin{array}{\|l} \hline \text { O14 } \\ \text { (bit13) } \end{array}$	L1-89	L2-05	L2-21	L2-37	L2-53	L2-69	L2-85	L3-01
	$\begin{aligned} & \text { O15 } \\ & \text { (bit14) } \end{aligned}$	L1-90	L2-06	L2-22	L2-38	L2-54	L2-70	L2-86	L3-02
	$\begin{array}{\|l\|} \hline \text { O16 } \\ \text { (bit15) } \end{array}$	L1-91	L2-07	L2-23	L2-39	L2-55	L2-71	L2-87	L3-03

B2W Modules (A-D)

1. Illustration

2. Operation

When input I 1 is set to 0 , the module is disabled, and the output 0 is 0 .
Bit00 to bit 15 of $I 2$ are the inversion flags of $I 3$ to $I 18$. The value 1 indicates that the corresponding $I 3$ to I18 input is inverted. The inverted I3 to I18 are used as bit00 to bit15 of the hexadecimal number and output to 0 .

3. Connection

Input I1: 0 indicates disabled, and 1 indicates enabled.
Input I2: 16-bit unsigned data
Inputs 13 to I18: 0, 1, DI input, and bit connector input
Output O: word connector

W2B Module		A	B	C	D
Input	11	C1-12	C1-30	C1-48	C1-66
	12	C1-13	C1-31	C1-49	C1-67
	13 (bit00)	C1-14	C1-32	C1-50	C1-68
	14 (bit01)	C1-15	C1-33	C1-51	C1-69
	15 (bit02)	C1-16	C1-34	C1-52	C1-70
	16 (bit03)	C1-17	C1-35	C1-53	C1-71
	17 (bit04)	C1-18	C1-36	C1-54	C1-72
	18 (bit05)	C1-19	C1-37	C1-55	C1-73
	19 (bit06)	C1-20	C1-38	C1-56	C1-74
	110 (bit07)	C1-21	C1-39	C1-57	C1-75
	111 (bit08)	C1-22	C1-40	C1-58	C1-76
	112 (bit09)	C1-23	C1-41	C1-59	C1-77
	113 (bit10)	C1-24	C1-42	C1-60	C1-78
	114 (bit11)	C1-25	C1-43	C1-61	C1-79
	115 (bit12)	C1-26	C1-44	C1-62	C1-80
	116 (bit13)	C1-27	C1-45	C1-63	C1-81
	117 (bit14)	C1-28	C1-46	C1-64	C1-82
	118 (bit15)	C1-29	C1-47	C1-65	C1-83
Output	0	L7-21	L7-22	L7-23	L7-24

2.6.2 W-DW Conversion

W-DW Modules (A-D)

1. Illustration

2. Operation

$$
O=\left\{\begin{array}{l}
01: \frac{I 1 \times 65535+12}{13 \times 65535+14}, 13 \times 65535+14 \neq 0 \\
02: I 1 \times 65535+12, I 3 \times 65535+14=0
\end{array}\right.
$$

When the base value with 13 as the high-order 16 bits and 14 as the low-order 16 bits is a non-zero value, the output is the result of DWord with $I 1$ as the high-order 16 bits and I 2 as the low-order 16 bits divided by the base value, which is output to 01 .

When the base value with I 3 as the high-order 16 bits and $I 4$ as the low-order 16 bits is 0 , the output is the DWord with I1 as the high-order 16 bits and I 2 as the low-order 16 bits, which is directly output to O 2 .

3. Connection

Inputs I1 and I2: word connector, DWord connector
Inputs I3 and I4: 16-bit unsigned data
Output O1: floating-point connector
Output O2: DWord connector

W-DW Module	Input		Output			
	I1	12	13	14	O1	O2
A	C2-00	C2-01	C2-02	C2-03	LD-31	L9-00
B	C2-04	C2-05	C2-06	C2-07	LD-32	L9-01
C	C2-08	C2-09	C2-10	C2-11	LD-33	L9-02
D	C2-12	C2-13	C2-14	C2-15	LD-34	L9-03

DW-W Modules (A-D)

1. Illustration

2. Operation

$$
\mathrm{O}= \begin{cases}\mathrm{O} 1: \frac{\mathrm{I} 1}{\mathrm{I} 2 \times 65535+\mathrm{I} 3}, & \mathrm{I} 2 \times 65535+\mathrm{I} 3 \neq 0 \\
\left\{\begin{array}{l}
\mathrm{O} 2:(\mathrm{I} 1 \gg 16) \& 0 \mathrm{xFFFF} \\
\mathrm{O} 3: \mathrm{I} 1 \& 0 \mathrm{xFFF}
\end{array}\right. & , \mathrm{I} 2 \times 65535+\mathrm{I} 3=0\end{cases}
$$

When the base value with 12 as the high-order 16 bits and $I 3$ as the low-order 16 bits is a non-zero value, the output is the result of $I 1$ divided by the base value, which is output to 01 .

When the base value with $I 2$ as the high-order 16 bits and $I 3$ as the low-order 16 bits is 0 , the output O 2 is the high-order 16 bits of I , and the output O 3 is the low-order 16 bits of I 1 .

3. Connection

Input I1: DWord connector
Inputs I2 and I3: unsigned data
Output O1: floating-point connector
Outputs O 2 and O 3 : word connector

W-DW	Input			Output		
Module	11	12	13	01	02	03
A	C2-32	C2-33	C2-34	LD-35	L7-25	L7-26
B	C2-35	C2-36	C2-37	LD-36	L7-27	L7-28
C	C2-38	C2-39	C2-40	LD-37	L7-29	L7-30
D	C2-41	C2-42	C2-43	LD-38	L7-31	L7-32

2.6.3 Logic Operations

Logic AND-OR Modules (A-L)

1. Illustration

2. Operation

When the logic AND-OR module enable selection I1 is set to 0 , the module is disabled, and the output 0 is 0 .

When the logic AND-OR module enable selection I1 is set to 1 , logic AND is active, and the output 0 is I1 \& I2 \& I3 \& I4.

If the inputs $I 1, I 2,13$, and $I 4$ are all true, the output O is true; otherwise, the output O is false. The following is the truth table.

Input				Output
$I 1$	$I 2$	$I 3$	14	0
0	X	X	X	0
X	0	X	X	0
X	X	0	X	0
X	X	X	0	0
1	1	1	1	1

When the logic AND-OR module enable selection I 1 is set to 2 , logic OR is active, and the output O is I1|22||3||4.

If the inputs $I 1, I 2, I 3$, and $I 4$ are all false, the output O is false; otherwise, the output O is true. The following is the truth table.

Input				Output
$I 1$	$I 2$	$I 3$	14	0
1	X	X	X	1
X	1	X	X	1
X	X	1	X	1
X	X	X	1	1
0	0	0	0	0

3. Connection

Input I1: 0 indicates module disabled, 1 indicates logic AND, and 2 indicates logic OR.
Inputs $12,13,14$, and $15: 0,1$, DI input, and bit connector input
Output O: bit connector

Logic AND-OR Module	Input					Output
	I1	I2	I3	I4	O	
A	C3-00	C3-01	C3-02	C3-03	C3-04	L3-36
B	C3-05	C3-06	C3-07	C3-08	C3-09	L3-37
C	C3-10	C3-11	C3-12	C3-13	C3-14	L3-38
D	C3-15	C3-16	C3-17	C3-18	C3-19	L3-39
E	C3-20	C3-21	C3-22	C3-23	-	L3-40
F	C3-24	C3-25	C3-26	C3-27	-	L3-41

Logic AND-OR Module	Input					Output
	11	12	13	14	15	0
G	C3-28	C3-29	C3-30	C3-31	-	L3-42
H	C3-32	C3-33	C3-34	C3-35	-	L3-43
I	C3-36	C3-37	C3-38	C3-39	-	L3-44
J	C3-40	C3-41	C3-42	C3-43	-	L3-45
K	C3-44	C3-45	C3-46	C3-47	-	L3-46
L	C3-48	C3-49	C3-50	C3-51	-	L3-47

NoteLogic AND-OR modules A-D have four inputs, and modules E-L have three inputs.

Logic NOT Modules (A-P)

1. Illustration

2. Operation

- When input I is set to 0 , the module is disabled, and the output is 0 .
$0=0$
- When input I is not 0 , the output is the inversion of the input I.
$\mathrm{O}=\overline{\mathrm{I}}$
The following is the truth table.

Input	
I	0
0	1
1	0

3. Connection

Input I: 0, 1, DI input, and bit connector input
Output O: bit connector

Logic NOT Module	Input	
		Output
A	C3-56	O
B	C3-57	L3-53
C	C3-58	L3-54
D	C3-59	L3-55
E	C3-60	L3-56
F	C3-61	L3-57
G	C3-62	L3-58
H	C3-63	L3-59
I	C3-64	L3-60
J	C3-65	L3-61
K	C3-66	L3-62
L	C3-67	L3-63
M	C3-68	L3-64
N	C3-69	L3-65
O	C3-70	L3-66
P	C3-71	L3-67

Logic XOR/XNOR Modules (A-H)

1. Illustration

2. Operation

- When the logic XOR/XNOR module enable selection I 1 is set to 0 , the module is disabled. $0=0$
- When the logic XOR/XNOR module enable selection I1 is set to 1 , logic XOR is active. $\mathrm{O}=\left({ }^{`} I 1 \& I 2\right) \mid$ (I1 \& ${ }^{\prime}$ 2)
- When the logic XOR/XNOR module enable selection I1 is set to 2 , logic XNOR is active. $0=(11 \& \mid 2) \mid$ (`I1\&'I2)

When $I 1$ and $I 2$ are the same, the output is 0 ; when $I 1$ and $I 2$ are different, the output is 1 . The following is the truth table.

Input		
$I 1$	12	0
0	0	0
1	0	1
0	1	1
1	1	0

When $I 1$ and $I 2$ are the same, the output is 1 ; when $I 1$ and $I 2$ are different, the output is 0 . The following is the truth table.

Input		Output
11	12	0
0	0	1
1	0	0
0	1	0
1	1	1

3. Connection

Input I1: 0 indicates module disabled, 1 indicates XOR, and 2 indicates XNOR.
Inputs I2 and I3: 0, 1, DI input, and bit connector input
Output O: bit connector

Table 2-6

Logic XOR/XNOR Module	Input		Output	
	I1	I2	I3	O
A	C3-72	C3-73	C3-74	L3-68
B	C3-75	C3-76	C3-77	L3-69
C	C3-78	C3-79	C3-80	L3-70
D	C3-81	C3-82	C3-83	L3-71
E	C3-84	C3-85	C3-86	L3-72
F	C3-87	C3-88	C3-89	L3-73
G	C3-90	C3-91	C3-92	L3-74
H	C3-93	C3-95	L3-75	

2.6.4 Arithmetic Operations

Absolute Value Modules (A-H)

1. Illustration

2. Operation

$$
\begin{gathered}
\mathrm{O}=|\mathrm{I}| \\
\mathrm{SN}=\left\{\begin{array}{l}
1, \mathrm{I}<0 \\
0, \mathrm{I} \geqslant 0
\end{array}\right.
\end{gathered}
$$

The output O is the absolute value of input I . When the input I is a negative value, SN is 1 ; otherwise, SN is 0 .

3. Connection

Input I: AI, HDI, Aim, motor-driven potentiometer, PID, word connector, DWord connector, and floating-point connector

Output O: word connector, DWord connector, and floating-point connector
Output SN: bit connector

Absolute Value Module	Input		Output	
	I		SN	
A	C4-00	LD-08	L4-16	
B	C4-01	LD-09	L4-17	
C	C4-02	LD-10	L4-18	
D	C4-03	LD-11	L4-19	
E	C4-04	LD-12	L4-20	
F	C4-05	L9-08	L4-21	
G	C4-06	L9-09	L4-22	
H	C4-07	L9-10	L4-23	

NoteThe modules A-E are floating-point absolute value modules, and the modules F-G are fixed-point absolute value modules.

ADD/SUBTRACT Modules (A-H)

1. Illustration

2. Operation

$0=11+12+13-14$
The output O is the sum of inputs $\mathrm{I} 1, \mathrm{I} 2$, and I 3 minus I 4 .

3. Connection

Inputs I1, I2, I3, and I4: AI, HDI, Aim, motor-driven potentiometer, PID, word connector, and floatingpoint connector

Output O: DWord connector and floating-point connector

ADD/SUBTRACT Module	Input				Output
	I1	I2	I4	O	
A	C4-08	C4-09	C4-10	C4-11	LD-13
B	C4-12	C4-13	C4-14	C4-15	LD-14
C	C4-16	C4-17	C4-18	C4-19	LD-15
D	C4-20	C4-21	C4-22	C4-23	LD-16
E	C4-24	C4-25	C4-26	C4-27	LD-17
F	C4-28	C4-29	C4-30	C4-31	L9-11
G	C4-32	C4-33	C4-34	C4-35	L9-12
H	C4-36	C4-37	C4-38	C4-39	L9-13

NoteThe modules A-E are floating-point ADD/SUBTRACT modules, and the modules F-H are fixed-point ADD/ SUBTRACT modules.

MULTIPLY/DIVIDE Modules (A-H)

1. Illustration

2. Operation

$$
\begin{gathered}
O=\left\{\begin{array}{l}
\frac{I 1 \times I 2, I 3=0}{I X \mid 2}, I 3 \neq 0 \\
0,
\end{array}\right. \\
O F=\left\{\begin{array}{l}
13=0 \\
1, I 3=0 \\
0, I 3 \neq 0
\end{array}\right.
\end{gathered}
$$

When $I 3$ is set to 0 , the output is the product of $I 1$ and $I 2$.
When $I 3$ is set to others, if the $I 3$ input value is 0 , the output is 0 , and the divisor being 0 flag is 1 ; if the $I 3$ input value is not 0 , the output is the product of $I 1$ and $I 2$ divided by $I 3$, and the divisor being 0 flag is 0 .

3. Connection

Inputs I1, I2, and I3: AI, HDI, Aim, motor-driven potentiometer, PID, word connector, DWord connector, and floating-point connector

Output O: DWord connector and floating-point connector

MULTIPLY/DIVIDE Module	Input			Output
	I1	I2	I3	O
A	C4-40	C4-41	C4-42	LD-18
B	C4-43	C4-44	C4-45	LD-19
C	C4-46	C4-47	C4-48	LD-20
D	C4-49	C4-50	C4-51	LD-21
E	C4-52	C4-53	C4-54	LD-22
F	C4-55	C4-56	C4-57	L9-14
G	C4-58	C4-62	C4-60	L9-15
H	C4-61	C4-63	L9-16	

NoteThe modules A-E are floating-point MULTIPLY/DIVIDE modules, and the modules F-H are byte MULTIPLY/DIVIDE modules.

Comparison Modules (A-H)

1. Illustration

2. Operation

The hysteresis input 14 implements suppression of frequent on-off.

- If the comparison module function selection I1 is set to 0 , the output 0 keeps low level when 12 increases from 0 toward 13 in the positive direction; it changes from low level to high level when 12 increases to a value greater than 13 ; and it remains high when $I 2$ continues to increase. When 12 decreases, the output O remains high as long as 12 is greater than 13 minus 14 ; it changes from high level to low level only when 12 is smaller than 13 minus 14 .
- If the comparison module function selection I1 is set to 1 , the output O keeps high level when I 2 increases from 0 toward the sum of 13 and 14 in the positive direction; it changes from high level to low level when 12 increases to a value greater than the sum of $I 3$ and 14 ; and it remains low when $I 2$ continues to increase. When 12 decreases, the output O remains low as long as 12 is greater than I3; it changes from low level to high level only when I2 is smaller than I3.
- If the comparison module function selection $I 1$ is set to 2 , the output is high level when 12 is between ($13-14$) and ($13+14 / 2$); otherwise, it is low level.

3. Connection

Input I1: 0: Module disabled; 1: Input $1>\operatorname{Input} 2 ; 2$: Input $1<\operatorname{Input} 2 ; 3$: Input $1=\operatorname{Input} 2$.
Inputs I2 and I3: AI, HDI, Aim, motor-driven potentiometer, PID, word connector, DWord connector, and floating-point connector

Input 14: floating-point number with two decimal places
Output O: bit connector

Compari son Module	I1 Input		Output		
	C4-64	I2	14	O	
B	C4-68	C4-65	C4-66	C4-67	L4-00
C	C4-72	C4-73	C4-70	C4-71	L4-01
D	C4-76	C4-77	C4-74	C4-75	L4-02
E	C4-80	C4-81	C4-78	C4-79	L4-03
F	C4-84	C4-85	C4-82	C4-83	L4-04
G	C4-88	C4-89	C4-90	C4-87	L4-05
H	C4-92	C4-93	C4-94	C4-91	L4-06

NoteThe modules A-E are floating-point comparison modules, and the modules F-H are fixed-point comparison modules.

2.6.5 Switch Functions

Binary Selector Modules (A-H)

1. Illustration

2. Operation

$$
O=\left\{\begin{array}{l}
|2,| 1=0 \\
|3,| 1=1
\end{array}\right.
$$

When the input II of the binary selector module is set to 0 , the output O is 12 ; when the input $I 1$ is set to 1 , the output O is I 3 .

3. Connection

Inputs I1, I2, and I3: 0, 1, DI input, DWord connector input, and bit connector input
Output O: bit connector

Binary Selector Module	Input			Output
	I1	I2	13	O
A	C5-00	C5-01	C5-02	L3-04
B	C5-03	C5-04	C5-05	L3-05

Binary Selector Module	Input			Output
	I1	12	13	O
C	C5-06	C5-07	C5-08	L3-06
D	C5-09	C5-10	C5-11	L3-07
E	C5-12	C5-13	C5-14	L3-08
F	C5-15	C5-16	C5-17	L3-09
G	C5-18	C5-19	C5-20	L3-10
H	C5-21	C5-22	C5-23	L3-11

Word Selector Modules (A-D)

1. Illustration

2. Operation

$$
O=\left\{\begin{array}{l}
|2,| 1=0 \\
|3,| 1=1
\end{array}\right.
$$

When input selection II of the word selector module is set to 0 , the output O is I 2 ; when I 1 is set to 1 , the output O is I 3 .

3. Connection

Input I1: 0, 1, DI input, and bit connector input
Inputs I1 and I2: word connector, DWord connector
Output O: word connector

Word Selector Module	Input			Output
	I1	I2	13	O
A	C5-24	C5-25	C5-26	L7-41
B	C5-27	C5-28	C5-29	L7-42
C	C5-30	C5-31	C5-32	L7-43
D	C5-33	C5-34	C5-35	L7-44

DWord Selector Modules (A-D)

1. Illustration

2. Operation

$$
O=\left\{\begin{array}{l}
I 2, I 1=0 \\
I 3, I 1=1
\end{array}\right.
$$

When input selection II of the DWord selector module is set to 0 , the output O is $I 2$; when $I 1$ is set to 1 , the output O is I 3 .

3. Connection

Input I1: 0, 1, DI input, and bit connector input
Inputs 12 and I3: word connector, DWord connector
Output O: DWord connector

DWord Selector Module	Input			Output
	I1	I2	O	
A	C5-36	C5-37	C5-38	L9-04
B	C5-39	C5-40	C5-41	L9-05
C	C5-42	C5-43	C5-44	L9-06
D	C5-45	C5-46	C5-47	L9-07

Floating-point Number Selector Modules (A-H)

1. Illustration

2. Operation

$$
O=\left\{\begin{array}{l}
I 2, I 1=0 \\
I 3, I 1=1
\end{array}\right.
$$

3. Connection

Input I1: 0, 1, DI input, and bit connector input
Inputs I2 and I3: AI, HDI, Aim, motor-driven potentiometer, PID, and floating-point connector
Output O: floating-point connector

Floating-point Number Selector Module	Input			Output
		12		I3
A	C5-48	C5-49	C5-50	O
B	C5-51	C5-52	C5-53	LD-00
C	C5-54	C5-55	C5-56	LD-01
D	C5-57	C5-58	C5-59	LD-02
E	C5-60	C5-61	C5-62	LD-03
F	C5-63	C5-64	C5-65	LD-04
G	C5-66	C5-67	C5-68	LD-05
H	C5-69	C5-71	LD-06	

2.6.6 Control Functions

Filter Modules (A-F)

1. Illustration

Filter module enable

2. Operation

If module enable selection $I 1$ is set to 0 , the module is disabled, and the output is 0 .
If module enable selection I 1 is not 0 , if the input value is 1 , the filter is disabled, and the output 0 is 12 ; if the input value is 0 , the output O is the filter value of input I.

3. Connection

Input I1: 0: Module disabled; 1: Filter disabled; 2: Filter enabled, DI input, bit connector input
Input I2: AI, HDI, Aim, motor-driven potentiometer, PID, word connector, and floating-point connector

Input I3: floating-point number with three decimal places
Output O: DWord connector and floating-point connector

Filter Module	Input			Output
	I1	12	I3	O
A	C6-00	C6-01	C6-02	LD-23
B	C6-03	C6-04	C6-05	LD-24
C	C6-06	C6-07	C6-08	LD-25
D	C6-09	C6-10	C6-11	LD-26
E	C6-12	C6-13	C6-14	L9-17
F	C6-15	C6-16	C6-17	L9-18

Level-to-Pulse Conversion Modules (A-D)

1. Illustration

2. Operation

When module enable selection I 1 is set to 0 , the module is disabled, and the output is 0 .
When module enable selection I1 is set to 1 , level-to-pulse conversion is active, and the output is set to high level within the pulse time 13 on the rising edge of the input I 2 .

If input I 1 is 0 , the output becomes 0 immediately, regardless of whether the pulse duration is reached.

When module enable selection I1 is set to 2 , pulse-to-level conversion is active. The output is set to high level on the first rising edge and low level on the second rising edge of the input 12 . Then the output is set to high level on every odd-numbered rising edges and low level on every evennumbered rising edges.

3. Connection

Input I1: 0: Module disabled; 1: Conversion from level to pulse; 2: Conversion from pulse to level.
Input I2: 0, 1, DI input, and bit connector input
Input I3: floating-point number with two decimal places
Output O: bit connector

Level-to-Pulse Conversion Module	Input			Output
	I1	I2		I3
A	C6-24	C6-25	C6-26	L3-84
B	C6-27	C6-28	C6-29	L3-85
C	C6-30	C6-31	C6-32	L3-86
D	C6-33	C6-34	C6-35	L3-87

Limiting Modules (A-F)

1. Illustration

2. Operation

$$
\mathrm{O}=\left\{\begin{array}{l}
\mathrm{I} 1, \mathrm{I} 3 \leq \mathrm{I} 1 \leq \mathrm{I} 2 \\
\mathrm{I} 2, \mathrm{I} 1 \geq \mathrm{I} 2 \\
\mathrm{I} 3, \mathrm{I} 1 \leq \mathrm{I} 3
\end{array}\right.
$$

$\mathrm{LF} 1=\left\{\begin{array}{l}0, \mathrm{I} 3 \leq \mathrm{I} 1 \leq \mathrm{I} 2 \\ 1, \mathrm{I} 1 \geq \mathrm{I} 2\end{array}\right.$
$\mathrm{LF} 1=\left\{\begin{array}{l}0, \mathrm{I} 3 \leq \mathrm{I} 1 \leq \mathrm{I} 2 \\ 1, \mathrm{I} 1 \leq \mathrm{I} 3\end{array} \mathrm{LF} 1=\left\{\begin{array}{l}0, \mathrm{I} 3 \leq \mathrm{I} 1 \leq \mathrm{I} 2 \\ 1, \mathrm{I} 1 \leq \mathrm{I} 3\end{array}\right.\right.$
When the input $I 1$ is greater than the upper limit $I 2$, the output O is I , and the upper limit flag LF1 is set to 1 ; when the input $I 1$ is less than the lower limit $I 3$, the output 0 is $I 3$, and the lower limit flag LF2 is set to 1 ; when the input I 1 is between the upper and lower limits, the output is the input value.

3. Connection

Inputs I1, I2, and I3: AI, HDI, Aim, motor-driven potentiometer, PID, word connector, and floatingpoint connector

Output O: DWord connector and floating-point connector
Outputs LF1 and LF2: bit connector

Limiting Module	Input		Output			
	I1	I2	I3	O	LF1	LF2
A	C6-36	C6-37	C6-38	LD-27	L4-48	L4-49
B	C6-39	C6-40	C6-41	LD-28	L4-50	L4-51
C	C6-42	C6-43	C6-44	LD-29	L4-52	L4-53
D	C6-45	C6-46	C6-47	LD-30	L4-54	L4-55
E	C6-48	C6-49	C6-50	L9-19	L4-56	L4-57
F	C6-51	C6-52	C6-53	L9-20	L4-58	L4-59

Logic Delay Modules (A-H)

1. Illustration

2. Operation

The output O has switch-on delay when the input II changes from low level to high level, and the delay time is determined by the switch-on delay time I2 and the time unit I4. It also has switch-off delay when the input II changes from high level to low level, and the delay time is determined by the switch-off delay time I3 and the time unit I4. During the delay, the pulse signals less than the delay time will be filtered out. See the following figure.

3. Connection

Input I1: 0, 1, DI input, and bit connector input

Inputs 12 and I3: unsigned data
Input 14: 0: No delay; 1: $10 \mathrm{~ms} ; 10: 100 \mathrm{~ms} ; 100: 1 \mathrm{~s} ; 1000: 10 \mathrm{~s} ; 6000: 1 \mathrm{~min} ; 12000: 2 \mathrm{~min}$.
Output O: bit connector

Logic Delay Module	I1			Input	
				I3	Output
A	C6-54	C6-55	C6-56	C6-57	O
B	C6-58	C6-59	C6-60	C6-61	L3-20
C	C6-62	C6-63	C6-64	C6-65	L3-22
D	C6-66	C6-67	C6-68	C6-69	L3-23
E	C6-70	C6-71	C6-72	C6-73	L3-24
F	C6-74	C6-75	C6-76	C6-77	L3-25
G	C6-78	C6-79	C6-80	C6-81	L3-26
H	C6-82	C6-83	C6-84	C6-85	L3-27

2.6.7 Multi-point Curve

1. Illustration

2. Operation

The set coordinates are valid only when the following condition is met: $\mathrm{X} 1 \leqslant \mathrm{X} 2 \leqslant \ldots \leqslant \mathrm{X} 10$. When the input is beyond the valid coordinate points, the output is the ordinate of the adjacent valid coordinate point; when the input is within the valid coordinate points, the ordinate corresponding to the output is calculated based on the curve.

When the input coordinates meet the condition and the quantity is less than 10, if the last input abscissa is a negative value, the last negative abscissa and the abscissa with the value of 0 after it are retained, and the other coordinate values after it are discarded. If the last input abscissa is a positive value, the last positive abscissa is retained, and other coordinate values after it are discarded.

If the condition $\mathrm{X} 1 \leqslant \mathrm{X} 2 \leqslant \ldots \leqslant \mathrm{X} 10$ is not met, the AC drive reports L32.4. If two points have the same X coordinate but different Y coordinates, the AC drive also reports L32.4.

3. Connection

Input I: floating-point connector
Inputs I1 to I20: floating-point number with one decimal place
Output O: floating-point connector

Multi-point Curve Module		A	B
Input	1	C7-00	C7-21
	I1 (X1)	C7-01	C7-22
	12 (X2)	C7-02	C7-23
	13 (X3)	C7-03	C7-24
	14 (X4)	C7-04	C7-25
	15 (X5)	C7-05	C7-26
	16 (X6)	C7-06	C7-27
	17 (X7)	C7-07	C7-28
	18 (X8)	C7-08	C7-29
	19 (X9)	C7-09	C7-30
	110 (X10)	C7-10	C7-31
	111 (Y1)	C7-11	C7-32
	112 (Y2)	C7-12	C7-33
	113 (Y3)	C7-13	C7-34
	114 (Y4)	C7-14	C7-35
	115 (Y5)	C7-15	C7-36
	116 (Y6)	C7-16	C7-37
	117 (Y7)	C7-17	C7-38
	118 (Y8)	C7-18	C7-39
	119 (Y9)	C7-19	C7-40
	120 (Y10)	C7-20	C7-41
Output	0	LD-46	LD-47

2.6.8 Constant Value

Constant Value Setpoints (1-42)

1. Illustration

2. Operation

$0=1$
The output O is equal to the input I .

Constant value setpoints 1-5 are floating-point numbers with two decimal places, and the value range is -300.00 to +300.00 .

Constant value setpoints 6-21 are floating-point numbers with one decimal place, and the value range is -3000.0 to +3000.0 .

Constant value setpoints 22-26 are floating-point numbers with two decimal places, which are converted into Q28 fixed-point numbers for output, and the value range is -300.00 to +300.00 .

Constant value setpoints 27-42 are fixed-point numbers, and the value range is 0 to 65535 .

3. Connection

Input I: unsigned number, floating-point number with one decimal place, and floating-point number with two decimal places

Output O: word connector and floating-point connector

Constant Value Setting Module	Input	Output	Remarks
	I	0	
1	C8-00	LD-65	Floating-point number with two decimal places
2	C8-01	LD-66	Floating-point number with two decimal places
3	C8-02	LD-67	Floating-point number with two decimal places
4	C8-03	LD-68	Floating-point number with two decimal places
5	C8-04	LD-69	Floating-point number with two decimal places
6	C8-05	LD-70	Floating-point number with one decimal place
7	C8-06	LD-71	Floating-point number with one decimal place
8	C8-07	LD-72	Floating-point number with one decimal place
9	C8-08	LD-73	Floating-point number with one decimal place
10	C8-09	LD-74	Floating-point number with one decimal place
11	C8-10	LD-75	Floating-point number with one decimal place
12	C8-11	LD-76	Floating-point number with one decimal place
13	C8-12	LD-77	Floating-point number with one decimal place
14	C8-13	LD-78	Floating-point number with one decimal place
15	C8-14	LD-79	Floating-point number with one decimal place
16	C8-15	LD-80	Floating-point number with one decimal place
17	C8-16	LD-81	Floating-point number with one decimal place

Constant Value Setting Module	Input	Output	Remarks
	I	0	
18	C8-17	LD-82	Floating-point number with one decimal place
19	C8-18	LD-83	Floating-point number with one decimal place
20	C8-19	LD-84	Floating-point number with one decimal place
21	C8-20	LD-85	Floating-point number with one decimal place
22	C8-21	L7-00	Floating-point number converted into Q28 fixedpoint number
23	C8-22	L7-01	Floating-point number converted into Q28 fixedpoint number
24	C8-23	L7-02	Floating-point number converted into Q28 fixedpoint number
25	C8-24	L7-03	Floating-point number converted into Q28 fixedpoint number
26	C8-25	L7-04	Floating-point number converted into Q28 fixedpoint number
27	C8-26	L7-05	Fixed-point number
28	C8-27	L7-06	Fixed-point number
29	C8-28	L7-07	Fixed-point number
30	C8-29	L7-08	Fixed-point number
31	C8-30	L7-09	Fixed-point number
32	C8-31	L7-10	Fixed-point number
33	C8-32	L7-11	Fixed-point number
34	C8-33	L7-12	Fixed-point number
35	C8-34	L7-13	Fixed-point number
36	C8-35	L7-14	Fixed-point number
37	C8-36	L7-15	Fixed-point number
38	C8-37	L7-16	Fixed-point number
39	C8-38	L7-17	Fixed-point number
40	C8-39	L7-18	Fixed-point number
41	C8-40	L7-19	Fixed-point number
42	C8-41	L7-20	Fixed-point number

2.6.9 Any Parameter Control

Any 16-bit Data Address Monitoring (1-5)

1. Illustration

2. Operation

The 32-bit address with I1 as the LOWORD and I2 as the HIWORD is used to locate the data for output.

The range of addresses that can be monitored is as follows:
0×20000000 to 0×2001 FFFE
0×24000000 to 0×2404 FFFE

3. Connection

Inputs I1 and I2: hexadecimal unsigned data
Output O: word connector

16-Bit Data Address Monitoring	Input		Output
	11	12	0
1	C9-00	C9-01	L7-36
2	C9-02	C9-03	L7-37
3	C9-04	C9-05	L7-38
4	C9-06	C9-07	L7-39
5	C9-08	C9-09	L7-40

Any 32-bit Data Address Monitoring (1-5)

1. Illustration

2. Operation

The 32-bit address with I1 as the LOWORD and I2 as the HIWORD is used to locate the data for output. If data type selection I3 is set to 0 , the data is directly output to 0 ; if I 3 is set to 1 , the data is multiplied by the amplification factor 14 and then output to 0 .

The range of addresses that can be monitored is as follows:
0×20000000 to 0×2001 FFFC
0×24000000 to 0×2404 FFFC

3. Connection

Inputs I1 and I2: unsigned data
Inputs I3 and I4: hexadecimal unsigned data

Output O: word connector

32-Bit Data Address Monitoring	I1 Input				Output
			12	14	O
1	C9-10	C9-11	C9-12	C9-13	L9-21
2	C9-14	C9-15	C9-16	C9-17	L9-22
3	C9-18	C9-19	C9-20	C9-21	L9-23
4	C9-22	C9-23	C9-24	C9-25	L9-24
5	C9-26	C9-27	C9-28	C9-29	L9-25

2.6.10 Motor-driven Potentiometer

Constant Value Setpoints (1-42)

1. Illustration

2. Operation

- When I 1 is set to 0 , the motor-driven potentiometer is disabled, and the output O is 0 ; when I 1 is set to 1 , the motor-driven potentiometer is enabled.
- When 12 is set to 1 , the motor-driven potentiometer restores the values retained upon power failure (I19 and I20) upon first power-on; when 12 is set to 0 , the motor-driven potentiometer restores the initial value (13) upon first power-on.
- When I1 is enabled, if the values retained upon power failure are not restored, the output O of the motor-driven potentiometer is the initial value I3.
- When the increase command source $I 5$ is 1 , the motor-driven potentiometer increases the output O at the speed of the increase time base I4; when the increase command source I6 is 1 , the motor-driven potentiometer increases the output O at the speed of the increase time base I7.
- When the value of the motor-driven potentiometer increases, the maximum output O is the maximum output value 18 ; when the value of the motor-driven potentiometer decreases, the minimum output O is the minimum output value 19 .
- When IIO and I11 are 1 , the output O stops changing; when IIO and I11 become 0 , the output 0 continues to change.
- When I12 and I13 are 1 , the output O is reset to a specified value: if the reset value source I14 is 0 , the output O is reset to the reset value digital setting 115 ; if the reset value source 114 is others, the output O is reset to the value specified by I14.
- When I16is 1 , the output 0 is forcibly set to a specified value: if the force value source 117 is 0 , the output O is forcibly set to the forced value digital setting I 18 ; if the force value source I 17 is others, the output O is forced to be the value specified by I 17 .
- I19 and I20 are the per-unit values of the retained output values of the motor-driven potentiometer after Q28 conversion.

3. Connection

Input I: unsigned number, floating-point number with one decimal place, and floating-point number with two decimal places

Output O: word connector and floating-point connector

Motor-driven Potentiometer			Remarks
Input	I1	FB-20	Motor-driven potentiometer enable
	12	FB-21	Retentive upon power failure enable
	13	FB-22	Initial value after poweron
	14	FB-23	Increase speed
	15	FB-24	Decrease speed
	16	FB-25	Increase or decrease according to the set rate when the increase or decrease command is active
	17	FB-26	The output value remains unchanged when the increase and decrease commands are active or inactive at the same time.
	18	FB-27	Maximum value
	19	FB-28	Minimum value
	110	FB-29	High level indicates pause and low level indicates continue.
	111	FB-30	-
	112	FB-31	Reset is triggered on the rising edge of the reset command. The motordriven potentiometer is reset to the set value.
	113	FB-32	-
	114	FB-33	-
	115	FB-34	-
	I16	FB-35	High level indicates forcing enabled and low level indicates forcing disabled.
	117	FB-36	-
	118	FB-37	-
	I19	FB-38	Per-unit value of the value retained upon power failure after Q28 conversion
	120	FB-39	-

Motor-driven Potentiometer			
Output	O	LD-45	Remarks
	ForceVal	LD-39	Force value of motor- driven potentiometer
	ResetVal	Reset value of motor- driven potentiometer	
	MaxVal	LD-41	Maximum value of motor- driven potentiometer
	MinVal	LD-42	Minimum value of motor- driven potentiometer
	InitVal	LD-43	Initial value of motor- driven potentiometer
	ProcessOutput	LD-44	Process operation output

2.6.11 Multi-reference

Multi-reference Module

1. Illustration

2. Operation

When the multi-reference source I17 is set to 0 , the 4-bit binary number of multi-reference selection 118 to $I 21$ map to multi-reference I 1 to I 16 , and the corresponding multi-reference value is output to 0.

When the multi-reference source I17 is set to others, the multi-reference value selected by using the corresponding method is output to 0 .

Multi-reference	I21 (BIT3)	$I 20$ (BIT2)	$I 19$ (BIT1)	$I 18$ (BIT0)	Actual Effective Value
Multi-reference 1	0	0	0	0	I 1
Multi-reference 2	0	0	0	1	I 2
Multi-reference 3	0	0	1	0	I 3
Multi-reference 4	0	0	1	1	I
Multi-reference 5	0	1	0	0	I

Multi-reference	121 (BIT3)	120 (BIT2)	119 (BIT1)	118 (BITO)	Actual Effective Value
Multi-reference 6	0	1	0	1	16
Multi-reference 7	0	1	1	0	17
Multi-reference 8	0	1	1	1	18
Multi-reference 9	1	0	0	0	19
Multi-reference 10	1	0	0	1	110
Multi-reference 11	1	0	1	0	111
Multi-reference 12	1	0	1	1	112
Multi-reference 13	1	1	0	0	113
Multi-reference 14	1	1	0	1	114
Multi-reference 15	1	1	1	0	115
Multi-reference 16	1	1	1	1	116

3. Connection

Inputs I1 to I16: floating-point number with one decimal place
Input I17: AI, pulse, PID, preset frequency, and floating-point connector
Inputs I18 to I21: 0, 1, DI input, and bit connector input
Output O: floating-point connector and system information

Multi-reference			Output Connector	
Input	11	FC-00	SetVal1	LD-49
	12	FC-01	SetVal2	LD-50
	13	FC-02	SetVal3	LD-51
	14	FC-03	SetVal4	LD-52
	15	FC-04	SetVal5	LD-53
	16	FC-05	SetVal6	LD-54
	17	FC-06	SetVal7	LD-55
	18	FC-07	SetVal8	LD-56
	19	FC-08	SetVal9	LD-57
	110	FC-09	SetVal10	LD-58
	111	FC-10	SetVal11	LD-59
	112	FC-11	SetVal12	LD-60
	113	FC-12	SetVal13	LD-61
	114	FC-13	SetVal14	LD-62
	115	FC-14	SetVal15	LD-63
	116	FC-15	SetVal16	LD-64
	117	FC-51	-	-
	118	FC-55	-	-
	119	FC-56	-	-
	120	FC-57	-	-
	121	FC-58	CurSel	FC-52/U2-05
Output	0	LD-48/FC-53/U2-06	-	-

3 Troubleshooting

3.1 Common Faults and Diagnosis

3.1.1 Display of Alarms and Faults

When a fault occurs during running, the AC drive stops output immediately, the fault indicator becomes steady on, and the contact of the fault relay acts. The operating panel displays the fault code, such as

Running indicator OFF

Figure 3-1 Display of faults

1. Caution

Do not repair or modify the AC drive by yourself. In case of any fault that cannot be rectified, contact the agent or Inovance for technical support.

3.1.2 Restart upon Faults

You can view the active fault code, active fault subcode, active fault information, active limit code, active limit subcode, active limit information, active alarm code, active alarm subcode, and active alarm information on the operating panel.

Table 3-1 Restart upon faults

Stage	Solution	Description
When a fault occurs	Fault record 1: View the active fault code, active fault subcode, active fault information, active limit code, active limit subcode, active limit information, active alarm code, active alarm subcode, and active alarm information on the operating panel.	View the information by using $\mathrm{HO} 0-00$ to $\mathrm{H} 0-53$.
	Fault record 2: View the frequency, current, bus voltage, input terminal state, output terminal state, AC drive state, power-on duration, running duration, status word A, progression status word B, and command word upon the latest three faults on the operating panel.	View the information by using F9-14 to F9-44.
	Fault record 3: View the fault code, fault subcode, fault information, frequency, current, bus voltage, input terminal state, output terminal state, AC drive state, power-on duration, running duration, status word A , progression status word B, and command word upon the latest six faults on the operating panel.	View the information by using parameters in groups H 3 to H 8 .
Before fault reset	Locate and rectify the fault cause based on the fault code displayed on the operating panel.	-
During fault reset	1. Set any of F4-00 to F4-09 to 9 (fault reset).	
	2. Verify that F7-02 is set to 1 (default value), indicating that the STOP/RES key is available in any operating mode.	Press the STOP/RES key on the operating panel.
	3. Power off and then power on the $A C$ drive for automatic reset. Disconnect the main circuit power supply and reconnect the power supply after the display on the operating panel disappears.	
	4. Use a host controller for reset (for communication control mode). Verify that FO-02 is set to 2 (communication control mode) and write " 7 " to the communication address 2000 H by using the host controller.	

3.1.3 Common Troubleshooting

Table 3-2 Symptoms and troubleshooting

No.	Symptom	Possible Cause	Solution
1	The display does not work upon power-on.	The grid voltage is not input or too low.	Check the input power supply.
		The switched-mode power supply (SMPS) on the drive board of the AC drive is faulty.	Check whether the 24 V output voltage and 10 V output voltage on the control board are normal.
		The control board is disconnected from the drive board or the operating panel.	Re-connect the 8-conductor and 40conductor flat cables.
		The pre-charge resistor of the AC drive is damaged.	Contact Inovance.
		The control board or operating panel is faulty.	
		The rectifier bridge is damaged.	
2	"-H-C-" is displayed upon power-on. H.C.	The connection between the drive board and the control board is poor.	Re-connect the 8-conductor and 28conductor flat cables.
		Related components on the control board are damaged.	Contact Inovance.
		The motor or motor cable is shorted to ground.	
		The Hall device is faulty.	
		The grid voltage is too low.	
3	"E023.1" is displayed upon power-on.	The motor or output cable is shorted to ground.	Use a megger to measure the insulation resistance of the motor and motor cable.
	E023.1	The AC drive is damaged.	Contact Inovance.
4	The display is normal upon power-on. But after the AC drive starts to run, "-H-C-" is displayed and the AC drive stops immediately.\square	The fan is damaged, or lockedrotor occurs.	Replace the cooling fan.
		Wiring of any external control terminals is short-circuited.	Rectify the short circuit fault.
5	E14.00 (module overheat) is reported frequently.	The carrier frequency is set too high.	Reduce the carrier frequency (F0-15).
		The fan is damaged, or the air filter is blocked.	Replace the fan or clean the air filter.
		Components (thermistor or other devices) inside the AC drive are damaged.	Contact Inovance.

No.	Symptom	Possible Cause	Solution
6	The motor does not rotate when the AC drive is running.	The AC drive and motor are incorrectly connected.	Double check the connection between the AC drive and motor.
		Related AC drive parameters (motor parameters) are set incorrectly.	Restore the AC drive to factory settings and re-set the following parameters correctly:
			Encoder parameters and rated motor specifications (such as rated motor frequency and rated motor speed)
			F0-01 and F0-02
			F3-01 for heavy-load start in V/f control mode
		The connection between the drive board and the control board is poor.	Re-connect the cables and ensure secure wiring.
		The drive board is faulty.	Contact Inovance.
7	DI terminals are inactive.	Related parameters are set incorrectly.	Check and set parameters in group F4 again.
		External signal transmission errors occur.	Re-connect external signal cables.
		The jumper across the OP and +24 V terminals becomes loose.	Check and ensure secure connection of the jumper across OP and +24 V .
		The control board is faulty.	Contact Inovance.
8	In FVC mode, the motor cannot speed up.	The encoder is faulty.	Replace the encoder and double check the wiring.
		The encoder wiring is incorrect or in poor contact.	Reconnect the encoder to ensure good contact.
		The PG card is faulty.	Replace the PG card.
		The drive board is faulty.	Contact Inovance.
9	The AC drive reports overcurrent and overvoltage frequently.	Motor parameters are incorrectly set.	Adjust motor parameters or perform motor auto-tuning again.
		The acceleration/deceleration time is improper.	Set acceleration/deceleration time properly.
		The load fluctuates.	Contact Inovance.
10	E017.1 is reported upon power-on or during running.	The soft start contactor is not closed.	Check whether the contactor cable is loose.
			Check whether the contactor is faulty.
			Check whether the 24 V power supply of the contactor is faulty.
			Contact Inovance.
11	The motor coasts to stop, or braking is disabled during deceleration or deceleration to stop.	The encoder is disconnected, or overvoltage stall protection is enabled.	Check the encoder wiring in FVC mode (FO-01 = 1).
			If a braking resistor is configured, set F323 to 0 to disable overvoltage stall suppression.

3.1.4 Troubleshooting During Trial Run in Different Control Modes

- SVC mode (FO-01 $=0$, default setting)

In this mode, the drive controls the speed and torque of motor in scenarios without an encoder for speed feedback. Motor auto-tuning is required to obtain motor-related parameters.

Table 3-3 Troubleshooting in SVC mode

Problem	Solution
Overload or overcurrent reported during motor startup	Set motor parameters F1-01 to F1-05 according to the motor nameplate. Perform motor auto-tuning (by setting F1-37). Dynamic auto-tuning on all parameters of the motor is preferred when possible.
Slow torque or speed response and motor vibration at frequencies below 5 Hz	In the case of slow motor torque or speed response, increase the value of F2-00 (speed loop proportional gain) by increments of 10 or decrease the value of F2-01 (speed loop integral time) by decrements of 0.05. In the case of motor vibration, decrease the value of F2-00 and increase the value of F2-01.
Slow torque or speed response and motor vibration at frequencies above 5 Hz	In the case of slow motor torque or speed response, increase the value of F2-03 (speed loop proportional gain) by increments of 10 or decrease the value of F2-04 (speed loop integral time) by decrements of 0.05. In the case of motor vibration, decrease the value of F2-03 and increase the value of F2-04.
Low speed accuracy	In the case of excessive speed deviation during with-load operation, increase the value of F2-06 (vector control slip compensation gain) by increments of 10\%.
Large speed fluctuation	In the case of abnormal motor speed fluctuation, increase the value of A9- 05 (speed filter time) by increments of 0.001s.
Insufficient motor torque motor noise	Increase the value of F0-15 (carrier frequency) by increments of 1.0 kHz. Note that an increase in the carrier frequency will result in an increase in the leakage current of the motor.

- FVC mode (F0-01 = 1)

This mode is applicable to scenarios with an encoder for speed feedback. In this mode, you need to set the encoder pulses per revolution, encoder type, and encoder direction correctly and perform auto-tuning on motor parameters.

Table 3-4 Troubleshooting in FVC mode

Problem	Solution
Overload or overcurrent reported during motor startup	Set the encoder pulses per revolution, encoder type, and encoder direction correctly.
Overload or overcurrent reported during motor rotation	Set motor parameters F1-01 to F1-05 according to the motor nameplate. Perform motor auto-tuning (by setting F1-37). Dynamic auto-tuning on all parameters of the motor is preferred when possible.
Slow torque or speed response and motor vibration at frequencies below 5 Hz	In the case of slow motor torque or speed response, increase the value of F2-00 (speed loop proportional gain) by increments of 10 or decrease the value of F2-01 (speed loop integral time) by decrements of 0.05.
Slow torque or speed response and motor vibration at frequencies above 5 Hz	In the case of slow motor torque or speed response, increase the value of F2-03 (speed loop proportional gain) by increments of 10 or decrease the value of F2-04 (speed loop integral time) by decrements of 0.05.

Problem	Solution
Large speed fluctuation	In the case of abnormal motor speed fluctuation, increase the value of F2- 07 (speed filter time) by increments of 0.001 s.
Loud motor noise	Increase the value of F0-15 (carrier frequency) by increments of 1.0 kHz. Note that an increase in the carrier frequency will result in an increase in the leakage current of the motor.
Insufficient motor torque	Check whether the torque upper limit is set too low. If yes, increase the value of F2-10 (torque upper limit) in speed control mode or increase the torque reference in torque control mode.

- V / f control mode (F0-01 = 2)

This mode is applicable to scenarios without an encoder for speed feedback. You only need to set rated motor voltage and rated motor frequency correctly.

Table 3-5 Troubleshooting in V/f control mode

Problem	Solution
Motor oscillation during running	Decrease the value of F3-11 (V/f oscillation suppression gain) by increments of 5. The minimum value is 5.
Overcurrent during high-power startup	Decrease the value of F3-01 (torque boost) by increments of 0.5\%.
High current during running	Set F1-02 (rated motor voltage) and F1-04 (rated motor frequency) correctly. Decrease the value of F3-01 (torque boost) by increments of 0.5\%.
Loud motor noise	Increase the value of F0-15 (carrier frequency) by increments of 1.0 kHz. Note that an increase in the carrier frequency will result in an increase in the leakage current of the motor.
Overvoltage reported during deceleration or sudden removal of heavy loads	Verify that overvoltage stall suppression (F3-23) is enabled. Increase the value of F3-24/F3-25 (overvoltage stall suppression gain, 30 by default) by increments of 10 (the maximum value is 100). Decrease the value of F3-22 (overvoltage stall suppression action voltage,
Overcurrent reported during acceleration or sudden application of heavy loads	Increase the value of F3-20 (overcurrent stall suppression gain, 20 by default) by increments of 10 (the maximum value is 100).
Decrease the value of F3-18 (overcurrent stall suppression action current, 150% by default) by decrements of 10% (the minimum value is 50\%).	

3.2 List of Fault Codes

The following faults may occur during the use of the AC drive. Troubleshoot the faults according to the solutions described in the following table.

Fault Code	Fault Name	Possible Cause	Countermeasures
E002.1	Hardware overcurrent	The instantaneous output current exceeds 2.5*1.414 times the rated current of the AC drive. For more causes, connect to the AC drive from the mobile App through Wi-Fi to make a self-diagnosis, which can help users quickly locate the fault.	
		Output grounding	Check for output ground points and measure the ground impedance by segment by using a megohmmeter.
		Inter-phase short-circuit	1. Check whether the output side is short circuited. 2. Check whether the power cable is short circuited. 3. Check whether motor resistance is symmetrical.
		No parameter auto-tuning in vector control mode	Set motor parameters correctly and perform auto-tuning again.
		Encoder interference or wire breakage	1. Check whether the encoder cable is connected securely. 2. Check whether the encoder cable is grounded at the AC drive side. 3. Ground the motor enclosure. 4. Replace the encoder and the encoder cable.
		Output phase loss	1. Check whether the cables are properly connected. 2. If there is a contactor at the output side, check whether the contactor opening logic and the contactor contact are normal.
		Current detection exception	Contact after-sales service.
		V/f control acceleration/deceleration time too short	1. Enable the overcurrent suppression function. 2. Increase the acceleration/deceleration time.
		Encoder phase sequence error	If the encoder direction and the motor running direction are opposite, change the encoder direction.
		Model setting error	Set the AC drive model correctly (FF-01).

Fault Code	Fault Name	Possible Cause	Countermeasures
E002.2	Software overcurrent	The software overcurrent threshold is defined by FF-18. The default value is 100%, indicating that the threshold does not take effect. 100% is equivalent to the full range of current sampling (2.2 times the rated current of the AC drive multiplied by 1.414). For more causes, connect to the AC drive from the mobile App through Wi-Fi to make a selfdiagnosis, which can help users quickly locate the fault.	
		Output grounding	Check for output short-to-ground and measure the ground impedance by segment by using a megohmmeter.
		Inter-phase short-circuit	1. Check whether the output side is short circuited. 2. Check whether the power cable is short circuited. 3. Check whether motor resistance is symmetrical.
		No parameter auto-tuning in vector control mode	Set motor parameters correctly and perform auto-tuning again.
		Encoder interference or wire breakage	1. Check whether the encoder cable is connected securely. 2. Check whether the encoder cable is grounded at the AC drive side. 3. Ground the motor enclosure. 4. Replace the encoder and the encoder cable.
		Output phase loss	1. Check whether the cables are properly connected. 2. If there is a contactor at the output side, check whether the contactor opening logic and the contactor contact are normal.
		Current detection exception	Contact after-sales service.
		V/f control acceleration/deceleration time too short	1. Enable the overcurrent suppression function. 2. Increase the acceleration/deceleration time.
		Encoder phase sequence error	If the encoder direction and the motor running direction are opposite, change the encoder direction.
		Model setting error	Set the AC drive model correctly (FF-01).

Fault Code	Fault Name	Possible Cause	Countermeasures
E005.1	Bus overvoltage	The overvoltage threshold is defined by A5-09 (unit: V), which only allows slight modification. For more causes, connect to the AC drive from the mobile App through Wi-Fi to make a self-diagnosis, which can help users quickly locate the fault.	
		Output grounding	1. Check whether the output side is short circuited. 2. Check whether the power cable is short circuited. 3. Check whether motor resistance is symmetrical.
		Encoder interference/wire breakage	1. Check whether the encoder cable is connected securely. 2. Check whether the encoder cable is grounded at the AC drive side. 3. Ground the motor enclosure. 4. Replace the encoder and the encoder cable.
		Power generation during motor deceleration	Enable overvoltage suppression if there is no active load (gravity load, tension load, and so on). Connect a braking resistor if possible. Set F3-19 in V/f control mode or bit1 (VdcMax enable) of AB-25 (parameter of motor 1) in vector control mode.
		Fault reaction upon runaway of synchronous motor	Shorten the overspeed protection time by setting F9-67 and F9-68 for the synchronous motor, which can effectively prevent the back EMF from exceeding the overvoltage threshold of the AC drive after runaway.
		Braking resistor selection error	Make sure that the power of the braking module is not lower than the power of the AC drive, that the continuous load is 0.8 times the motor power, and that the short-term overload can reach 1.5 times the motor power.
		Braking resistor phase loss	Check that the braking resistor is properly connected.
		Overshoot upon speed reach in vector control mode	If the speed loop overshoot is severe, configure the RFG with rounding time and acceleration feedforward to improve the speed loop follow-up performance.
		V/f oscillation	Enable the oscillation suppression function and optimize the V/f oscillation suppression coefficient.
		AC drive model setting error	Set the AC drive model correctly.
E008.1	Frequent precharge	Pre-charge circuit exception (the action of the precharge contactor can be heard frequently)	Contact after-sales service because frequent pre-charge can cause overload of the pre-charge circuit.

Fault Code	Fault Name	Possible Cause	Countermeasures
E009.1	Undervoltage	The undervoltage threshold is defined by A5-06. For more causes, connect to the AC drive from the mobile App through Wi-Fi to make a self-diagnosis, which can help users quickly locate the fault.	
		Instantaneous power failure	Enable overvoltage suppression if there is no active load (gravity load, tension load, and so on). Set F9-59 in V/f control mode or bit0 (VdcMin enable) of AB-25 (parameter of motor 1) in vector control mode.
		AC drive input voltage out of range	Adjust the input voltage to the normal range.
		Input phase loss and large output power	Make sure the input grid is normal.
		High undervoltage threshold	Lower the undervoltage threshold as appropriate.
		AC drive model setting error	Set the AC drive model correctly.
		Rectifier bridge, pre-charge resistor, drive board, or control board exception	Contact the technical support personnel.
E009.3	Pre-charge fault	Failure to power on the bus long after the motor is started in the state of undervoltage	Start the motor after the bus becomes stable after power-on.
E010.1	AC drive overload	For more causes, connect to the AC drive from the mobile App through Wi-Fi to make a self-diagnosis, which can help users quickly locate the fault.	
		Excessive load or locked-rotor	Reduce the load and check the motor and mechanical conditions.
		High carrier frequency	Decrease the carrier frequency.
		Low bus voltage during high speed running with heavy load	1. Increase the input voltage of the grid. 2. Enable the overmodulation function.
		Derating at low frequency due to long-term running below 5 Hz	Avoid running the motor with heavy load at a low speed for a long time, or select an AC drive with higher power.
		Output grounding	Check for output ground points.
		Output phase loss	Check for output phase loss.
		Motor parameter error	Check the motor nameplate parameters and perform autotuning correctly.
		Flying start not applied when the motor is started during rotation	Enable flying start by setting F6-00 (parameter of motor 1).
		Encoder direction error	Change the A/B phase sequence of the encoder (F1-30).
		AC drive model setting error	Set the AC drive model correctly.
		Inadequate power rating of the AC drive	Replace the AC drive with one of higher power rating.
E010.3	AC drive preoverload	AC drive overload ratio reaching 80\%	Same as E010.1.
			Change the pre-overload response level by setting parameters in group H 1 because pre-overload is not reported by default.

Fault Code	Fault Name	Possible Cause	Countermeasures
E011.1	Motor overload	Inappropriate F9-01 (motor overload protection) setting	Set F9-01 correctly.
		Inadequate power rating of the motor	Select an appropriate motor.
		Brake error	Check that the brake can be opened properly.
		Excessive load or locked-rotor	Reduce the load and check the motor and mechanical conditions.
E011.2	Motor preoverload	Motor overload ratio reaching the value of F9-02	Same as E011.1.
			Change the motor pre-overload coefficient (F9-02).
			Change the exception response level by setting parameters in group H 1 because motor pre-overload is not reported by default.
E012.1	Input phase loss	Three-phase input power input phase loss	Check that the power input is normal.
		Three-phase grid imbalance	An unbalanced grid causes the bus voltage to fluctuate, which might damage the bus capacitors over long-term running. Make sure the input grid is symmetrical.
		Drive board, surge protector, main control board, or rectifier bridge exception	Contact the technical support personnel.
E013.1	Output phase loss	Motor phase loss	Check whether open circuit occurs on the motor.
E013.2		Exception of the cable connecting the AC drive and the motor	Check that the wiring is secure.
E013.3		Unbalanced three-phase output of the AC drive during motor running	Check whether the motor three-phase winding is normal. If not, eliminate the fault.
E013.4		Drive board or IGBT exception	Contact the technical support personnel.
E014.1	IGBT overheat	Over-high ambient temperature	Reduce the ambient temperature.
		Air filter blocked	Clean the air filter.
		Fan damage	Replace the fan.
		IGBT thermistor damage	Replace the thermistor.
		IGBT damage	Replace the IGBT.
E014.2	Module preovertempera ture	Module temperature exceeding the preovertemperature threshold (obtained by subtracting the pre-overtemperature margin defined by BF-14 from the overtemperature threshold)	Same as E014.1.
			Change the exception response level by setting parameters in group H 1 because module pre-overtemperature is not reported by default.
E015.1	External device fault	External fault input through the multi-function DI (NO)	Eliminate the external fault, ensure that the mechanical condition allows restart (F8-18), and reset the operation.
E015.2		External fault input through the multi-functional DI (NC)	Eliminate the external fault, ensure that the mechanical condition allows restart (F8-18), and reset the operation.
E017.1	Contactor fault	Drive board and power supply exception	Replace the drive board or power supply board.
		Contactor exception	Replace the contactor.
		Surge protector exception	Replace the surge protector.

Fault Code	Fault Name	Possible Cause	Countermeasures
E018.1	Current detection fault	Hall component exception	AC drive stopped while synchronous motor is rotating at high speed
		Drive board exception	Replace the hall component.
E019.1	Auto-tuning timeout	Motor parameter setting exception or AC drive model Eetting exception	Set the motor and AC drive parameters correctly.

Fault Code	Fault Name	Possible Cause	Countermeasures
E020.5	Large encoder feedback speed fluctuation	Sudden change of the encoder feedback speed (which will introduce control fluctuations, and in severe cases, lead to control divergence and overcurrent) (Detection of this fault is disabled by default.)	1. Check whether the correct PG card is selected. 2. Check whether the wiring is normal. 3. Check whether the encoder is normal. 4. Check whether the encoder DIP switch is appropriate. 5. Check whether the encoder parameters are set correctly.
			1. Check whether the encoder shield layer is grounded at the AC drive side. 2. Check whether the motor enclosure is grounded. 3. Check whether the encoder cable is far away from the power cables. 4. Install a magnetic ring on the encoder cable. 5. Use twisted pair cable with dense metal mesh shield layer as the encoder cable. 6. Use as few adapters as possible.
			Set bit01 of A9-09 to enable software detection of wire breakage, set A9-08 to specify the encoder wire breakage software detection coefficient, and set bit02 of A9-09 to remove encoder feedback glitches.
E020.8	ABZ encoder Z signal loss	ABZ encoder Z signal loss	This fault is reported only during self-check when the synchronous motor uses the ABZ encoder in FVC mode.
E020.9	Encoder pulse interference	Encoder feedback speed fluctuation exception	This fault is reported only during self-check of the encoder.
E021.1	EEPROM readwrite fault	EEPROM read-write exception	For parameters written through communication, check the RAM addresses and address mapping. For details, see section 1.2 "Parameter Communication Addresses" in the communication guide of the MD520 series general-purpose AC drives. If the EEPROM chip is damaged, contact the manufacturer to replace the main control board.
E021.2			
E021.3			
E021.4			
E021.5		EEPROM internal cache overrun	For parameters written through communication, check for frequent writes.
E023.1	Short-to- ground	Motor short-to-ground	Check the connector adapters and measure the ground impedance by using a megohmmeter. If the problem persists, replace the cable or motor.
		Self-check during motor running (not an issue any more in 20s after the asynchronous motor stops)	Do not run the motor until the cause of the fault is located.
		IGBT short circuit (extremely low probability)	Replace the motor and perform static self-check again.
E026.1	Accumulative running duration reach	Accumulative running duration reaching setpoint	Clear the record through parameter initialization.

Fault Code	Fault Name	Possible Cause	Countermeasures
E027.1 E027.2	User-defined fault	Signal of user-defined fault input through the multifunction DI terminal	Eliminate the external fault, ensure that the mechanical condition allows restart (F8-18), and reset the operation.
		Signal of user-defined fault input through the virtual I/O	
		Signal of user-defined fault input through the connector	
E027.3 E027.4		Signal of user-defined fault input through the connector	Check settings of connector parameters ($\mathrm{H} 2-06$ to $\mathrm{H} 2-07$). Eliminate the external fault, ensure that the mechanical condition allows restart (F8-18), and reset the operation.
L028.1	User-defined alarm	Signal of user-defined fault input through the connector	Check settings of connector parameters (H2-08 to H2-11).
L 028.2			
L 028.3			
L 028.4			
E029.1	Accumulative power-on duration reach	Accumulative power-on duration reaching the setpoint	Clear the record through parameter initialization.
E031.1	PID feedback loss during running	PID feedback less than the value of FA-26	Check the PID feedback signal or set FA-26 properly.
E032.1	Parameter exception	Parameter reset exception	Reset FP-01. If the fault persists, contact the technical support personnel.
E032.2		Parameter backup exception	Back up all parameters again. If the fault cannot be reset, contact the technical support personnel.
E032.3		Parameter power-off exception	Check whether the power is off and whether the bus capacitor discharges too fast.
E032.4		Parameter setting exception	Check whether the related parameters are set as required, especially parameters with setting limits that are associated with other parameters.
E032.6		Parameter power-on check exception	Check the value of U2-09. If the value is normnal, contact the technical support personnel.

Fault Code	Fault Name	Possible Cause	Countermeasures
E040.1	Pulse-by- pulse current limit fault	This fault is reported only for asynchronous motors in V / f control mode. For more causes, connect to the AC drive from the mobile App through Wi-Fi to make a self-diagnosis, which can help users quickly locate the fault.	
		Excessive load or locked-rotor	Reduce the load and check the motor and mechanical conditions.
		Output short-to-ground	Perform self-check to check for the short-to-ground point.
		Motor turn-to-turn short circuit	Perform self-check, measure whether the resistance of the output terminal is symmetrical with a multimeter, and replace the motor if turn-to-turn short circuit is determined.
		Motor nameplate parameter error	Set the motor parameters correctly.
		Output phase loss	Perform self-check and connect the motor properly.
		V/f oscillation	Enable V/f oscillation suppression and adjust the oscillation suppression coefficient.
		Inadequate power rating of the AC drive	Replace the AC drive with one of higher power rating.
E042.1	Excessive speed deviation	Incorrect setting of encoder parameters	Set encoder parameters correctly.
		Motor auto-tuning not performed	Perform motor auto-tuning.
		Excessive load	Ensure that a proper load is connected.
		Encoder direction fault	Set the encoder direction correctly.
		Inappropriate setting of F9-69 and F9-70	Set the parameters correctly based on actual conditions.
E043.1	Motor overspeed	For more causes, connect to the AC drive from the mobile App through Wi-Fi to make a self-diagnosis, which can help users quickly locate the fault.	
		Incorrect setting of encoder parameters	Set encoder parameters correctly.
		Motor auto-tuning not performed	Perform motor auto-tuning.
		Runaway caused by incorrect encoder zero point angle of synchronous motor	Check whether the encoder zero point angle obtained by autotuning is accurate and whether the encoder connection is loose.
		Inappropriate setting of F9-67 and F9-68	Set the parameters correctly based on actual conditions.
E045.1	Motor overtempera ture	Loose connection of temperature sensor	Check the wiring of the temperature sensor.
		Overhigh motor temperature	Decrease the carrier frequency or take other measures to cool the motor.
		Excessively low motor overtemperature protection threshold (F9-57 or F9-76)	Raise the motor overtemperature protection threshold to between $90^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
E045.2		Loose connection of temperature sensor	Check the wiring of the temperature sensor.
		Overhigh motor temperature	Decrease the carrier frequency or take other measures to cool the motor.
		Excessively low motor pre-overtemperature protection threshold (F9-58 or F9-77)	Raise the motor pre-overtemperature protection threshold.
E047.2	STO fault	STO1 and STO2 signal disconnection	Check the wiring of STO1 and STO2.
E047.3		STO circuit undervoltage or overvoltage	Contact the technical support personnel.
E047.4		STO circuit input subsystem exception	Contact the technical support personnel.
E047.5		STO blocking output chip exception	Contact the technical support personnel.

Fault Code	Fault Name	Possible Cause	Countermeasures
E051.1	Pole position auto-tuning error	Check the motor for output phase loss.	Connect the motor output correctly and ensure that the output contactor is closed.
E055.1	Slave error in master-slave control	Slave fault	Troubleshoot the problem based on the slave fault code.
E056.2	IGBT U- short circuit	IGBT monitoring VCE signal exception	Contact after-sales service.
E056.3	IGBT U+ short circuit	IGBT monitoring VCE signal exception	Contact after-sales service.
E056.4	IGBT V- short circuit	IGBT monitoring VCE signal exception	Contact after-sales service.
E056.5	IGBT V+ short circuit	IGBT monitoring VCE signal exception	Contact after-sales service.
E056.9	Output phase loss	Motor output phase loss	Make sure the motor is connected properly and the output contactor is normal.
E057.1	U phase upper bridge or V phase lower bridge IGBT continuity failure	IGBT open circuit	Contact after-sales service.
E057.2	U phase lower bridge or V phase upper bridge IGBT continuity failure	IGBT open circuit	Contact after-sales service.
E057.3	V phase upper bridge or W phase lower bridge IGBT continuity failure	IGBT open circuit	Contact after-sales service.
E057.4	\checkmark phase lower bridge or W phase upper bridge IGBT continuity failure	IGBT open circuit	Contact after-sales service.

Fault Code	Fault Name	Possible Cause	Countermeasures
E057.5	W phase upper bridge or U phase lower bridge IGBT continuity failure	IGBT open circuit	Contact after-sales service.
E057.6	W phase lower bridge or U phase upper bridge IGBT continuity failure	IGBT open circuit	Contact after-sales service.
E057.7	UV output end short circuit	Inter-phase output short circuit	Check for inter-phase short circuit.
E057.8	VW output end short circuit	Inter-phase output short circuit	Check for inter-phase short circuit.
E057.9	WU output end short circuit	Inter-phase output short circuit	Check for inter-phase short circuit.
E058.1	Module U phase current sensor inversely installed	Current sampling sensor exception	Contact after-sales service.
E058.2	Module V phase current sensor inversely installed	Current sampling sensor exception	Contact after-sales service.
E058.3	Module W phase current sensor inversely installed	Current sampling sensor exception	Contact after-sales service.
E058.4	Module UV phase sensor incorrectly inserted	Current sampling sensor exception	Contact after-sales service.
E058.5	Module VW phase sensor incorrectly inserted	Current sampling sensor exception	Contact after-sales service.

Fault Code	Fault Name	Possible Cause	Countermeasures
E058.6	Module WU phase sensor incorrectly inserted	Current sampling sensor exception	Contact after-sales service.
E059.1	UV phase imbalance	Motor turn-to-turn short circuit	Replace the motor and then perform self-check to confirm the cause.
E059.2	VW phase imbalance	Motor turn-to-turn short circuit	Replace the motor and then perform self-check to confirm the cause.
E059.3	WU phase imbalance	Motor turn-to-turn short circuit	Replace the motor and then perform self-check to confirm the cause.
E061.1	Braking unit overload	Overhigh power of braking resistor (resistance too small)	Use a braking resistor with higher resistance.
E062.2	Braking transistor shoot-through	Braking module exception	Contact the technical support personnel.
		Braking resistor short circuit	Check whether the braking resistor is short circuited or damaged. If yes, replace it.
E062.3	Braking transistor overcurrent	Incorrect connection of braking resistor	Check whether the braking resistor is properly connected and whether the braking unit is normal.
E093.1	Motor rotor locked	The locked-rotor detection threshold and detection time are defined by AA-31 and AA-32 and protection against locked rotor is enabled by setting bit05 of AA-30. For more causes, connect to the AC drive from the mobile App through Wi-Fi to make a self-diagnosis.	
		Excessive load or brake exception	Ensure that the motor load is within a reasonable range.
		Low torque limit/current limit	Set the torque limit as appropriate.
		Auto-tuning not performed	Perform auto-tuning before running.
		AC drive model setting error	Set the AC drive model correctly.
E093.2	Motor stall	The motor stall detection threshold and detection time are defined by AA-33 and AA-34 and protection against motor stall is enabled by setting bit04 of AA-30. For more causes, connect to the AC drive from the mobile App through Wi-Fi to make a self-diagnosis.	
		Encoder interference/wire breakage	Check the encoder for interference.
		Encoder PPR error or loose connection	Check whether the encoder is connected reliably.
		Auto-tuning not performed	Set the rated parameters of the motor correctly, and perform dynamic auto-tuning if possible.
		AC drive model error	Set the AC drive model correctly.
E093.4	Current control exception	The current control exception detection threshold and detection time are defined by AA-35 and AA-36 and protection against current control exception is enabled by setting bit03 of AA-30. For more causes, connect to the AC drive from the mobile App through Wi-Fi to make a self-diagnosis.	
		Output phase loss	Check the motor for phase loss.
		Encoder interference or encoder wire breakage	Check whether the encoder is normal.
		Sudden and large drop in bus voltage	Keep the grid voltage stable.
		Auto-tuning not performed	Input motor parameters correctly and perform auto-tuning.

Fault Code	Fault Name	Possible Cause	Countermeasures
E094.1	Inconsistency between calculated and set numbers of pole pairs	Incorrect setting of the number of motor pole pairs	Set A9-02 only when the number of motor pole pairs exceeds 12.
E094.2	Motor power, voltage, and current matching error	Motor the power, voltage, and current mismatch	Set the motor parameters correctly.
E094.3	No-load current range error	Incorrect motor no-load current range	Check the motor nameplate parameters and ensure correct model setting of the AC drive.
E094.4	Inconsistency between Lm 10 and rated voltage	Inconsistency with rated voltage caused by separate modification of no-load current or mutual inductance	Set motor nameplate parameters correctly and perform autotuning.
E094.5	Rotor resistance range exception	Rotor resistance range out-of-range	Check whether the motor is rotating during auto-tuning.
			Check whether the motor nameplate parameters and AC drive model setting are correct.
E094.7	Mismatch between the numbers of pole pairs of the resolver and synchronous motor	Incorrect number of resolver pole pairs of synchronous motor	Ensure that the number of pole pairs of the synchronous motor is divisible by the number of resolver pole pairs.
E159.1	Auto reset failure	Auto reset disabled	Check H2-20 to H2-39 to see whether auto reset is disabled.
E160.1	Modbus communica tion fault	Modbus communication timeout	Check whether the RS-485 communication cable is correctly connected.
			Check whether the setting of FD-04 and the PLC communication cycle are proper.
E161.1	CANopen communica tion fault	CANopen communication timeout	Check whether the CAN communication cable is correctly connected.
			Check parameters FD-15 to FD-17 for further action.
E161.2		Inconsistency between PDO mapping configured for CANopen and the actual mapping	Check the PDO mapping of parameters in group AF.
E162.1	CANlink communica tion fault	CANlink heartbeat timeout	Check whether the CAN communication cable is correctly connected.
			Check parameters FD-15 to FD-17 for further action.
E162.2		CANlink station number conflict	Modify the CAN station numbers by using FD-13.

Fault Code	Fault Name	Possible Cause	Countermeasures
E164.1	Expansion card fault	Expansion card fault	Check communication of the expansion card.
E174.1	Wire breakage	HDI1 wire breakage	Check HDI wiring.
			Al1 wire breakage

3.3 List of Fault Attributes

The fault attribute table describes the fault name, panel display, default fault protection action, fault action range, whether reset is allowed, and whether attributes are modified when the main fault code is modified by using F9-47 to F9-50.

This series of AC drives allow you to modify the fault protection actions of the main fault codes by using F9-47 to F9-50 or modify the fault protection action of an individual fault by using parameters in group H1.

Default Fault Protection Action indicates the default protection action of a fault for which the fault action is not defined by F9-47 to F9-50 and parameters in group H1.

Fault Action Range indicates available fault actions when a fault is modified by using parameters in group H1.

The fault action range values are described as follows:
0. Coast to stop

1: Decelerate to stop
2: Continue to run (with speed limit)
3: Run with power limit
4: Run with current limit
5: Ignore
Reset Allowed or Not specifies whether a fault allows reset.
The symbols in the Reset Allowed or Not column are described as follows:
\lesssim : The fault allows reset.
\star : The fault does not allow reset.
Modified with Main Code or Not specifies whether the fault protection action of the subcode is modified accordingly when the fault protection action of the main fault code is modified by using F947 to F9-50.

The symbols in the Modified with Main Code or Not column are described as follows:
\bigcirc : The fault protection action of the fault is modified accordingly when that of the main fault code is modified.

- The fault protection action of the fault is not modified accordingly when that of the main fault code is modified.

Table 3-6 List of Fault Attributes

Panel Display	Fault Name	Default Fault Protection Action	Fault Action Range	Reset Allowed or Not	Modified with Main Code or Not
E002.1	Hardware overcurrent	0	0	i	\bigcirc
E002.2	Software overcurrent	0	0	i	\bigcirc
E005.1	Overvoltage	0	0	i	\bigcirc
E008.1	Frequent contactor action	0	0	\cdots	\bigcirc
E009.1	Undervoltage	0	0	\star	\bigcirc
E009.3	Pre-charge exception	0	0	*	\bigcirc
E010.1	AC drive overload	0	0	is	\bigcirc
E010.3	AC drive pre-overload	5	2 to 5	\star	\bigcirc
E011.1	Motor overload	0	0 to 5	*	\bigcirc
E011.2	Motor pre-overload	Unchangeable by default	2 to 5	\star	\bigcirc
E012.1	Input phase loss	0	0 to 5	i	\bigcirc
E013.1	U phase output phase loss	0	0 to 4	\cdots	\bigcirc
E013.2	V phase output phase loss	0	0 to 4	\star	\bigcirc
E013.3	W phase output phase loss	0	0 to 4	i	\bigcirc
E014.1	Module overtemperature	0	0	i	\bigcirc
E014.2	Module preovertemperature	Unchangeable by default	2 to 5	H	\bigcirc
E015.1	External fault 1	0	0 to 4	is	\bigcirc
E015.2	External fault 2	0	0 to 4	λ	\bigcirc
E017.1	Pre-charge circuit exception	0	0 to 5	ξ	\bigcirc
E018.1	Current sampling exception	0	0	i	\bigcirc
E019.1	Auto-tuning timeout	0	0	i	\bigcirc
E019.2	Auto-tuning interruption	0	0	is	\bigcirc
E019.3	Overcurrent during autotuning	0	0	\star	\bigcirc
E019.4	Back EMF auto-tuning exception	0	0	i	\bigcirc
E019.5	Motor type error	0	0	is	\bigcirc
E019.7	No-load current autotuning overlimit	0	0 to 5	\star	\bigcirc
E020.1	Encoder hardware wire breakage	0	0 to 5	\star	\bigcirc
E020.2	Encoder PPR error	0	0	is	\bigcirc
E020.3	No encoder feedback	0	0	i	\bigcirc
E020.5	Large encoder feedback fluctuation	0	0 to 5	*	\bigcirc

Panel Display	Fault Name	Default Fault Protection Action	Fault Action Range	Reset Allowed or Not	Modified with Main Code or Not
E020．8	Z signal loss	0	0 to 5	H	\bigcirc
E020．9	Encoder pulse interference	0	0 to 5	ふ	\bigcirc
E021．1	E2P fault（uninterrupted operation for more than 30s）	0	0 to 1	3	\bigcirc
E021．2	E2P：read fault	0	0 to 1	H	\bigcirc
E021．3	E2P：write fault	0	0 to 1	H	\bigcirc
E021．4	E2P reads and writes within 1s out－of－limit	2	0 to 4	3	\bullet
E021．5	E2P internal cache overrun	0	0 to 5	i	\bullet
E022．1	Encoder card not activated	0	0	i	\bigcirc
E023．1	Output short－to－ground	0	0	\star	\bigcirc
E026．1	Accumulative running duration reach	0	0 to 4	\％	\bigcirc
E027．1	Custom fault 1	0	0 to 4	H	\bigcirc
E027．2	Custom fault 2	0	0 to 4	ふ	\bigcirc
E027．3	Custom fault 3	0	0 to 4	H	\bigcirc
E027．4	Custom fault 4	0	0 to 4	H	\bigcirc
E028．1	Custom warning 1	2	0 to 4	H	\bigcirc
E028．2	Custom warning 2	2	0 to 4	ふ	\bigcirc
E028．3	Custom warning 3	2	0 to 4	T	\bigcirc
E028．4	Custom warning 4	2	0 to 4	\％	\bigcirc
E029．1	Accumulative power－on duration reach	2	0 to 4	3	\bigcirc
E030．1	Load loss	0	0 to 5	i	\bigcirc
E031．1	PID feedback loss	0	0 to 4	3	\bigcirc
E032．1	Parameter reset exception	0	0 to 5	H	\bigcirc
E032．2	Parameter backup exception	2	0 to 5	i	\bigcirc
E032．3	Parameter power－off exception	5	0 to 5	T	\bigcirc
E032．4	Parameter setting exception	2	0 to 5	\％	\bigcirc
E032．6	Parameter power－on check exception	0	0 to 5	i	\bigcirc
E040．1	Pulse－by－pulse current limit fault	0	0	认	\bigcirc
E042．1	Excessive speed deviation	2	0 to 5	3	\bigcirc
E043．1	Motor speed out－of－limit	0	0 to 5	i	\bigcirc
E045．1	Motor over－temperature	0	0 to 4	H	\bigcirc
E045．2	Motor pre－ overtemperature	2	2 to 5	＊	\bigcirc

Panel Display	Fault Name	Default Fault Protection Action	Fault Action Range	Reset Allowed or Not	Modified with Main Code or Not
E047.2	STO trigger inconsistency fault	0	0	i	\bigcirc
E047.3	STO circuit power supply exception	0	0	\pm	\bigcirc
E047.4	STO input subsystem fault	0	0	i	\bigcirc
E047.5	STO buffer chip fault	0	0	\star	\bigcirc
E051.1	Pole position auto-tuning error	0	0 to 1	む	\bigcirc
E055.1	Slave error in masterslave control	1	0 to 5	i	\bigcirc
E056.2	IGBT U+ short circuit during self-check	0	0	i	\bigcirc
E056.3	IGBT U- short circuit during self-check	0	0	\pm	\bigcirc
E056.4	IGBT V+ short circuit during self-check	0	0	\pm	\bigcirc
E056.5	IGBT V- short circuit during self-check	0	0	i	\bigcirc
E056.9	System output phase loss	0	0	is	\bigcirc
E057.1	U phase upper bridge or V phase lower bridge IGBT continuity failure	0	0	is	\bigcirc
E057.2	U phase lower bridge or V phase upper bridge IGBT continuity failure	0	0	N	\bigcirc
E057.3	V phase upper bridge or W phase lower bridge IGBT continuity failure	0	0	\pm	\bigcirc
E057.4	V phase lower bridge or W phase upper bridge IGBT continuity failure	0	0	i	\bigcirc
E057.5	W phase upper bridge or U phase lower bridge IGBT continuity failure	0	0	i	\bigcirc
E057.6	W phase lower bridge or U phase upper bridge IGBT continuity failure	0	0	N	\bigcirc
E057.7	UV output end short circuit	0	0	\pm	\bigcirc
E057.8	VW output end short circuit	0	0	i	\bigcirc
E057.9	WU output end short circuit	0	0	S	\bigcirc
E058.1	Module U phase current sensor inversely installed	0	0	i	\bigcirc
E058.2	Module V phase current sensor inversely installed	0	0	N	\bigcirc

Panel Display	Fault Name	Default Fault Protection Action	Fault Action Range	Reset Allowed or Not	Modified with Main Code or Not
E058.3	Module W phase current sensor inversely installed	0	0	3	\bigcirc
E058.4	Module UV phase sensor incorrectly inserted	0	0	3	\bigcirc
E058.5	Module VW phase sensor incorrectly inserted	0	0	3	\bigcirc
E058.6	Module WU phase sensor incorrectly inserted	0	0	3	\bigcirc
E059.1	VW phase imbalance	0	0	H	\bigcirc
E059.2	UW phase imbalance	0	0	H	\bigcirc
E059.3	UV phase imbalance	0	0	访	\bigcirc
E061.1	Braking overload	0	0	H	\bigcirc
E062.2	Braking transistor shootthrough	0	0	3	\bigcirc
E062.3	Braking transistor overcurrent	0	0	H	\bigcirc
E063.1	External alarm 1	2	2 to 4	M	\bigcirc
E063.2	External alarm 2	2	2 to 4	H	\bigcirc
E082.2	Pre-charge contactor feedback exception	0	0	3	\bigcirc
E085.4	Timing fault	2	0 to 4	H	\bigcirc
E093.1	Motor rotor locked fault	0	0 to 5	H	\bigcirc
E093.2	Motor stall	0	0	H	\bigcirc
E093.3	Current control exception	0	0	H	\bigcirc
E094.1	Inconsistency between calculated and set number of pole pairs	Unchangeable by default		H	\bigcirc
E094.2	Asynchronous motor power, voltage, and current matching error			3	\bigcirc
E094.3	No-load current range error			3	\bigcirc
E094.4	Inconsistency between Lm IO and rated voltage			3	\bigcirc
E094.5	Rotor resistance setting range exception			i	\bigcirc
E094.7	Mismatch between the numbers of pole pairs of the resolver and synchronous motor			3	\bigcirc
E159.1	Auto reset failure	0	0	H	\bigcirc
E160.1	Modbus communication timeout	1	0 to 5	H	\bigcirc
E161.1	CANopen communication timeout	1	0 to 5	3	\bigcirc

Panel Display	Fault Name	Default Fault Protection Action	Fault Action Range	Reset Allowed or Not	Modified with Main Code or Not
E161.2	Inconsistency between PDO mapping configured for CANopen and the actual mapping	1	0 to 5	〇	

4 Parameter Group

4.1 FO: Basic Parameters

F0-00 Load type display

Address: 0xF000

Min.: 0
Max.: 1
Default: 0

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Value Range:
0: Heavy load application
1: Light load application

Description

F0-01 Motor 1 control mode
Address: 0xF001 Effective mode:
Min.: $\quad 0$
Max.: $\quad 2$
Default: 2

Unit:
Data type: Ulnt16
Change: Changeable only at stop

Value Range:
0: SVC
1: FVC
2: V/f
Description

F0-02 Operation command source
Address: 0xF002 Effective mode:
Min.: 0
Max.: 3
Default: 0
Value Range:
0 : Operating panel
1: Terminal
2: Communication
3: Customization
Description
0 : Operating panel control
When this command source is selected, control commands are input using keys on the operating panel. It is applicable to initial commissioning.
1: Terminal control
In terminal I/O control mode, control commands are input through the DI terminals of the AC drive.
The DI terminal control commands can be set according to different scenarios, such as start/stop, forward/reverse run, jog, two-wire/three-wire mode, multi-speed, and other functions. It is suitable for most applications.

2: Communication control

When this command source is selected, control commands are input through remote communication. The AC drive must be equipped with a communication card to implement communication with the host controller. This mode applies to remote control or centralized control of multiple equipment. 3: Customization

The command source can be selected flexibly. It is used for expansion.

F0-03 Main frequency source X

Address:	$0 \times F 003$	Effective mode:	
Min.:	0	Unit:	-
Max.:	9	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0 : Digital setting (non-retentive at power failure)
1: Digital setting (retentive at power failure)
2: AI1
3: AI2
4: AI3
5: Pulse reference (DI5)
6: Multi-reference
7: Simple PLC
8: PID
9: Communication
Others: F connector

Description

0 : Digital setting (non-retentive at power failure)
The initial value of the frequency reference is the value of $\mathrm{F0} 0$-08 (preset frequency), which can be changed by using the $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ keys on the operating panel (or UP and DOWN of the multi-function input terminal). The frequency reference reverts to the value of F0-08 (preset frequency) at next power-on.
1: Digital setting (retentive at power failure)
The initial value of the frequency reference is the value of F0-08 (preset frequency). which can be changed by using the $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ keys on the operating panel (or UP and DOWN of the multi-function input terminal). When the AC drive is powered on again after power failure, the frequency reference is the same as that at the moment of the last power failure. Modifications made by using keys $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ or the terminal UP/DOWN function remain effective.
2: AI1
The frequency reference is input with current or voltage signals through the Al1 terminal. The frequency is calculated according to the preset AI curve.
3: AI2
The frequency reference is input with current or voltage signals through the AI2 terminal. The frequency is calculated according to the preset AI curve.
4: AI3
The frequency reference is input with current or voltage signals through the AI3 terminal. The frequency is calculated according to the preset AI curve.

5: Pulse reference (DI5)
The frequency reference is determined by the pulse frequency through the DI5 terminal. The frequency is calculated according to the correspondence curve between the pulse frequency and frequency reference.
6: Multi-reference
When multi-reference is used as the frequency source, different combinations of DI terminal states correspond to different frequency references. The four multi-reference terminals can provide 16 state combinations, corresponding to 16 reference values.
7: Simple PLC
Simple PLC is a multi-speed running command that can control the running time and acceleration and deceleration time. Parameters FC-00 to FC-15 are used to set the values of each frequency. FC-18 to FC-49 are used to set the running time and acceleration and deceleration time of each frequency. Up to 16 speeds can be set. 8: PID

PID is selected as the main frequency. As a general process control method, PID control is a closedloop mechanism in which each controlled variable is stabilized at the target level through proportional, integral, and differential calculation of the difference between the feedback signal and the target signal of the controlled variable. PID control is generally used in closed-loop control, such as constant pressure closed-loop control and constant tension closed-loop control.
9: Communication
The main frequency is set through communication. The frequency reference can be input through remote communication. The AC drive must be equipped with a communication card to implement communication with the host controller. This mode applies to remote control or centralized control of multiple equipment.
Others: F connector
A function code is set for a floating-point connector, and the value of the connector is read as the main frequency reference. This mode is used for expansion besides the common sources.

Auxiliary frequency source Y

Address:	$0 \times F 004$	Effective mode: -
Min.:	0	Unit:
Max.:	9	Data type:
Default:	0	Change:

Value Range:

0 : Digital setting (non-retentive at power failure)
1: Digital setting (retentive at power failure)
2: AI1
3: AI2
4: Al3
5: Pulse reference (DI5)
6: Multi-reference
7: Simple PLC
8: PID
9: Communication
Others: F connector
Description

0 : Digital setting (non-retentive at power failure)

The initial value of the frequency reference is the value of F0-08 (preset frequency), which can be changed by using the $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ keys on the operating panel (or UP and DOWN of the multi-function input terminal). The frequency reference reverts to the value of F0-08 (preset frequency) at next power-on.
1: Digital setting (retentive at power failure)
The initial value of the frequency reference is the value of $\mathrm{FO}-08$ (preset frequency). which can be changed by using the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys on the operating panel (or UP and DOWN of the multi-function input terminal). When the AC drive is powered on again after power failure, the frequency reference is the same as that at the moment of the last power failure. Modifications made by using keys $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ or the terminal UP/DOWN function remain effective.
2: AI1
The frequency reference is input with current or voltage signals through the Al1 terminal. The frequency is calculated according to the preset AI curve.
3: AI2
The frequency reference is input with current or voltage signals through the AI2 terminal. The frequency is calculated according to the preset Al curve.
4: AI3
The frequency reference is input with current or voltage signals through the AI3 terminal. The frequency is calculated according to the preset AI curve.
5: Pulse reference (DI5)
The frequency reference is determined by the pulse frequency through the DI5 terminal. The frequency is calculated according to the correspondence curve between the pulse frequency and frequency reference.
6: Multi-reference
When multi-reference is used as the frequency source, different combinations of DI terminal states correspond to different frequency references. The four multi-reference terminals can provide 16 state combinations, corresponding to 16 reference values.
7: Simple PLC
Simple PLC is a multi-speed running command that can control the running time and acceleration and deceleration time. Parameters FC-00 to FC-15 are used to set the values of each frequency. FC-18 to FC-49 are used to set the running time and acceleration and deceleration time of each frequency. Up to 16 speeds can be set.
8: PID
PID is selected as the main frequency. As a general process control method, PID control is a closedloop mechanism in which each controlled variable is stabilized at the target level through proportional, integral, and differential calculation of the difference between the feedback signal and the target signal of the controlled variable. PID control is generally used in closed-loop control, such as constant pressure closed-loop control and constant tension closed-loop control.
9: Communication
The main frequency is set through communication. The frequency reference can be input through remote communication. The AC drive must be equipped with a communication card to implement communication with the host controller. This mode applies to remote control or centralized control of multiple equipment.
Others: F connector
A function code is set for a floating-point connector, and the value of the connector is read as the auxiliary frequency reference. This mode is used for expansion besides the common sources.

[^0]
Description

0 : Main frequency source X
The running frequency of the $A C$ drive is directly determined by the main frequency source X.
1: Main and auxiliary operation result (based on the tens place)
The running frequency of the $A C$ drive is the calculation result of the main and auxiliary frequencies, and the calculation method is determined by the tens place of F0-07.
2: Switchover between main frequency source X and auxiliary frequency source Y
The running frequency of the $A C$ drive is selected or switched between the main frequency source X and the auxiliary frequency source Y through the DI terminal. In this case, the corresponding DI terminal must be assigned with the frequency source switching function. For example, if the DI2 terminal is used for switchover, set F4-01 to 18.
3: Switchover between main frequency source X and main and auxiliary operation result
The running frequency of the $A C$ drive is selected or switched between the main frequency source X and the main and auxiliary operation result through the DI terminal.
4: Switchover between auxiliary frequency source Y and main and auxiliary operation result
The running frequency of the AC drive is selected or switched between the auxiliary frequency source Y and the main and auxiliary operation result through the DI terminal.
Tens:
0: Main + Auxiliary
The main and auxiliary operation result is the main frequency X plus the auxiliary frequency Y .
1: Main - Auxiliary
The main and auxiliary operation result is the main frequency X minus the auxiliary frequency Y .
2: Maximum value
The main and auxiliary operation result is the larger value between the main frequency X and the auxiliary frequency Y .
3: Minimum value
The main and auxiliary operation result is the smaller value between the main frequency X and the auxiliary frequency Y .
4: Main x Auxiliary
The main and auxiliary operation result is the main frequency X multiplied by the auxiliary frequency Y. -

F0-08 Preset frequency

Address:	0xF008	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16
Default:	50.00	Change:	Changeable at any time

Value Range:

0.00 Hz to F0-10

Description

This parameter defines the target frequency.

F0-09 Running direction

Address:	0xF009	Effective mode:	
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

1: Default direction
1: Reverse to the default direction

Description

You can change the rotation direction of the motor by modifying this parameter without changing the motor wiring. Modifying this parameter is equivalent to exchanging any two of the motor's $\mathrm{U}, \mathrm{V}, \mathrm{W}$ wires.

F0-10 Maximum frequency

Address: 0xF00A Effective mode: -
Min.: 50.00 Unit: Hz
Max.: 500.00 Data type: Ulnt16
Default: $50.00 \quad$ Change: Changeable only at stop

Value Range:

50.00 Hz to 500.00 Hz

Description

This parameter defines the maximum output frequency of the AC drive.

F0-11 Source of frequency upper limit

Address: 0xF00B Effective mode: -
Min.: 0 Unit: -
Max.: $5 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable only at stop
Value Range:
0: F0-12
1: Al1
2: Al2
3: AI3
4: Pulse reference
5: Communication
Others: F connector
Description
0 : Frequency upper limit reference (F0-12)
The frequency upper limit is set by F0-12.
1: AI1
The frequency upper limit is input with current or voltage signals through the AI1 terminal. The frequency is calculated according to the preset AI curve.
2: AI2
The frequency upper limit is input with current or voltage signals through the AI2 terminal. The frequency is calculated according to the preset AI curve.
3: Al3
The frequency upper limit is input with current or voltage signals through the AI3 terminal. The frequency is calculated according to the preset AI curve.
4: Pulse reference (DI5)
The frequency upper limit is determined by the pulse frequency through the DI5 terminal. The frequency is calculated according to the correspondence curve between the pulse frequency and maximum frequency.
5: Communication
The frequency upper limit is set through communication.
Others: F connector
The frequency upper limit is set through a connector. A function code is set for a floating-point connector, and the value of the connector is read as the frequency upper limit. This mode is used for expansion besides the common sources.
F0-12 Frequency upper limit
Address: 0xF00C Effective mode: -
Min.: \quad F0-14
Max.: F0-10
Default: 50.00

Unit:	Hz
Data type:	Ulnt16
Change:	Changeable at any time

Value Range:
F0 -14 to F0-10
Description
This parameter defines the maximum running frequency allowed for the motor.

F0-13 Frequency upper limit offset

Address:	0xF00D	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:

0.00 Hz to $\mathrm{FO}-10$

Description

This parameter defines the offset of the frequency upper limit. It is used to adjust the output frequency value upon minimum frequency reference signal when the frequency is set by an external analog signal (voltage or current).

F0-14 Frequency lower limit

Address:	0xF00E	Effective mode:	
Min.:	0.00	Unit:	Hz
Max.:	F0-12	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:
0.00 Hz to FO-12
Description
This parameter defines the minimum running frequency for the motor.

F0-15 Carrier frequency

Address:	0xF00F	Effective mode:	-
Min.:	0.5	Unit:	kHz
Max.:	16.0	Data type:	Ulnt16
Default:	6.0	Change:	Changeable at any time
Value Range:			
0.5 kHz to 16.0 kHz			
Description			

F0-16 Carrier frequency adjusted with temperature

Address: 0xF010 Effective mode: -
Min.: $0 \quad$ Unit: -
Max.: $1 \quad$ Data type: Ulnt16
Default: Change: Changeable at any time
Value Range:
0: No
1: Yes

Description

F0-17 Acceleration time 1

Address:	$0 \times F 011$	Effective mode:	-
Min.:	0.0	Unit:	S
Max.:	6500.0	Data type:	Ulnt16
Default:	20.0	Change:	Changeable at any time

Value Range:
0.0s to 6500.0s

Description
The acceleration time indicates the time required for the output frequency to rise from 0 to F0-25 (acceleration/deceleration base frequency). It is usually determined by the rise of the frequency reference signal. When the motor accelerates, the rising rate of the frequency reference must be limited to prevent overcurrent.
The AC drive provides four groups of acceleration time, which can be switched by using the parameter or DI terminal. This parameter defines the first acceleration time.

F0-18 Deceleration time 1

Address:	$0 x F 012$
Min.:	0.0
Max.:	6500.0
Default:	20.0

Effective mode:	-
Unit:	S
Data type:	Ulnt16
Change:	Changeable at any time

Value Range:
0.0s to 6500.0s

Description

The deceleration time indicates the time required for the output frequency to decrease from F0-25 (acceleration/deceleration base frequency) to 0 . The deceleration time is usually determined by the fall of the frequency reference signal. When the motor decelerates, the falling rate of the frequency reference must be limited to prevent overvoltage.
The AC drive provides four groups of deceleration time, which can be switched by using the parameter or DI terminal. This parameter defines the first deceleration time.

F0-19 Acceleration/Deceleration time unit
Address: 0xF013 Effective mode: -
Min.: 0 Unit: -
Max.: $2 \quad$ Data type: Ulnt16
Default: 1 Change: Changeable only at stop
Value Range:
$0: 1 \mathrm{~s}$
1: 0.1 s
2: 0.01s
Description
The AC drive supports three acceleration/deceleration time units. When this parameter is modified, the decimal point of the parameters related to the frequency acceleration and deceleration time will change, and the corresponding acceleration and deceleration time will also change.

Offset frequency source
Address: 0xF014 Effective mode:
Min.: 0 Unit

Max.:	8	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0: F0-21
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

Description

1: Digital setting
The initial frequency reference is the value of F0-21.
2: Al1
The frequency reference is input with current or voltage signals through the Al1 terminal. The frequency is calculated according to the preset AI curve.
3: Al2
The frequency reference is input with current or voltage signals through the AI2 terminal. The frequency is calculated according to the preset AI curve.
4: Al3
The frequency reference is input with current or voltage signals through the AI3 terminal. The frequency is calculated according to the preset AI curve.
5: Pulse reference (DI5)
The frequency reference is determined by the pulse frequency through the DI5 terminal. The frequency is calculated according to the correspondence curve between the pulse frequency and frequency reference.
6: Multi-reference
When multi-reference is used as the frequency source, different combinations of DI terminal states correspond to different frequency references. The four multi-reference terminals can provide 16 state combinations, corresponding to 16 reference values.
7: Simple PLC
Simple PLC is a multi-speed running command that can control the running time and acceleration and deceleration time. Parameters FC-00 to FC-15 are used to set the values of each frequency. FC-18 to FC-49 are used to set the running time and acceleration and deceleration time of each frequency. Up to 16 speeds can be set.
8: PID
PID is selected as the main frequency. As a general process control method, PID control is a closedloop mechanism in which each controlled variable is stabilized at the target level through proportional, integral, and differential calculation of the difference between the feedback signal and the target signal of the controlled variable. PID control is generally used in closed-loop control, such as constant pressure closed-loop control and constant tension closed-loop control.

9: Communication

The main frequency is set through communication. The frequency reference can be input through remote communication. The AC drive must be equipped with a communication card to implement communication with the host controller. This mode applies to remote control or centralized control of multiple equipment.
Others: F connector
A function code is set for a floating-point connector, and the value of the connector is read as the main frequency reference. This mode is used for expansion besides the common sources.

F0-21 Offset frequency
Address: 0xF015 Effective mode: -
Min.: 0.00 Unit: Hz
Max.: F0-10 Data type: Ulnt16
Default: 0.00
Change: Changeable at any time

Value Range:

0.00 Hz to $\mathrm{FO}-10$

Description

This parameter defines the offset frequency. It is used to adjust the when the frequency reference when the main/auxiliary frequency is set by an external analog signal (voltage or current).

F0-22 Decimal places of frequency reference

Address:	$0 \times F 016$	Effective mode:	
Min.:	1	Unit:	-
Max.:	2	Data type:	Ulnt16
Default:	2	Change:	Changeable only at stop

Value Range:
1: 0.1 Hz
2: 0.01 Hz
Description
This parameter defines the decimal places of the frequency reference.

F0-23 Retention of digital setting
Address: 0xF017 Effective mode: -
Min.: $\quad 0$
Max.: 1
Default: 0
Unit:
Data type: Ulnt16

Value Range:
0 : Non-retentive
1: Retentive
Description
0: Non-retentive
F0-08 (preset frequency) set through the operating panel and frequency modifications made by using
the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys or UP and DOWN of terminals are cleared when the AC drive stops.
1: Retentive
F0-08 (preset frequency) set through the operating panel and frequency modifications made by using
the $\mathbf{\Delta}$ and $\boldsymbol{\nabla}$ keys or UP and DOWN of terminals are retained when the AC drive stops.

F0-24 Motor parameter group

Address: 0xF018 Effective mode: -
Min.: 0 Unit:

Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0: Motor parameter group 1
1: Motor parameter group 2
2: Motor parameter group 3
3: Motor parameter group 4
Description

F0-25 Acceleration/Deceleration time base frequency
Address: 0xF019
Effective mode:
Min.: 0
Max.: 3
Unit:
Data type: Ulnt16
Default: 0
Change
Changeable only at stop
Value Range:
0: F0-10 (maximum frequency)
1: Frequency reference
2: 100 Hz
3: Rated frequency

Description

This parameter defines the acceleration/deceleration time base frequency.

F0-26 Base frequency for UP/DOWN modification during running
Address: 0xF01A
Effective mode:
Min.: 0
Max.: 1
Default: 0
Unit:
Data type: Ulnt16
Value Range:
0 : Running frequency
1: Frequency reference

Description

This parameter defines whether to adjust on the basis of the running frequency or the frequency
reference
when modifying the frequency by using UP/DOWN during running.

F0-27 Frequency reference source bound to command source
Address: 0xF01B
Effective mode: -
Min.: 0
Max.: 999
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:

Ones: Frequency reference source bound to operating panel control
0 : No binding
1: Digital setting
2: AI1
3: Al2
4: Al3
5: Pulse
6: Multi-reference
7: Simple PLC
8: PID
9: Communication
Tens: Frequency reference source bound to terminal control
0 : No binding
1: Digital setting
2: AI1
3: Al2
4: Al3
5: Pulse
6: Multi-reference
7: Simple PLC
8: PID
9: Communication
Hundreds: Frequency reference source bound to communication control
0 : No binding
1: Digital setting
2: Al1
3: Al2
4: Al3
5: Pulse
6: Multi-reference
7: Simple PLC
8: PID
9: Communication

Description

This parameter defines the binding relationship between the three operation command sources and nine frequency reference sources to facilitate synchronous switchover.
For details about the frequency sources, see the description of F0-03 (main frequency source X).
Different command sources can be bound to the same frequency reference source.
If a command source has a bound frequency source, the frequency sources set in F0-03 to F0-07 no longer take effect when the command source is effective.

Communication protocol

Address:	$0 x F 01 C$	Effective mode: -
Min.:	0	Unit:
Max.:	1	Data type:
Default:	0	Change:

Value Range:

	0 Modbus		
	1: Extended communication protocol Description		
F0-29	Load type		
	Address: 0xF01D	Effective mode:	
	Min.: 0	Unit:	-
	Max.: 1	Data type:	Ulnt16
	Default: 0	Change:	Changeable only at stop
	Value Range:		
	0: Heavy load application		
	1: Light load application		
	Description		
	-		
4.2	F1: Motor 1 Parameters		
F1-00	Motor type		
	Address: 0xF100	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 2	Data type:	Ulnt16
	Default: 0	Change:	Changeable only at stop
	Value Range:		
	0: Common asynchronous motor		
	1: Variable frequency asynchronous motor		
	2: Permanent magnet synchronous motor		
	Description		
F1-01	Rated motor power		
	Address: 0xF101	Effective mode:	-
	Min.: 0.1	Unit:	kW
	Max.: 1000.0	Data type:	Ulnt16
	Default: 3.7	Change:	Changeable only at stop
	Value Range:		
	0.1 kW to 1000.0 kW		
	Description		
	-		
F1-02	Rated motor voltage		
	Address: 0xF102	Effective mode:	-
	Min.: 1	Unit:	V
	Max.: 2000	Data type:	Ulnt16
	Default: 380	Change:	Changeable only at stop
	Value Range:		
	1 V to 2000 V		
	Description		

F1-03	Rated motor current			
	Address:	0xF103	Effective mode:	
	Min.:	0.01	Unit:	A
	Max.:	655.35	Data type:	Ulnt16
	Default:	9.00	Change:	Changeable only at stop
	Value Range:			
	0.01 A to 655.35 A			
	Description			
	-			
F1-04	Rated motor frequency			
	Address:	0xF104	Effective mode:	-
	Min.:	0.01	Unit:	Hz
	Max.:	F0-10	Data type:	Ulnt16
	Default:	50.00	Change:	Changeable only at stop
	Value Range:			
	0.01 Hz to F0-10			
	Description			
F1-05	Rated motor speed			
	Address:	0xF105	Effective mode:	-
	Min.:	1	Unit:	RPM
	Max.:	65535	Data type:	Ulnt16
	Default:	1460	Change:	Changeable only at stop
	Value Range:			
	1 RPM to 65535 RPM			
	Description			
F1-06	Asynchronous motor stator resistance			
	Address:	0xF106	Effective mode:	-
	Min.:	0.001	Unit:	Ω
	Max.:	65.535	Data type:	Ulnt16
	Default:	1.204	Change:	Changeable only at stop
	Value Range:			
	0.001Ω to 65.535Ω			
	Description			
	-			
F1-07	Asynchronous motor rotor resistance			
	Address:	0xF107	Effective mode:	-
	Min.:	0.001	Unit:	Ω
	Max.:	65.535	Data type:	Ulnt16
	Default:	0.908	Change:	Changeable only at stop
	Value Range:			
	0.001Ω to 65.535Ω			
	Description			
	-			
F1-08	Asynchronous motor leakage inductance			
	Address:	0xF108	Effective mode:	-

	Min.:	0.01	Unit:	mH
	Max.:	655.35	Data type:	Ulnt16
	Default:	5.28	Change:	Changeable only at stop
	Value Ra			
	0.01 mH	655.35 mH		
	Descript			
	-			
F1-09	Asynchr	ous motor		
	Address:	0xF109	Effective mode:	-
	Min.:	0.1	Unit:	mH
	Max.:	6553.5	Data type:	Ulnt16
	Default:	156.8	Change:	Changeable only at stop
	Value Ra			
	0.1 mH to	553.5 mH		
	Descript			
	-			
F1-10	Asynchr	ous motor		
	Address:	0xF10A	Effective mode:	
	Min.:	0.01	Unit:	A
	Max.:	F1-03	Data type:	Ulnt16
	Default:	4.20	Change:	Changeable only at stop
	Value Ra			
	0.01 A to	-03		
	Descript			
	-			
F1-16	Synchro	us motor		
	Address:	0xF110	Effective mode:	-
	Min.:	0.001	Unit:	Ω
	Max.:	65.535	Data type:	Ulnt16
	Default:	1.204	Change:	Changeable only at stop
	Value Ra			
	0.001Ω to	65.535Ω		
	Descript			
F1-17	Synchro	us motor D		
	Address:	0xF111	Effective mode:	-
	Min.:	0.01	Unit:	mH
	Max.:	655.35	Data type:	Ulnt16
	Default:		Change:	Changeable only at stop
	Value Ra	ge:		
	0.01 mH	655.35 mH		
	Descript			
F1-18	Synchro	us motor		
	Address:	0xF112	Effective mode:	-
	Min.:	0.01	Unit:	mH
	Max.:	655.35	Data type:	Ulnt16

Default: 5.28
Change:
Changeable only at stop

Value Range:

0.01 mH to 655.35 mH

Description

F1-20 Synchronous motor back EMF coefficient

Address: 0xF114
Min.: 0.0
Max.: 6553.5
Default: 300.0
Value Range:
0.0 V to 6553.5 V

Description

Effective mode:	-
Unit:	V
Data type:	Ulnt16
Change:	Changeable only at stop

Data type: Ulnt16
Change: Changeable only at stop

F1-27 Encoder PPR

Address:	$0 x F 11 B$	Effective mode:	
Min.:	1	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	1024	Change:	Changeable only at stop

Value Range:

1 to 65535
Description
This parameter defines the number of pulses per revolution of the ABZ encoder. In FVC mode, the motor cannot run properly if this parameter is set incorrectly.

F1-28 Encoder type
Address: 0xF11C Effective mode: -
Min.: $\quad 0$
Unit:
Max.: 3
Default: 0
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0 : ABZ incremental encoder
1: 23-bit encoder
2: Resolver
3: External input

Description

After the PG card is installed, you need to set this parameter properly to ensure normal running of the AC drive.

F1-29 Speed feedback PG card
Address: 0xF11D Effective mode: -
Min.: 0 Unit: -
Max.: $1 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable only at stop
Value Range:
0 : Local PG card
1: Extension PG card

Description

The ABZ encoder supports PG card extension. When the extension PG card is used for speed measurement, set this parameter to 1 .

F1-30 A/B phase sequence of encoder

Address:	$0 \times F 11 E$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0: Forward
1: Reverse
Description
This parameter is used to change the phase sequence of the encoder.

F1-31 Encoder installation angle

Address:	$0 \times F 11 F$	Effective mode:-	
Min.:	0.0	Unit:	\circ
Max.:	359.9	Data type:	Ulnt16
Default:	0.0	Change:	Changeable only at stop

Value Range:
0.0° to 359.9°
Description

F1-34 Number of resolver pole pairs

Address:	0xF122	Effective mode:	
Min.:	1	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop

Value Range:
1 to 65535
Description

F1-36 Speed feedback PG wire breakage detection time

Address:	0xF124	Effective mode:	S
Min.:	0.0	Unit:	S
Max.:	10.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable only at stop

Value Range:
0.0 s to 10.0 s

Description

This parameter defines the detection time of the encoder wire breakage fault. If it is set to 0.0 s , the AC drive does not detect the encoder wire breakage fault.
If hardware detection of encoder wire breakage is enabled (bit02 of AA-30 is set to 1), the AC drive reports ERR20 when the AC drive detects a wire breakage fault and the fault lasts for a period longer than the time specified by F1-36.

F1-37 Auto-tuning

Address: 0xF125 Effective mode:

Min.:	0	Unit:	-
Max.:	13	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop
Value Range:			
0: No operation			
1: Static auto-tuning on partial parameters of asynchronous motor			
2: Dynamic auto-tuning on asynchronous motor			
3: Static auto-tuning on all parameters of asynchronous motor			
4: Inertia auto-tuning			
5: Deadzone auto-tuning			
11: With-load auto-tuning on synchronous motor (excluding back EMF)			
12: No-load dynamic auto-tuning on synchronous motor			
13: Static auto-tuning on all parameters of synchronous motor (excluding zero point angle)			
Description			

4.3 F2: Motor 1 Vector Control Parameters

F2-00 Speed loop proportional gain 1

Address:	$0 x F 200$	Effective mode:	
Min.:	1	Unit:	-
Max.:	300	Data type:	Ulnt16
Default:	30	Change:	Changeable at any time

Value Range:
1 to 100

Description

This parameter defines the low-speed speed loop gain Kp , which affects the response to the motor speed. A larger Kp value indicates higher adjustment sensitivity and adjustment intensity. A smaller Kp value indicates lower adjustment sensitivity and adjustment intensity. The low-speed speed loop Kp is used in the case of low speed.

F2-01 Speed loop integral time 1

Address:	$0 x F 201$	Effective mode:	-
Min.:	0.01	Unit:	S
Max.:	10.00	Data type:	Ulnt16
Default:	0.50	Change:	Changeable at any time

Value Range:
0.01 s to 10.00 s

Description

This parameter defines the low-speed speed loop integral time Ti. The reciprocal of the speed loop integral time constant is the integral gain. The speed loop integral time constant affects the steadystate speed error of the motor and the stability of the speed loop system. Increasing the speed loop integral time constant slows down the response of the speed loop. In this case, increase the speed loop proportional gain to shorten the response time of the speed loop. The low-speed speed loop Ti is used in the case of low speed.

F2-02 Switchover frequency 1

Address: 0xF202 Effective mode:

Min.:	0.00	Unit:	Hz
Max.:	F2-05	Data type:	Ulnt16
Default:	5.00	Change:	Changeable at any time

Value Range:

0.00 Hz to $\mathrm{FO}-05$

Description
The speed loop PI parameters are divided into two groups: low speed and high speed. When the running frequency is lower than switchover frequency 1 (F2-02), the speed loop PI is adjusted by F2-00 and F2-01. When the running frequency is higher than switchover frequency 2 (F2-05), the speed loop PI is adjusted by F2-03 and F3-04. When the running frequency falls between switchover frequency 1 and switchover frequency 2, PI parameters are obtained from linear switchover between the two groups of PI parameters. The value of this parameter must be smaller than F2-05 (switchover frequency 2).

F2-03 Speed loop proportional gain 2

Address:	$0 \times F 203$	Effective mode:	-
Min.:	1	Unit:	-
Max.:	300	Data type:	Ulnt16
Default:	20	Change:	Changeable at any time

Value Range:
1 to 300
Description
This parameter defines the high-speed speed loop gain Kp. A larger Kp value indicates higher adjustment sensitivity and adjustment intensity. A smaller Kp value indicates lower adjustment sensitivity and adjustment intensity.

F2-04 Speed loop integral time 2

Address:	0xF204	Effective mode:	S
Min.:	0.01	Unit:	S
Max.:	10.00	Data type:	Ulnt16
Default:	1.00	Change:	Changeable at any time

Value Range:

0.01 s to 10.00 s

Description

This parameter defines the high-speed speed loop integral time Ti. The speed loop integral time constant affects the steady-state speed error of the motor and the stability of the speed loop system. Increasing the speed loop integral time constant slows down the response of the speed loop. In this case, increase the speed loop proportional gain to shorten the response time of the speed loop.

F2-05 Switchover frequency 2

Address:	0xF205	Effective mode:	-
Min.:	F2-02	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16
Default:	10.00	Change:	Changeable at any time

Value Range:
F2-02 to F0-10

Description

The speed loop PI parameters are divided into two groups: low speed and high speed. When the running frequency is lower than switchover frequency 1 (F2-02), the speed loop PI is adjusted by F2-00 and F2-01. When the running frequency is higher than switchover frequency 2 (F2-05), the speed loop PI is adjusted by F2-03 and F3-04. When the running frequency falls between switchover frequency 1 and switchover frequency 2, PI parameters are obtained from linear switchover between the two groups of PI parameters. The value of this parameter must be smaller than F2-05 (switchover frequency 2).

F2-07 Speed feedback filter time in SVC mode

Address:	0xF207	Effective mode:	
Min.:	0.000	Unit:	S
Max.:	0.100	Data type:	Ulnt16
Default:	0.015	Change:	Changeable at any time

Value Range:

0.000 s to 0.100 s

Description

In FVC control mode (F0-01 = 1), the speed loop feedback filter time is valid. You can improve the stability of the motor by adjusting this parameter. Increasing the speed loop feedback filter time can enhance motor stability but slow down dynamic response. Decreasing it will bring faster dynamic response. An excessively small parameter value may lead to motor oscillation. Generally, the motor stability meets requirements, and no adjustment is required.

F2-09 Torque upper limit source in speed control mode (motoring)

Address:	$0 \times F 209$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	7	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Min.: 0
Max.: $\quad 7$
Default: 0

Value Range:

Address:	0xF207	Effective mode:	
Min.:	0.000	Unit:	S
Max.:	0.100	Data type:	Ulnt16
Default:	0.015	Change:	Changeable at any time

Effective mode:	-
Unit:	$\%$
Data type:	Ulnt16
Change:	Changeable at any time

Value Range:
50\% to 200\%

Description

In SVC control mode, this parameter is used to adjust the speed stability accuracy of the motor. For example, when the running frequency of the motor is lower than the output frequency of the AC drive, you can increase the value of this parameter.

In FVC control mode, this parameter is used to adjust the output current of the AC drive with the same load. For example, you can decrease the value of this parameter gradually when a high-rate AC drive is used to control a motor with low load capacity. No adjustment is required under normal circumstances.
居过

0: Digital setting (F2-10)
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: MIN (AI1, AI2)
7: MAX (AI1, AI2)
Others: F connector

Description

0: Digital setting (F2-10)
The torque upper limit in speed control mode is set by F2-10 (digital setting of torque upper limit in speed control).
1: Al1
The torque upper limit is input with the current or voltage signal through the AI1 terminal. The frequency is calculated according to the preset AI curve.
2: Al2
The torque upper limit is input with the current or voltage signal through the AI2 terminal. The frequency is calculated according to the preset AI curve.
3: Al3
The torque upper limit is input with the current or voltage signal through the AI3 terminal. The frequency is calculated according to the preset AI curve.
4: Pulse reference (DI5)
The torque upper limit in speed control is set through DI5. The frequency is calculated based on the curve reflecting the relationship between the pulse frequency and running frequency.
5: Communication
The main frequency is set through communication. The running frequency is input through remote communication. The AC drive must be equipped with a communication card to implement communication with the host controller. This mode applies to remote control or centralized control of multiple equipment.
6: MIN (AI1, AI2)
The torque upper limit in speed control mode is the smaller value between AI1 and AI2 inputs.
7: MAX (AI1, AI2)
The torque upper limit in speed control mode is the larger value between AI1 and AI2 inputs. Others: F connector
A function code is set for a floating-point connector, and the value of the connector is read as the motoring torque upper limit in speed control mode. This mode is used for expansion besides the common sources.

The full scale of setpoints other than setpoint 0 corresponds to F2-10.

F2-10 Torque upper limit in speed control mode

Address:	$0 x F 20 A$	Effective mode: -	
Min.:	0.0	Unit:	\%
Max.:	200.0	Data type:	Ulnt16
Default:	150.0	Change:	Changeable at any time

Value Range:
0.0\% to 200.0\%

Description

This parameter defines the torque upper limit in speed control mode.

F2-11 Torque upper limit source in speed control mode (generating)
Address: 0xF20B
Min.: $\quad 0$
Max.: 8
Default: 0
Value Range:
0 : Digital setting (F2-10)
1: AI1
2: Al2
3: AI3
4: Pulse reference (DI5)
5: Communication
6: MIN (AI1, AI2)
7: MAX (AI1, AI2)
8: Digital setting (F2-12)
Others: F connector
Description
0 : Digital setting (F2-10)
The torque upper limit in speed control mode is set by F2-10 (digital setting of torque upper limit in speed control).
1: AI1
The torque upper limit is input with the current or voltage signal through the AI1 terminal. The frequency is calculated according to the preset AI curve.
2: Al2
The torque upper limit is input with the current or voltage signal through the AI2 terminal. The frequency is calculated according to the preset AI curve.
3: Al3
The torque upper limit is input with the current or voltage signal through the AI3 terminal. The frequency is calculated according to the preset AI curve.
4: Pulse reference (DI5)
The torque upper limit in speed control is set through DI5. The frequency is calculated based on the curve reflecting the relationship between the pulse frequency and running frequency.
5: Communication
The main frequency is set through communication. The running frequency is input through remote communication. The AC drive must be equipped with a communication card to implement communication with the host controller. This mode applies to remote control or centralized control of multiple equipment.
6: MIN (AI1, Al2)
The torque upper limit in speed control mode is the smaller value between AI1 and AI2 inputs.
7: MAX (AI1, AI2)
The torque upper limit in speed control mode is the larger value between AI1 and AI2 inputs.
8: Digital setting (F2-12)
The torque upper limit in speed control mode is set by F2-12 (digital setting of generating torque upper limit in speed control).
Others: F connector

A function code is set for a floating-point connector, and the value of the connector is read as the generating torque upper limit in speed control mode. This mode is used for expansion besides the common sources.

The full scale of setpoints other than setpoints 0 and 8 corresponds to F2-12.

F2-12 Torque upper limit in speed control mode (generating)
Address: 0xF20C Effective mode:
Min.: $0.0 \quad$ Unit:

Max.: $200.0 \quad$ Data type: Ulnt16
Default: $150.0 \quad$ Change: Changeable at any time
Value Range:
0.0\% to 200.0\%

Description
This parameter defines the generating torque upper limit in speed control mode.

F2-18 Field weakening mode

Address: 0xF212 Effective mode: -
Min.: $0 \quad$ Unit: -
Max.: $2 \quad$ Data type: Ulnt16
Default: 1 Change: Changeable only at stop
Value Range:
0 : No field weakening
1: Auto adjustment
2: Calculation+Auto adjustment

Description

0 : No field weakening
Without field weakening control, the maximum motor speed is related to the bus voltage of the AC drive. The output current is smaller under the same load, but the running frequency cannot reach the frequency reference. Do not select this function if a higher speed is required.
1: Auto adjustment
This field weakening mode is simple and reliable. In scenarios requiring quick field weakening, the field weakening coefficient (F2-19) can be increased as appropriate. However, if the coefficient is too large,
the current may be unstable.
2: Calculation+Auto adjustment
In this mode, the field weakening current is adjusted quickly. This mode can be selected in scenarios where the auto adjustment mode cannot
meet requirements.

F2-19 Field weakening gain

Address: 0xF213 Effective mode: -
Min.: 1 Unit: -

Max.: $50 \quad$ Data type: Ulnt16
Default: 5 Change: Changeable at any time
Value Range:
1 to 50
Description
Increasing the setpoint can improve dynamic response. However, an excessively large setpoint may also cause current oscillation.

```
F2-22 Generating power limiting
Address: 0xF216 Effective mode:
Min.: 0 Unit
Max.: 3 Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
0: Disabled
1: Enabled in the whole process
2: Enabled at constant speed
3: Enabled during deceleration
Description
F2-23 Generating power upper limit
Address: 0xF217
```

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Default: 20.0
Value Range:
0.0\% to 200.0\%

Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```
Value Range:
0: Disabled
1: Enabled in the whole process
2: Enabled at constant speed
3: Enabled during deceleration
Description
F2-23 Generating power upper limit
Address: 0xF217
Min.: 0.0
Max.: \(\quad 200.0\)
F2-25 Initial position angle detection of synchronous motor
```

Address: 0xF219
Min.: $\quad 0$
Max.: 2
Default: 0

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

```
0 : Detected upon running
1: Not detected
2: Detected upon initial running after power-on
Description
The initial position angle detection can prevent reverse rotation at startup, but it causes certain noise. For scenarios where reverse rotation is not allowed at startup and the rotor position of the motor will change after stop, F2-25 must be set to 0 .
It can be set to 1 or 2 in other scenarios.
F2-27 Salient pole rate adjustment gain of synchronous motor
Address: 0xF21B
Effective mode:
```

Min.:	0.20	Unit:	-
Max.:	3.00	Data type:	Ulnt16
Default:	1.00	Change:	Changeable at any time

Value Range:

0.20 to 3.00

Description
If F2-28 is set to 1 , you can adjust F2-27 when the output current does not decrease or even increase under the same load. When the load remains unchanged, adjust F2-27 until the output current is the smallest.

Maximum torque-to-current ratio control of synchronous motor

Address: 0xF21C
Min.: 0
Max.: 1
Default: 1
Value Range:
0: Disabled
1: Enabled
Description
When this function is enabled for the salient pole motor, the current will become smaller under the same load.

F2-32 Z signal correction

Address: 0xF220
Min.: 0
Max.: $\quad 1$
Default: 1
Value Range:
0: Disabled
1: Enabled
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

F2-37 Low speed carrier frequency

Address:	$0 x F 225$	Effective mode:	-
Min.:	0.8	Unit:	kHz
Max.:	F0-15	Data type:	Ulnt16
Default:	2.0	Change:	Changeable at any time

Value Range:
0.8 kHz to F0-15

Description

F2-43 Position lock

Address:	$0 x F 22 B$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 to 1
Description

F2-44 Switchover frequency

Address: 0xF22C

Effective mode:
Min.: $\quad 0.00$
Max.: F2-02
Default: 0.30
Value Range:
0.00 Hz to F2-02

Description

F2-45 Position lock speed loop proportional gain
Address: 0xF22D Effective mode: -
Min.: $\quad 1$
Max.: $\quad 100$
Unit:

Default: 10
Data type: Ulnt16
Change: Changeable at any time
Value Range:
1 to 100
Description

F2-46 Position lock speed loop integral time

Address:	$0 x F 22 E$
Min.:	0.01
Max.:	10.00
Default:	0.50

Effective mode:
Unit: S
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0.01 s to 10.00 s

Description

F2-49 Auto-tuning free mode

Address:	$0 x F 231$	Effective mode:
Min.:	0	Unit:
Max.:	2	Data type:
Default: 0	Change:	Clint16
Value Range:		
0: Disabled		
1: Auto-tuning upon initial running after power-on		
2: Auto-tuning upon running		
Description		

F2-51 Initial position compensation angle
Address: 0xF233
Effective mode:
Min.: 0.0
Max.: $\quad 359.9$
Unit:
Data type: Ulnt16
Change: Changeable at any time
Default: 0.0
Value Range:
0.0 to 359.9

Description

4.4 F3: V/f Control Parameters 1

F3-00 V/f curve

Address:	$0 x F 300$
Min.:	0
Max.:	11
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Value Range:

0 : Straight-line V/f curve
1: Multi-point V/f curve
2-9: Reserved
10: V/f complete separation mode
11: V/f half separation mode

Description

F3-01 Torque boost
Address: 0xF30
Min.: 0.0
Max.: $\quad 30.0$
Default: 3.0
Value Range:
0.0\% to 30.0\%

Description

F3-02 Cut-off frequency of torque boost
Address: 0xF302
Min.: $\quad 0.00$
Max.: \quad F0-10
Default: $\quad 50.00$
Value Range:
0.00 Hz to F0-10

Description

F3-03 Multi-point V/f frequency 1
Address: 0xF303
Min.: $\quad 0.00$
Max.: F3-05
Default: 0.00
Value Range:
0.00 Hz to F3-05

Description

F3-04 Multi-point V/f voltage 1

Address:	$0 x F 304$
Min.:	0.0
Max.:	100.0
Default:	0.0

Effective mode:
Unit: $\quad \mathrm{Hz}$

Data type: Ulnt16
Change: Changeable only at stop

Effective mode: -
Unit: $\%$
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: Hz

Data type: Ulnt16
Change: Changeable only at stop

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop

Value Range:

0.0\% to +100.0\%

Description

F3-05 Multi-point V/f frequency 2

Address:	0xF305
Min.:	F3-03
Max.:	F3-07
Default:	0.00

Value Range:
F3-03 to F3-07
Description

F3-06 Multi-point V/f voltage 2

Address:	$0 x F 306$
Min.:	0.0
Max.:	100.0
Default:	0.0

Value Range:

0.0% to $+100.0 \%$

Description

F3-07 Multi-point V/f frequency 3
Address: 0xF307
Min.: F3-05
Max.: \quad F1-04
Default: 0.00

Value Range:

F3-05 to F1-04

Description

F3-08 Multi-point V/f voltage 3
Address: 0xF308
Min.: 0.0
Max.: $\quad 100.0$
Default: 0.0
Value Range:
0.0\% to $+100.0 \%$

Description

F3-09 V/F slip compensation gain
Address: 0xF309
Min.: 0.0
Max.: 200.0
Default: 0.0
Value Range:
0.0 to 200.0

```
Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable only at stop
```

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Description

F3-10 \quad V/f overexcitation gain
Address: 0xF30A
Min.: 0
Max.: 200
Default: 64
Value Range:
0 to 200
Description

F3-11 V/f oscillation suppression gain

Address:	$0 x F 30 B$
Min.:	0
Max.:	100
Default:	40

Value Range:

0 to 100

Description

F3-12 V/f oscillation suppression

Address: 0xF30C
Min.: $\quad 0$
Max.: $\quad 1$
Default: 1

Value Range:

0 : Disabled
1: Enabled
Description

F3-13 Voltage source for V/f separation
Address: 0xF30D
Min.: 0
Max.: $\quad 8$
Default: 0

Value Range:

0 : Digital setting (F3-14)
1: AI1
2: AI2
3: AI3
4: Pulse reference (DI5)
5: Multi-reference
6: Simple PLC
7: PID
8: Communication
Others: F connector

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Description

This parameter defines the source of the target voltage in V/f separation mode.
0 : Digital setting (F3-14)
The V/f separation voltage is set by F3-14 (V/f separation voltage).
1: AI1
The V/f separation voltage is input with current or voltage signals through the AII terminal. The frequency is calculated according to the preset AI curve.
2: AI2
The V/f separation voltage is input with current or voltage signals through the AI2 terminal. The frequency is calculated according to the preset AI curve.
3: AI3
The V/f separation voltage is input with current or voltage signals through the AI3 terminal. The frequency is calculated according to the preset AI curve. The AC drive has two AI terminals by default, and the AI3 terminal needs to be provided through the I/O expansion card.
4: Pulse reference (DI5)
The V/f separation voltage is set through DI5. The frequency is calculated based on the curve reflecting the relationship between the pulse frequency and running frequency.
5: Multi-reference
When multi-reference is used as the source of the V/f separation voltage, different combinations of DI terminal states correspond to different reference values. The four multi-reference terminals can provide 16 state combinations, corresponding to 16 reference values (percentage x maximum frequency) of parameters in group FC.
6: Simple PLC
The V/f separation voltage is set by simple PLC. For details, see the function description of simple PLC.
7: PID
The V/f separation voltage is set by PID. For details, see the PID function description.
8: Communication
The V/f separation voltage is set through communication. The running frequency is input through remote communication. The AC drive must be equipped with a communication card to implement communication with the host controller. This mode applies to remote control or centralized control of multiple equipment.
Others: F connector
A function code is set for a floating-point connector, and the value of the connector is read as the V / f separation voltage. This mode is used for expansion besides the common sources.

F3-14 V/f separation voltage

Address: 0xF30E Effective mode: -
Min.: 0 Unit: V
Max.: F1-02 Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0 V to F1-02
Description
This parameter defines the V/f separation voltage.

F3-15 Voltage rise time of V / f separation

Address:	$0 x F 30 F$	Effective mode: -
Min.:	0.0	Unit:

Max.:	1000.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0s to 1000.0s

Description
This parameter defines the time required for the output voltage to rise from 0 to the rated motor voltage.

F3-16 Voltage fall time of V/f separation

Address: 0xF310 Effective mode: -
Min.: $0.0 \quad$ Unit:
Max.: $1000.0 \quad$ Data type: Ulnt16
Default: $0.0 \quad$ Change: Changeable at any time

Value Range:
0.0 s to 1000.0 s

Description

This parameter defines the time required for the output voltage to fall from the rated motor voltage to 0 .

F3-17 Stop mode for V/f separation
Address: 0xF311 Effective mode: -
Min.: 0 Unit: -
Max.: $2 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time

Value Range:

0 : Frequency and voltage decline to 0 independently
1: Frequency declines to 0 after voltage declines to 0
2: Coast to stop (new)

Description

0 : The frequency and voltage decrease to 0 independently.
1: The frequency decreases to 0 according to the deceleration time after the voltage decreases to 0 according to the deceleration time.
2: The AC drive coasts to stop without following the stop deceleration curve.

F3-18 Overcurrent stall suppression action current

Address: 0xF312 Effective mode: -
Min.: $50 \quad$ Unit:
Max.: 200
Default: 150
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
50\% to 200\%
Description

F3-19 Overcurrent stall suppression

Address:	$0 \times F 313$	Effective mode:	
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop

Value Range:

```
0: Disabled
1: Enabled Description
```

F3-20 Overcurrent stall suppression gain

Address: 0xF314
Min.: 1
Max.: $\quad 100$
Default: 20
Value Range:
1 to 100
Description
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

F3-21 Compensation coefficient of speed multiplying overcurrent stall suppression action current
Address: 0xF315
Effective mode:
Min.: 50
Max.: 200
Default: 100
Unit: $\%$
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
50\% to 200\%
Description

F3-22 Overvoltage stall suppression action voltage
Address: 0xF316 Effective mode: -
Min.: 330.0 Unit: V

Max.: $800.0 \quad$ Data type: Ulnt16
Default: $770.0 \quad$ Change: Changeable at any time
Value Range:
330.0 V to 800.0 V

Description

F3-23 Overvoltage stall suppression
Address: 0xF317 Effective mode:
Min.: 0
Unit
Max.: $\quad 1$
Default: 1
Value Range:
0 : Disabled
1: Enabled
Description

F3-24 Overvoltage stall suppression frequency gain
Address: 0xF318
Min.: $\quad 1$
Max.: 100
Default: 30
Value Range:

1 to 100

Description

F3-25 Overvoltage stall suppression voltage gain

Address:	$0 x$ F319	Effective mode:	-
Min.:	1	Unit:	-
Max.:	100	Data type:	Ulnt16
Default:	30	Change:	Changeable at any time

Value Range:
1 to 100
Description

F3-26 Frequency rise threshold for overvoltage stall suppression
Address: 0xF31A
Min.: 0
Max.: 50
Default: 5
Effective mode: -
Unit: Hz
Data type: Ulnt16
Change: Changeable only at stop

Value Range:

0 Hz to 50 Hz
Description

F3-27 Slip compensation filter time

Address:	$0 \times F 31 B$	Effective mode:	-
Min.:	0.1	Unit:	S
Max.:	10.0	Data type:	Ulnt16
Default:	0.5	Change:	Changeable only at stop

Value Range:
0.1 s to 10.0 s

Description

F3-28 Multi-point curve source
Address: 0xF31C Effective mode:
Min.: $0 \quad$ Unit:
Max.: 2
Default: 0
Data type: Ulnt16
Change: Changeable only at stop

Value Range:

0: 3-point curve
1: Multi-point curve module A
2: Multi-point curve module B
Description
0: 3-point curve
The 3-point curve is used by default, which is set in F3-03 to F3-08.
1: Multi-point curve module A
The output of free module A is used as the voltage reference of the multi-point curve.
2: Multi-point curve module B
The output of free module B is used as the voltage reference of the multi-point curve.

F3-33	Online torque compensation gain			
	Address:	0xF321	Effective mode:	
	Min.:	80	Unit:	-
	Max.:	150	Data type:	Ulnt16
	Default:	100	Change:	Changeable only at stop
	Value Range:			
	80 to 150			
	Description			
	-			
F3-34	ImaxKi coefficient			
	Address:	0xF322	Effective mode:	-
	Min.:	10	Unit:	\%
	Max.:	1000	Data type:	Ulnt16
	Default:	100	Change:	Changeable only at stop
	Value Range:			
	10\% to 1000\%			
	Description			
	-			
F3-35	Overcurrent suppression threshold (relative to rated motor current)			
	Address:	0xF323	Effective mode:	-
	Min.:	80	Unit:	\%
	Max.:	300	Data type:	Ulnt16
	Default:	200	Change:	Changeable only at stop
	Value Range:			
	80\% to 300\%			
	Description			
F3-36	Frequency threshold for overcurrent suppression field weakening			
	Address:	0xF324	Effective mode:	-
	Min.:	100	Unit:	\%
	Max.:	500	Data type:	Ulnt16
	Default:	100	Change:	Changeable only at stop
	Value Range:			
	100\% to 500\%			
	Description			
	-			
F3-37	IT filter time			
	Address:	0xF325	Effective mode:	-
	Min.:	10	Unit:	ms
	Max.:	1000	Data type:	Ulnt16
	Default:	100	Change:	Changeable only at stop
	Value Range:			
	10 ms to 1000 ms			
	Description			
	-			
F3-38	Slip compensation mode			
	Address:	0xF326	Effective mode:	-

Min.:	0	Unit:	-
Max.: 2	Data type:	UInt16	
Default: 1	Change:	Changeable only at stop	
Value Range:			
0: Disabled			
1: Slip compensation without PG			
2: Slip compensation with PG			
Description			

F3-39 VdcMaxCtrl allowed runtime

Address:	$0 \times F 327$	Effective mode:	S
Min.:	0.0	Unit:	S
Max.:	100.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable only at stop

Value Range:
0.0 s to 100.0 s

Description

F3-40 Upper limit of V/f separation voltage

Address:	$0 x F 328$	Effective mode:	
Min.:	50.0	Unit:	$\%$
Max.:	200.0	Data type:	Ulnt16
Default:	100.0	Change:	Changeable only at stop

Value Range:
50.0\% to 200.0\%

Description

This parameter defines the upper limit of the V / f separation voltage, which is a percentage relative to the rated motor voltage.

F3-41 RFG time of V/f separation frequency
Address: 0xF329 Effective mode:
Min.: $\quad 0$
Max.: $1 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable only at stop
Value Range:
0 : RFG time forced to 0
1: Preset RFG time

Description

This parameter defines the RFG time of the V / f separation frequency. When it is set to 0 , the frequency reference acceleration/deceleration time is forced to 0 ; when it is set to 1 , the acceleration/
deceleration time is set as normal.
F3-42 Cut-off frequency of V / f oscillation suppression filter
Address: 0xF32A Effective mode: -
Min.: 1.0 Unit: Hz
Max.: $50.0 \quad$ Data type: Ulnt16
Default: $8.0 \quad$ Change: Changeable at any time
Value Range:
1.0 Hz to 50.0 Hz

Description

F3-43 Cut-off frequency threshold for V/F oscillation suppression
Address: 0xF32B
Effective mode:
Min.: 10
Max.: 3000
Unit: Hz

Default: 200
Data type: Ulnt16
Change: Changeable at any time
Value Range:
10 Hz to 3000 Hz
Description

F3-44 VdcMaxCtrl feedforward coefficient

Address:	$0 \times F 32 C$	Effective mode:	-
Min.:	0	Unit:	$\%$
Max.:	500	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0\% to 500\%
Description

F3-50 PMVVC low-speed IF

Address:	$0 \times F 332$	Effective mode:
Min.:	0	Unit:
Max.:	1	Data type:
Default:	1	Change:

Value Range:
0: Disabled
1: Enabled
Description

F3-51 PMVVC low-speed IF current
Address: 0xF333
Effective mode:
Min.: 30
Max.: 250
Default: 100
Unit:
Data type: Ulnt16

Value Range:
30 to 250
Description

F3-52 PMVVC low-speed IF speed switching threshold
Address: 0xF334
Min.: $\quad 2.0$
Max.: $\quad 100.0$
Default: 10.0
Change: Changeable only at stop

Address:	$0 x F 334$	Effective mode:	-
Min.:	2.0	Unit:	\%
Max.:	100.0	Data type:	Ulnt16
Default:	10.0	Change:	Changeable only at stop
Value Range:			
2.0% to 100.0%			

Description

F3-53 PMVVC oscillation suppression gain coefficient

Address: 0xF335
Min.: 0
Max.: 500
Default: 100
Value Range:
0 to 500
Description

F3-54 PMVVC filter time coefficient

Address:	$0 \times F 336$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	500	Data type:	Ulnt16
Default:	100	Change:	Changeable at any time

Value Range:
0 to 500
Description

F3-55 PMVVC energy conservation control mode

Address: 0xF337

Min.: $\quad 0$
Max.: 2
Default: 2

Value Range:

0 : Fixed straight-line V/f curve
1: Fixed 30% reactive current
2: MTPA control
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Changeable at any time

Description
-

4.5 F4: Input Terminal Parameters

F4-00 DI1 function

Address:	$0 x F 400$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	80	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop

Value Range:

0 : No function
1: Forward RUN (IN1)
2: Reverse RUN (IN2)
3: Three-wire control (IN3)
4: Forward jogging (FJOG)
5: Reverse jogging (RJOG)
6: Terminal UP
7: Terminal DOWN
8: Coast to stop
9: Fault reset (RESET)
10: Running pause
11: External fault NO input
12: Multi-reference terminal 1
13: Multi-reference terminal 2
14: Multi-reference terminal 3
15: Multi-reference terminal 4
16: Acceleration/deceleration selection terminal 1
17: Acceleration/deceleration selection terminal 2
18: Frequency source switchover
19: UP and DOWN setting clear
20: Command source switchover terminal 1
21: Acceleration/Deceleration inhibition
22: PID pause
23: Simple PLC state reset
24: Wobble pause
25: Counter input
26: Counter reset
27: Length count input
28: Length reset
29: Torque control inhibition
31: Reserved
32: Immediate DC braking
(To be continued)
(continued)
33: External fault NC input
34: Frequency modification enable
35: PID action direction reversal
36: External stop terminal 1
37: Command source switchover terminal 2
38: PID integral pause
39: Switchover between main frequency and preset frequency
40: Switchover between auxiliary frequency and preset frequency
41: Motor selection terminal 1
42: Reserved
43: PID parameter switchover
44: User-defined fault 1
45: User-defined fault 2
46: Switchover between speed control and torque control
47: Emergency stop
48: External stop terminal 2
49: Deceleration DC braking
50: Current running duration clear
51: Switchover between two-wire and three-wire control
52: Reverse running inhibition
53-69: Reserved
70: Control channel
71: Reference source (Reserved)
72: Terminal module
73: Startup mode bit0
74: Startup mode bit1
75: Command source switchover terminal 3
76: Motor selection terminal 2
77: Running enable
78: Forward RUN enable
79: Reverse RUN enable
80: RFG input set to 0

Description

0 : No function
The DI terminal has no function.
1: Forward RUN (IN1)
The terminal is used to set the operation mode of the AC drive to forward run. (FWD indicates forward.) In two-wire mode 1 (F4-11 = 0), the terminal is used to set the operation mode of the AC drive to forward run. In two-wire mode 2 ($\mathrm{F} 4-11=1$), the terminal is used to issue a running command.
2: Reverse RUN (IN2)
The terminal is used to set the operation mode of the AC drive to reverse run. (REV indicates reverse.) In two-wire mode 1 (F4-11 = 0), the terminal is used to set the operation mode of the AC drive to reverse run. In two-wire mode 2 ($\mathrm{F} 4-11=1$), the terminal is used to set the forward/reverse run direction.

3: Three-wire control

The terminal is used to set the AC drive to run in three-wire control mode. To use a terminal as the command source, set F4-11 (terminal control mode) to 2 (three-wire mode 1) or 3 (three-wire mode 2), and set this parameter to 3 . The three-wire control modes include three-wire mode 1 and threewire mode 2.
4: Forward jogging (FJOG)
The terminal is used to set the operation mode of the AC drive to forward jogging. In jogging mode, the AC drive runs at low speed for a short time, which is typically used for maintenance and commissioning of field equipment.
5: Reverse jogging (RJOG)
The terminal is used to set the operation mode of the AC drive to reverse jogging. In jogging mode, the AC drive runs at low speed for a short time, which is typically used for maintenance and commissioning of field equipment.
6: Terminal UP
The terminal is used to increase the frequency when terminal I / O is used as the frequency reference source. When the terminal is active, it works as if the increment key is pressed and held. When the terminal is inactive, it works as if the increment key is released.
7: Terminal DOWN
The terminal is used to decrease the frequency when terminal I/O is used as the frequency reference source. When the terminal is active, it works as if the decrement key is pressed and held. When the terminal is inactive, it works as if the decrement key is released.
8: Coast to stop
When the terminal is active, a coast to stop command is issued, upon receiving which the AC drive stops output immediately, allowing the load to stop following mechanical inertia. The AC drive stops by stopping the output. At this time, the power supply of the motor is cut off and the drive system is in a free braking state. Since the stop time is determined by the inertia of the drive system, it is also called inertia stop.
9: Fault reset (RESET)
The terminal is used to reset faults of the AC drive, which functions the same as the STOP/RES key on the operating panel. Remote fault reset can be implemented by using this function.
10 : Running pause
When the terminal is active, the AC drive decelerates to stop with all running parameters memorized (such as PLC, wobble, and PID parameters). When the terminal is inactive, the AC drive resumes its running state as recorded.
11: External fault NO input
When the terminal is active, the AC drive reports Err15 upon receiving an external signal.
12-15: Multi-reference terminals 1-4
Multi-reference is selected as the main frequency source. You can set the 16 states of the four terminals to define 16 speeds or 16 other references. This function is applicable to applications where continuous adjustment of the AC drive running frequency is not required and only several frequency values are required.
16-17: Acceleration/deceleration selection terminals 1-2
The AC drive supports four groups of acceleration/deceleration time, which can be selected through combinations of four states of these two terminals. The acceleration time indicates the time required for the output frequency of the AC drive to rise from 0 to the acceleration/deceleration base frequency (F0-25). The deceleration time indicates the time required for the output frequency of the AC drive to decrease from the acceleration/deceleration base frequency (F0-25) to 0 Hz .

18: Frequency source switchover

The terminal is used to switch between different frequency reference sources. The frequency reference is set in F0-07 (frequency source superposition).
19: UP and DOWN setting clear
When the main frequency is set through the operating panel and this terminal is active, the frequency set by using the increment or decrement key on the operating panel or terminal UP/DOWN can be cleared and the frequency will be reset to the value of F0-08.
20: Command source switchover terminal 1
When the command source is set to terminal control ($\mathrm{FO}-02=1$), activating the terminal switches from terminal control to operating panel control. When the command source is set to communication control (F0-02 = 2), activating the terminal switches from communication control to operating panel control.
21: Acceleration/Deceleration inhibition
The terminal is used to keep the AC drive at the current running frequency regardless of changes of the external input frequency (unless a stop command is received).
22: PID pause
The terminal is used to suspend PID control temporarily, so that the AC drive retains the current output frequency with no more PID tuning on the frequency source.
23: Simple PLC state reset
The terminal is used to reset the AC drive to the initial state of the simple PLC.
24: Wobble pause
In the wobble process, when the terminal is active, the wobble function is paused (the AC drive outputs at the center frequency).
25: Counter input
In the counting process, a counting pulse is input when the terminal is active.
26: Counter reset
In the counting process, the counter state is cleared when the terminal is active.
27: Length count input
In the fixed length process, the length count is input when the terminal is active.
28: Length reset
In the fixed length process, the length is cleared when the terminal is active.
29: Torque control inhibition
When the terminal is active, the AC drive switches from the torque control mode to speed control mode. When the terminal is inactive, the AC drive resumes the torque control mode.
30: Pulse input
This function must be selected when DI5 is used for pulse input.
31: Reserved
32: Immediate DC braking
When the terminal is active, the AC drive switches to the DC braking state directly. During DC braking, the AC drive feeds DC into the stator winding of the asynchronous motor to form a static magnetic field to set the motor to braking with energy consumption. In this state, the rotor cuts the static magnetic field to generate braking torque, which stops the motor quickly.
33: External fault NC input
When the terminal is active, the AC drive reports Err15 upon receiving an external signal.
34: Frequency modification enable
When the terminal is active, the frequency can be modified. When the terminal is inactive, the frequency cannot be modified.

35 PID action direction reversal
The terminal is used to reverse the direction set by FA-03 (PID action direction).
36: External stop terminal 1
When the command source is set to operating panel control ($\mathrm{FO}-02=0$), the terminal is used to stop the AC drive, functioning the same as the STOP/RES key on the operating panel.
37: Command source switchover terminal 2
The terminal is used for switchover between terminal control and communication control. If the command source is set to terminal control, the system switches to communication control when the terminal is active. If the command source is set to communication control, the system switches to terminal control when the terminal is active.
38: PID integral pause
The integral adjustment function pauses when the terminal is active. However, the proportional and derivative adjustment functions are still valid.
39: Switchover between main frequency and preset frequency
The terminal is used to switch from the main frequency X to the preset frequency (F0-08).
40: Switchover between auxiliary frequency and preset frequency
The terminal is used to switch from the auxiliary frequency Y to the preset frequency (F0-08).
41/76: Motor selection
The terminal is used to select the motor. Assume that DI1 and DI2 are assigned with functions 41 and 76. Motor 1 is selected when both DI1 and DI2 are inactive; motor 2 is selected when DI1 is active and DI2 is inactive; motor 3 is selected when DI1 is inactive and DI2 is active; and motor 4 is selected when both DI1 and DI2 are active.
42: Reserved
43: PID parameter switchover
If the PID parameter switchover condition is set to "switchover by DI" (FA-18 = 1), the PID parameters are FA-05 to FA-07 (proportional gain Kp1, integral time Ti1, and derivative time Td1) when the terminal is inactive, or FA-15 to FA-17 (proportional gain Kp2, integral time Ti2, and derivative time Td2) when the terminal is active.
44: User-defined fault 1
When Err27 is reported, the AC drive will take measures according to the value of F9-49 (fault protection action).
45: User-defined fault 2
When Err28 is reported, the AC drive will take measures according to the value of F9-49 (fault protection action).
46: Switchover between speed control and torque control
The terminal is used to switch between speed control and torque control. When A0-00 (speed/torque control mode) is set to 0 , the torque control mode is used when the terminal is active, and the speed control mode is used when the terminal is inactive. When A0-00 (speed/torque control mode) is set to 1 , the speed control mode is used when the terminal is active, and the torque control mode is used when the terminal is inactive.

47: Emergency stop

Upon an emergency, the AC drive decelerates according to the deceleration time for emergency stop set in F8-59, or it decelerates according to the minimum unit time when the deceleration time for emergency stop is 0 s in V / f mode. The terminal does not need to be kept in the closed state. Even if it stays closed only for an instant, the AC drive will come to an emergency stop. Different from general deceleration, the emergency stop action prevents the AC drive from restarting even if the emergency stop input terminal is opened after the deceleration time for emergency stop expires and the run signal is still valid on the AC drive terminal. To restart the AC drive in this case, disconnect the running terminal and input the run command.
48: External stop terminal 2
The terminal is used to make the AC drive decelerate to stop in any control mode (operating panel, terminal, or communication control). In this case, the deceleration time is fixed to deceleration time 4 (F8-08).
49: Deceleration DC braking
The terminal is used to make the AC drive decelerate to the start frequency of DC braking during stop (F6-11) before entering the DC braking state.
50: Current running duration clear
The terminal is used to clear the current running duration of the AC drive. If the current running duration is less than the setpoint of F8-53 (current running duration threshold, which is greater than 0) and the terminal is active in the process, the current running duration is cleared. If the current running duration is greater than the setpoint of F8-53 (greater than 0) and the terminal is active, the current running duration is not cleared.
51: Switchover between two-wire and three-wire control
The terminal is used to switch between two-wire and three-wire control. If F4-11 is set to 0 (two-wire mode 1), the AC drive switches to three-wire mode 1 when the terminal is active. When the terminal is inactive, two-wire mode 1 is used. If F4-11 is set to 1 (two-wire mode 2), the AC drive switches to three-wire mode 2 when the terminal is active. If F4-11 is set to 2 (three-wire mode 1), the AC drive switches to two-wire mode 1 when the terminal is active. If F4-11 is set to 3 (three-wire mode 2), the AC drive switches to two-wire mode 2 when the terminal is active.
52: Reverse running inhibition
When the terminal is active, even if the reverse frequency is set, the actual frequency reference of the AC drive is fixed to 0 . This function is the same as F8-13.
53-69: Reserved
70: Control channel
The terminal is used to select between two custom command channels. The value 0 indicates channel 1 , and the value 1 indicates channel 2.
71: Reference source (Reserved)
72: Terminal module
The terminal is used to select between two terminal modules. The value 0 indicates module A , and the value 1 indicates module B.
73-74: Startup mode (bit0 and bit1)
The terminal is used to select a startup mode. Assume that DI1 and DI2 are assigned with functions 73 and 74 . When both DI1 and DI2 are inactive, direct start is used. When DI1 is active and DI2 is inactive, flying start is used. When DI1 is inactive and DI2 is active, DC braking start is used. When both DI1 and DI2 are active, the last used startup mode is used.
75: Command source switchover terminal 3
The terminal is used for switchover between terminal/communication control and custom command source.

77: Running enable

If the terminal is assigned with this function, running is allowed when the terminal is active high; otherwise, running is not allowed or the AC drive stops according to the stop mode during running defined by AA-09.
78: Forward RUN enable
If the terminal is assigned with this function, the frequency reference can be a positive value when the terminal is active high; otherwise, the frequency reference is set to 0 if it is a positive value.
79: Reverse RUN enable
If the terminal is assigned with this function, the frequency reference can be a negative value when the terminal is active high; otherwise, the frequency reference is set to 0 if it is a negative value. 80: RFG input set to 0
If the terminal is assigned with this function, the target reference is set to 0 when the terminal is active low, and the original reference is restored when the terminal level is high.

F4-01 DI2 function

Address:	$0 \times F 401$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	80	Data type:	Ulnt16
Default:	4	Change:	Changeable only at stop

Value Range:

Same as F4-00
Description
Same as F4-00

F4-02 DI3 function

Address: 0xF402
Min.: 0
Max.: $\quad 80$
Default: 9
Value Range:
Same as F4-00
Description
Same as F4-00

F4-03 DI4 function

Address: 0xF403
Min.: 0
Max.: $\quad 80$
Default: 12
Value Range:
Same as F4-00
Description
Same as F4-00

F4-04 DI5 function
Address: 0xF40
Min.: 0
Max.: $\quad 80$
Default: 13
Value Range:

0: No function
1: Forward RUN (IN1)
2: Reverse RUN (IN2)
3: Three-wire control (IN3)
4: Forward jog (FJOG)
5: Reverse jog (RJOG)
6: Terminal UP
7: Terminal DOWN
8: Coast to stop
9: Fault reset (RESET)
10: Running pause
11: External fault NO input
12: Multi-reference terminal 1
13: Multi-reference terminal 2
14: Multi-reference terminal 3
15: Multi-reference terminal 4
16: Acceleration/deceleration selection terminal 1
17: Acceleration/deceleration selection terminal 2
18: Frequency source switchover
19: UP and DOWN setting clear
20: Command source switchover terminal 1
21: Acceleration/Deceleration inhibition
22: PID pause
23: Simple PLC state reset
24: Wobble pause
25: Counter input
26: Counter reset
27: Length count input
28: Length reset
29: Torque control inhibition
30: Pulse frequency input
31: Reserved
32: Immediate DC braking
(To be continued)

```
(Continued)
33: External fault NC input
34: Frequency modification enable
35: PID action direction reversal
36: External stop terminal 1
37: Command source switchover terminal 2
38: PID integral pause
39: Switchover between main frequency and preset frequency
40: Switchover between auxiliary frequency and preset frequency
41: Motor selection terminal 1
42: Reserved
43: PID parameter switchover
44: User-defined fault 1
45: User-defined fault 2
46: Switchover between speed control and torque control
47: Emergency stop
48: External stop terminal 2
49: Deceleration DC braking
50: Current running duration clear
51: Switchover between two-wire and three-wire control
52: Reverse running inhibition
53-69: Reserved
70: Control channel
71: Reference source (Reserved)
72: Terminal module
73: Startup mode bit0
74: Startup mode bit1
75: Command source switchover terminal 3
76: Motor selection terminal 2
77: Running enable
78: Forward RUN enable
79: Reverse RUN enable
80: RFG input set to 0
Description
Same as F4-00
```


F4-05 DI6 function

```
\begin{tabular}{llll} 
Address: & \(0 \times F 405\) & Effective mode: \\
Min.: & 0 & Unit: & - \\
Max.: & 80 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable only at stop
\end{tabular}
Value Range:
Same as F4-00
Description
Same as F4-00
```

F4-06	DI7 function		
	Address: 0xF406	Effective mode:	
	Min.: 0	Unit:	-
	Max.: 80	Data type:	Ulnt16
	Default: 0	Change:	Changeable only at stop
	Value Range:		
	Same as F4-00		
	Description		
	Same as F4-00		
F4-07	DI8 function		
	Address: 0xF407	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 80	Data type:	Ulnt16
	Default: 0	Change:	Changeable only at stop
	Value Range:		
	Same as F4-00		
	Description		
	Same as F4-00		
F4-08	DI9 function		
	Address: 0xF408	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 80	Data type:	Ulnt16
	Default: 0	Change:	Changeable only at stop
	Value Range:		
	Same as F4-00		
	Description		
	Same as F4-00		
F4-09	DI10 function		
	Address: 0xF409	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 80	Data type:	Ulnt16
	Default: 0	Change:	Changeable only at stop
	Value Range:		
	Same as F4-00		
	Description		
	Same as F4-00		
F4-10	DI filter time		
	Address: 0xF40A	Effective mode:	-
	Min.: 0.000	Unit:	s
	Max.: 1.000	Data type:	Ulnt16
	Default: 0.010	Change:	Changeable at any time
	Value Range:		
	0.000 s to 1.000 s		
	Description		

F4-11 Terminal control mode

Address: 0xF40B
Effective mode:

Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:

0 : Two-wire mode 1
1: Two-wire mode 2
2: Three-wire mode 1
3: Three-wire mode 2

Description

0 : Two-wire mode 1
Two DI terminals are connected: one is used to start/stop the AC drive in forward run mode, and the other is used to start/stop the AC drive in reverse run mode.
1: Two-wire mode 2
Two DI terminals are connected: one is used to start/stop the AC drive, and the other is used to control the running direction.
2: Three-wire mode 1
Three DI terminals are connected: one is used to start/stop the AC drive, and the other two are used to control the running direction.
3: Three-wire mode 2
Three DI terminals are connected: one is used to start the AC drive, one is used to stop the AC drive, and the other is used to control the running direction.

F4-12 Terminal UP/DOWN change rate

Address:	0xF40C	Effective mode:	-
Min.:	0.001	Unit:	Hz / s
Max.:	65.535	Data type:	Ulnt16
Default:	1.000	Change:	Changeable at any time

Value Range:
$0.001 \mathrm{~Hz} /$ s to $65.535 \mathrm{~Hz} / \mathrm{s}$
Description

F4-13 Minimum input of AI curve 1

Address:	0xF40D	Effective mode:	-
Min.:	-10	Unit:	V
Max.:	F4-15	Data type:	Int16
Default:	0.00	Change:	Changeable at any time

Value Range:

-10 V to F4-15
Description

F4-14 Percentage corresponding to minimum input of AI curve 1

Address:	$0 \times F 40 E$	Effective mode:	-
Min.:	-100	Unit:	$\%$
Max.:	100.0	Data type:	Int16
Default:	0.0	Change:	Changeable at any time

Value Range:
-100\% to +100.0\%

Description

F4-15 Maximum input of AI curve 1

Address:	0xF40F	Effective mode:	-
Min.:	F4-13	Unit:	V
Max.:	10.00	Data type:	Int16
Default:	10.00	Change:	Changeable at any time

Value Range:
F4-13 to 10.00 V
Description

F4-16 Percentage corresponding to maximum input of AI curve 1
Effective mode
Min.: $\quad-100$
Max.: $\quad 100.0$
Default: 100.0
Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time
Value Range:
-100\% to +100.0\%
Description

F4-17 Al1 filter time

Address:	0xF411	Effective mode:	
Min.:	0.00	Unit:	s
Max.:	10.00	Data type:	Ulnt16
Default:	0.10	Change:	Changeable at any time

Value Range:

0.00 s to 10.00 s

Description

F4-18 Minimum input of AI curve 2

Address:	0xF412	Effective mode:	-
Min.:	-10	Unit:	V
Max.:	F4-20	Data type:	Int16
Default: 0.00	Change:	Changeable at any time	
Value Range:			
-10 V to F4-20			
Description			

F4-19 Percentage corresponding to minimum input of AI curve 2
Address: 0xF413 Effective mode:
Min.: $\quad-100$
Max.: $\quad 100.0$
Default: 0.0
Value Range:
-100\% to +100.0\%
Description

F4-20 Maximum input of AI curve 2

Address:	0xF414	Effective mode:	-
Min.:	F4-18	Unit:	V
Max.:	10.00	Data type:	Int16
Default:	10.00	Change:	Changeable at any time

Value Range:
F4-18 to 10.00 V
Description

F4-21 Percentage corresponding to maximum input of AI curve 2
Address: 0xF415 Effective mode:
Min.: -100
Max.: $\quad 100.0$
Default: 100.0
Unit:
Data type: Int16
Change: Changeable at any time
Value Range:
-100\% to +100.0\%
Description

F4-22 Al2 filter time

Address:	$0 \times F 416$	Effective mode:	-
Min.:	0.00	Unit:	S
Max.:	10.00	Data type:	Ulnt16
Default:	0.10	Change:	Changeable at any time

Value Range:
0.00 s to 10.00 s

Description

F4-23 Minimum input of AI curve 3

Address:	0xF417	Effective mode:	-
Min.:	-10	Unit:	V
Max.:	F4-25	Data type:	Int16
Default:	-10	Change:	Changeable at any time

Value Range:
-10 V to F4-25
Description

F4-24 Percentage corresponding to minimum input of AI curve 3

Address:	0xF418	Effective mode:	
Min.:	-100	Unit:	$\%$
Max.:	100.0	Data type:	Int16
Default:	-100	Change:	Changeable at any time
Value Range:			
-100% to $+100.0 \%$			
Description			

F4-25 Maximum input of AI curve 3
Address: 0xF419 Effective mode:

Min.:	F4-23	Unit:	V
Max.:	10.00	Data type:	Int16
Default:	10.00	Change:	Changeable at any time

Value Range:
F4-23 to 10.00 V
Description

F4-26 Percentage corresponding to maximum input of AI curve 3
Address: 0xF41A Effective mode:
Min.: -100
Max.: $\quad 100.0$
Unit: \%
Data type: Int16
Change: Changeable at any time
Default: 100.0
Value Range:
-100\% to +100.0\%
Description

F4-27 Al3 fitter time

Address:	0xF41B	Effective mode:	-
Min.:	0.00	Unit:	s
Max.:	10.00	Data type:	Ulnt16
Default:	0.10	Change:	Changeable at any time

Value Range:
0.00 s to 10.00 s

Description

F4-28 Minimum pulse input frequency

Address:	0xF41C	Effective mode:	-
Min.:	0.00	Unit:	kHz
Max.:	F4-30	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:

0.00 kHz to $\mathrm{F} 4-30$

Description

F4-29 Percentage corresponding to minimum pulse input frequency
Address: 0xF41D
Min.: $\quad-100$
Max.: $\quad 100.0$
Default: 0.0
Value Range:
-100\% to +100.0\%
Description

F4-30 Maximum pulse input frequency

Address:	0xF41E	Effective mode: -	
Min.:	F4-28	Unit:	kHz
Max.:	100.00	Data type:	Ulnt16

Default: 50.00
Change: Changeable at any time

Value Range:
F4-28 to 100.00 kHz

Description

F4-31 Percentage corresponding to maximum pulse input frequency
Address: 0xF41F
Min.: $\quad-100$
Max.: 100.0
Default: 100.0

Value Range:

-100\% to +100.0\%

Description

F4-32 Pulse filter time

Address:	$0 \times F 420$	Effective mode:	-
Min.:	0.00	Unit:	S
Max.:	10.00	Data type:	Ulnt16
Default:	0.10	Change:	Changeable at any time

Value Range:

0.00 s to 10.00 s

Description

Al curve

Address:	0xF421	Effective mode:	-
Min.:	0×111	Unit:	-
Max.:	0×555	Data type:	Ulnt16
Default:	0×321	Change:	Changeable at any time

Value Range:

Ones: All curve
1: Curve 1 (2 points, F4-13 to F4-16)
2: Curve 2 (2 points, F4-18 to F4-21)
3: Curve 3 (2 points, F4-23 to F4-26)
4: Curve 4 (4 points, A6-00 to A6-07)
5: Curve 5 (4 points, A6-08 to A6-15)
Tens: Al2 curve
1: Curve 1 (2 points, F4-13 to F4-16)
2: Curve 2 (2 points, F4-18 to F4-21)
3: Curve 3 (2 points, F4-23 to F4-26)
4: Curve 4 (4 points, A6-00 to A6-07)
5: Curve 5 (4 points, A6-08 to A6-15)
Hundreds: Al3 curve
1: Curve 1 (2 points, F4-13 to F4-16)
2: Curve 2 (2 points, F4-18 to F4-21)
3: Curve 3 (2 points, F4-23 to F4-26)
4: Curve 4 (4 points, A6-00 to A6-07)
5: Curve 5 (4 points, A6-08 to A6-15)

Description

F4-35 DI1 delay (invalid)
Address: 0xF423

Min.: 0.0
Max.: $\quad 3600.0$
Default: 0.0
Value Range:
0.0 s to 3600.0 s

Description

F4-36 DI2 delay (invalid)

Address:	$0 \times F 424$	Effective mode:	
Min.:	0.0	Unit:	S
Max.:	3600.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable only at stop

Value Range:
0.0 s to 3600.0 s

Description

F4-37 DI3 delay (invalid)

Address:	0xF425	Effective mode:	
Min.:	0.0	Unit:	s
Max.:	3600.0	Data type:	Ulnt16
Default: 0.0	Change:	Changeable only at stop	
Value Range:			
0.0s to 3600.0s			
Description			

F4-38 DI active mode selection 1

Address: 0xF426
Min.: 0
Max.: 11111
Default: 0
Value Range:
Ones: DII
0 : Active low
1: Active high
Tens: DI2
0: Active low
1: Active high
Hundreds: DI3
0 : Active low
1: Active high
Thousands: DI4
0 : Active low
1: Active high
Ten thousands: DI5
0 : Active low
1: Active high
Description

F4-39 DI active mode selection 2
Address: 0xF427
Min.: 0
Max.: 11111
Default: 0
Value Range:
Ones: DI6
0 : Active low
1: Active high
Tens: DI7
0 : Active low
1: Active high
Hundreds: DI8
0 : Active low
1: Active high
Thousands: DI9
0 : Active low
1: Active high
Ten thousands: DI10
0 : Active low
1: Active high
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

F4-41	DI1 switch-on delay			
	Address:	0xF429	Effective mode:	-
	Min.:	0.0	Unit:	s
	Max.:	3600.0	Data type:	Ulnt16
	Default:	0.0	Change:	Changeable only at stop
	Value Range:			
	0.0s to 3600.0s			
	Description			
	-			
F4-42	DI1 switch-off delay			
	Address:	0xF42A	Effective mode:	-
	Min.:	0.0	Unit:	s
	Max.:	3600.0	Data type:	Ulnt16
	Default:	0.0	Change:	Changeable only at stop
	Value Range:			
	0.0s to 3600.0s			
	Description			
F4-43	DI2 switch-on delay			
	Address:	0xF42B	Effective mode:	-
	Min.:	0.0	Unit:	s
	Max.:	3600.0	Data type:	Ulnt16
	Default:	0.0	Change:	Changeable only at stop
	Value Range:			
	0.0s to 3600.0s			
	Description			
	-			
F4-44	DI2 switch-off delay			
	Address:	0xF42C	Effective mode:	-
	Min.:	0.0	Unit:	S
	Max.:	3600.0	Data type:	Ulnt16
	Default:	0.0	Change:	Changeable only at stop
	Value Range:			
	0.0s to 3600.0s			
	Description			
	Des			
F4-45	DI3 switch-on delay			
	Address:	0xF42D	Effective mode:	-
	Min.:	0.0	Unit:	S
	Max.:	3600.0	Data type:	Ulnt16
	Default:	0.0	Change:	Changeable only at stop
	Value Range:			
	0.0s to 3600.0s			
	Description			
	-			
F4-46	DI3 switch-off delay			
	Address:	0xF42E	Effective mode:	-

Min.:	0.0	Unit:	s
Max.:	3600.0	Data type:	Ulnt16
Default: 0.0	Change:	Changeable only at stop	
Value Range:			
0.0s to 3600.0s			
Description			

F4-47 DI4 switch-on delay

Address: 0xF42F

Min.: 0.0
Max.: 3600.0
Default: 0.0
Value Range:
0.0s to 3600.0s

Description

F4-48 DI4 switch-off delay

Address: 0xF430
Min.: 0.0
Max.: 3600.0
Default: 0.0
Value Range:
0.0s to 3600.0s

Description

F4-49 DI force data
Address: 0xF431
Min.: 0x0
Max.: 0xFFFF
Default: 0×0

Value Range:

Bit00: DI1
0 : Inactive
1: Active
Bit01: DI2
0 : Inactive
1: Active
Bit02: DI3
0 : Inactive
1: Active
Bit03: DI4
0 : Inactive
1: Active
Bit04: DI5/HDI
0 : Inactive
1: Active
Bit05: DI6
0 : Inactive
1: Active
Bit06: DI7
0 : Inactive
1: Active
Bit07: DI8
0 : Inactive
1: Active
Bit08: DI9
0 : Inactive
1: Active
Bit09: DI10
0 : Inactive
1: Active
Bit10: Reserved
Bit11: Reserved
Bit12: Reserved
Bit13: Reserved
Bit14: Reserved
Bit15: Reserved
Description

F4-50 DI communication data
Address: 0xF432 Effective mode: -
Min.: $0 x 0$
Max.: 0xFFFF
Default: 0x0

Unit:
Data type: Ulnt16
Change: Changeable at any time

Bit00: DI1
0 : Inactive
1: Active
Bit01: DI2
0 : Inactive
1: Active
Bit02: DI3
0 : Inactive
1: Active
Bit03: DI4
0 : Inactive
1: Active
Bit04: DI5/HDI
0 : Inactive
1: Active
Bit05: DI6
0 : Inactive
1: Active
Bit06: DI7
0 : Inactive
1: Active
Bit07: DI8
0 : Inactive
1: Active
Bit08: DI9
0 : Inactive
1: Active
Bit09: DI10
0 : Inactive
1: Active
Bit10: VDI1
0 : Inactive
1: Active
(To be continued)
(Continued)
Bit11: VDI2
0 : Inactive
1: Active
Bit12: VDI3
0 : Inactive
1: Active
Bit13: VDI4
0 : Inactive
1: Active
Bit14: VDI5
0 : Inactive
1: Active
Bit15: VDI6
0 : Inactive
1: Active
Description

F4-51 DI1 hardware source
Address: 0xF433
Min.: 0
Max.: $\quad 1$
Default: 0
Value Range:
0 : Hardware
1: Force value
Description

F4-52 DI2 hardware source
Address: 0xF434
Min.: 0
Max.: $\quad 1$
Default: 0
Value Range:
0 : Hardware
1: Force value
Description

F4-53 DI3 hardware source
Address: 0xF435
Min.: 0
Max.: $\quad 1$
Default: 0
Value Range:
0 : Hardware
1: Force value

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Description

F4-54 DI4 hardware source
Address: 0xF436
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Hardware
1: Force value
Description
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable only at stop

F4-55 DI5/HDI hardware source
Address: 0xF437
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Hardware
1: Force value
Description

F4-56 DI6 hardware source
Address: 0xF438 Effective mode: -
Min.: 0
Max.: 46
Default: 0
Value Range:

0: Hardware
1: Force value
2: Communication
4: Al1
5: AI2
6: AI3
11: DI1
12: DI2
13: DI3
14: DI4
15: DI5/HDI
17: DI7
18: DI8
19: DI9
20: DI10
21: VDI1
22: VDI2
23: VDI3
24: VDI4
25: VDI5
26: VDI6
31: Relay 1
(To be continued)
(Continued)
32: Relay 2
33: DO1
34: Expansion card relay
35: Expansion card DO2
36: VDO1
37: VDO2
38: VDO3
39: VDO4
40: VDO5
41: VDO6
42: VDO7
43: VDO8
44: VDO9
45: VDO10
46: VDO11
Description

F4-57 DI7 hardware source

Address: 0xF439
Min.: 0
Max.: 46

Effective mode: -
Unit:
Data type: Ulnt16

	Default: 0	Change:	Changeable only at stop
	Value Range:		
	Same as F4-56		
	Description		
	-		
F4-58	DI8 hardware source		
	Address: 0xF43A	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 46	Data type:	Ulnt16
	Default: 0	Change:	Changeable only at stop
	Value Range:		
	Same as F4-56		
	Description		
	-		
F4-59	DI9 hardware source		
	Address: 0xF43B	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 46	Data type:	Ulnt16
	Default: 0	Change:	Changeable only at stop
	Value Range:		
	Same as F4-56		
	Description		
	D		
F4-60	DI10 hardware source		
	Address: 0xF43C	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 46	Data type:	Ulnt16
	Default: 0	Change:	Changeable only at stop
	Value Range:		
	Same as F4-56		
	Description		
	deription		
F4-61	DI5/HDI terminal type		
	Address: 0xF43D	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 1	Data type:	Ulnt16
	Default: 1	Change:	Unchangeable
	Value Range:		
	0: HDI		
	1: DI		
	Description		
F4-62	HDI polarity		
	Address: 0xF43E	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 3	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time

Value Range:

0: Normal
1: Absolute value
2: Negated value
3: Negated absolute value
Description

F4-63 HDI input enable
Address: 0xF43F
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Disabled
1: Enabled
Others: B connector
Description

F4-64 HDI hardware source
Address: 0xF440

Min.: 0
Max.: 1
Default: 0

Value Range:

0: Hardware sampling
1: Force setpoint

Description

F4-65 HDI force setpoint
Address: 0xF441
Min.: 0.00
Max.: $\quad 100.00$
Default: 1.00
Value Range:
0.00 kHz to 100.00 kHz

Description

F4-66 Minimum input of 4-point HDI curve

Address:	0xF442	Effective mode:	-
Min.:	0.00	Unit:	kHz
Max.:	F4-68	Data type:	Ulnt16
Default:	10.00	Change:	Changeable at any time
Value Range:			
0.00 kHz to F4-68			
Description			

F4-67	Percentage corresponding to minimum input of 4-point HDI curve			
	Address:	0xF443	Effective mode:	
	Min.:	-100	Unit:	\%
	Max.:	100.0	Data type:	Int16
	Default:	-100	Change:	Changeable at any time
	Value Range:			
	-100\% to +100.0\%			
	Description			
	-			
F4-68	Inflection 1 input of 4-point HDI curve			
	Address:	0xF444	Effective mode:	-
	Min.:	F4-66	Unit:	kHz
	Max.:	F4-70	Data type:	Ulnt16
	Default:	40.00	Change:	Changeable at any time
	Value Range:			
	F4-66 to F4-70			
	Description			
F4-69	Percentage corresponding to inflection 1 input of 4-point HDI curve			
	Address:	0xF445	Effective mode:	
	Min.:	-100	Unit:	\%
	Max.:	100.0	Data type:	Int16
	Default:	-30	Change:	Changeable at any time
	Value Range:			
	-100\% to +100.0\%			
	Description			
F4-70	Inflection 2 input of 4-point HDI curve			
	Address:	0xF446	Effective mode:	-
	Min.:	F4-68	Unit:	kHz
	Max.:	F4-72	Data type:	UInt16
	Default:	70.00	Change:	Changeable at any time
	Value Range:			
	F4-68 to F4-72			
	Description			
F4-71	Percentage corresponding to inflection 2 input of 4-point HDI curve			
	Address:	0xF447	Effective mode:	
	Min.:	-100	Unit:	\%
	Max.:	100.0	Data type:	Int16
	Default:		Change:	Changeable at any time
	Value Range:			
	-100\% to +100.0\%			
	Description			
F4-72	Maximum input of 4-point HDI curve			
	Address:	0xF448	Effective mode:	-

Min.:	F4-70	Unit:	kHz
Max.:	100.00	Data type:	Ulnt16
Default: 100.00	Change:	Changeable at any time	
Value Range:			
F4-70 to 100.00 kHz			
Description			

F4-73 Percentage corresponding to maximum input of 4-point HDI curve
Address: 0xF449
Min.: -100
Max.: 100.0
Default: 100.0
Value Range:
-100\% to +100.0\%
Description

F4-74 HDI curve setting
Address: 0xF44A
Min.: 0
Max.: 1
Default: 0
Value Range:
Ones: HDI curve
0 : 2-point curve
1: 4-point curve
Description

F4-75 HDI denoising threshold

Address:	$0 \times F 44 B$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	10.0	Data type:	Ulnt16
Default:	0.5	Change:	Changeable at any time

Value Range:
0.0\% to 10.0\%

Description

4.6 F5: Output Terminal Parameters

F5-00 FM multi-function terminal output

Address:	0xF500	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
0: Pulse output (FMP)			
1: Digital output (FMR)			

Value Range:
0: Pulse output (FMP)
1: Digital output (FMR)

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Description

FMR output function
Address: 0xF501
Min.: 0
Max.: 43
Default: 0

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:
0: No output
1: AC drive in running
2: Fault output
3: Frequency-level detection 1 (FDT1)
4: Frequency reach
5: Zero-speed running (no output at stop)
6: Motor overload pre-warning
7: AC drive overload pre-warning
8: Reference count value reach
9: Designated count value reach
10: Length reach
11: Simple PLC cycle completion
12: Accumulative running duration reach
13: Wobble limit reach
14: Torque limit reach
15: Ready to run
16: AII > AI2
17: Frequency upper limit reach
18: Frequency lower limit reach (no output at stop)
19: Undervoltage state
20: Communication setting
21-22: Reserved
23: Running at zero speed 2 (output at stop)
24: Accumulative power-on duration reach
25: Frequency-level detection 2 (FDT2)
26: Frequency 1 reach
27: Frequency 2 reach
28: Current 1 reach
29: Current 2 reach
30: Timing reach
31: Al1 input overlimit
(To be continued)
(Continued)
32: Load loss
33: Reverse running
34: Zero current state
35: IGBT temperature reach
36: Output overcurrent
37: Frequency lower limit reach (output at stop)
38: Alarm (all faults)
39: Motor overtemperature
40: Current running duration reach
41: Fault output (no output at undervoltage)
42: STO output
43: Running with limits
Others: B connector
Description
0: No output
The output terminal has no function.
1: AC drive in running
The terminal outputs an active signal when the AC drive is running with a output frequency (which can be 0).
2: Fault output
The terminal outputs an active signal when the AC drive stops due to a fault.
3: Frequency-level detection 1 (FDT1)
When the running frequency is higher than the detected value, the DO terminal outputs an active signal. When the running frequency is lower than the result of the detected value minus the FDT hysteresis value (F8-19 x F8-20), the active signal is canceled.
4: Frequency reach
The DO terminal outputs an active signal when the running frequency of the AC drive is within a certain range (target frequency \pm setpoint of F8-21 x Maximum frequency).
5: Zero-speed running (no output at stop)
The DO terminal outputs an active signal when the AC drive is running with the output frequency of 0 .
When the AC drive stops, the signal becomes inactive.
6: Motor overload pre-warning
The AC drive determines whether the motor load exceeds the overload pre-warning threshold according to the overload pre-warning coefficient (F9-02) before performing the protection action. The terminal outputs an active signal when the overload pre-warning threshold is exceeded. (For the calculation of the pre-warning threshold, see description of the motor overload protection function.)
7: AC drive overload pre-warning
The DO terminal outputs an active signal 10s before the AC drive performs overload protection.
8: Reference count value reach
The DO terminal outputs an active signal when the count value reaches the setpoint of FB-08.
9: Designated count value reach
The DO terminal outputs an active signal when the count value reaches the setpoint of FB-09.
10: Length reach
The DO terminal outputs an active signal when the detected actual length exceeds the setpoint of FB-
05.

11: Simple PLC cycle completion

The terminal outputs a pulse signal with a width of 250 ms when the simple PLC completes one cycle. 12: Accumulative running duration reach
The terminal outputs an active signal when the accumulative running duration of the AC drive exceeds the setpoint of F8-17 (accumulative running duration threshold).
13: Wobble limit reach
The DO terminal outputs an active signal when the frequency reference exceeds the frequency upper or lower limit and the output frequency of AC drive reaches the upper or lower limit.
14: Torque limit reach
The DO terminal outputs an active signal when the output torque reaches the torque limit in speed control mode.
15: Ready to run
The DO terminal outputs an active signal when the AC drive is ready for running without any fault after power-on.
16: AI1 > AI2
The DO terminal outputs an active signal when the value of AI1 is greater than that of AI2.
17: Frequency upper limit reach
The DO terminal outputs an active signal when the running frequency reaches the upper limit (F0-12).
18: Frequency lower limit reach (no output at stop)
If F8-14 (running mode when frequency reference lower than lower limit) is set to 1 (stop), the terminal outputs an inactive signal no matter whether the running frequency reaches the frequency lower limit.
If F8-14 (running mode when frequency reference lower than lower limit) is set to 0 (run at frequency lower limit) or 2 (run at zero speed), the terminal outputs an active signal when the running frequency reaches the frequency lower limit.
19: Undervoltage state
The DO terminal outputs an active signal when undervoltage occurs on the AC drive.
20: Communication setting
Whether the terminal is active or inactive is determined by the setpoint in communication address 0×2001.
21: Reserved
22: Reserved
23: Running at zero speed 2 (output at stop)
The DO terminal outputs an active signal when the AC drive is running with the output frequency of 0 . The DO terminal also outputs an active signal when the AC drive is stopped.
24: Accumulative power-on duration reach
The DO terminal outputs an active signal when the accumulative power-on duration (F7-13) of the AC drive exceeds the accumulative power-on duration threshold (F8-16).
25: Frequency-level detection FDT2
When the running frequency is higher than the detected value, the DO terminal outputs an active signal. When the running frequency is lower than the result of the detected value minus the frequency detection hysteresis value (F8-28 x F8-29), the active signal is canceled.
26: Frequency 1 reach
The DO terminal outputs an active signal when the running frequency of the AC drive is within the frequency detection range of F8-30 (detection value 1 for frequency reach). The frequency detection range is as follows: (F8-30 - F8-31 x F0-10) to (F8-30 + F8-31 x F0-10).

27: Frequency 2 reach

The DO terminal outputs an active signal when the running frequency of the AC drive is within the frequency detection range of F8-32 (detection value 2 for frequency reach). The frequency detection range is as follows: (F8-32 - F8-33 x F0-10) to (F8-32 + F8-33 x F0-10).
28: Current 1 reach
The DO terminal outputs an active signal when the output current of the AC drive is within the detection range of $\mathrm{F} 8-38$ (detection level of current 1). The current detection range is as follows: (F838 - F8-39 x F1-03) to (F8-38 + F8-39 x F1-03).
29: Current 2 reach output
The DO terminal outputs an active signal when the output current of the AC drive is within the detection range of $\mathrm{F} 8-40$ (detection level of current 2). The current detection range is as follows: (F840 - F8-41 x F1-03) to (F8-40 + F8-41 x F1-03).
30: Timing reach
When the timing function (F8-42) is enabled, the DO terminal outputs an active signal when the current running duration of the AC drive reaches the timing duration defined by F8-43 and F8-44. 31: Al1 input overlimit
The DO terminal outputs an active signal when the AI1 input is higher than the setpoint of F8-46 (AI1 input voltage upper limit) or lower than the setpoint of F8-45 (Al1 input voltage lower limit).
32: Load loss
The DO terminal outputs an active signal when load loss occurs.
33: Reverse running
The DO terminal outputs an active signal when the AC drive runs in the reverse direction.
34: Zero current state
The DO terminal outputs an active signal when the output current of the AC drive is within the zerocurrent range for a period longer than the setpoint of F8-35 (zero current detection delay). The zero current detection range is 0 to ($\mathrm{F} 8-34 \times \mathrm{F} 1-03$).
35: IGBT temperature reach
The DO terminal outputs an active signal when the IGBT heatsink temperature (F7-07) reaches the IGBT temperature threshold (F8-47).
36: Output overcurrent
The DO terminal outputs an active signal when the output current of the AC drive remains higher than the setpoint of F8-36 (output overcurrent threshold) for a period longer than the setpoint of F8-37 (output overcurrent detection delay).
37: Frequency lower limit reach (output at stop)
The DO terminal outputs an active signal when the running frequency reaches the frequency lower limit (F0-14). The DO terminal also outputs an active signal when the AC drive is stopped.
38: Alarm (all faults)
The DO terminal outputs an active signal when a fault occurs on the AC drive and the AC drive continues to run upon the fault. For details about fault protection actions, see the description of parameters F9-47 to F9-50.
39: Motor overtemperature
The DO terminal outputs an active signal when the motor temperature reaches the setpoint of F9-58 (motor overtemperature pre-warning threshold). (You can check the motor temperature in U0-34.) 40: Current running duration reach
The DO terminal outputs an active signal when the current running duration of the AC drive exceeds the setpoint of F8-53 (current running duration threshold).

```
41: Fault (no output at undervoltage)
The DO terminal outputs an active signal when an AC drive fault (except the undervoltage fault)
occurs.
42: STO output
The DO terminal outputs an active signal when the AC drive triggers STO.
43: Running with limits
The DO terminal outputs an active signal when the AC drive generates a minor fault of running with
limits and the operating panel displays "LXXX.XX".
Others: B connector
F5-02 Control board relay (DO3) output function
Address: 0xF502 Effective mode: -
Min.: 0 Unit:
Max.: 43
Default: 2
Value Range:
Same as F5-01
Description
Same as F5-01
F5-03 Expansion card relay (DO4) output function
Address: 0xF503 Effective mode: -
Min.: 0 Unit:
Max.: 43
Default: 0
Value Range:
Same as F5-01
Description
Same as F5-01
F5-04 DO1 function
Address: 0xF504 Effective mode:
Min.: 0
Max.: 43
Default: 1
Value Range:
Same as F5-01
Description
Same as F5-01
F5-05 Expansion card DO2 function
Address: 0xF505 Effective mode:
Min.: 0
Max.: 43
Default: 4
Value Range:
Same as F5-01
Description
Same as F5-01
```

```
F5-06 FMP output function
    Address: 0xF506
    Min.: 0
    Max.: 16
    Default: 0
    Value Range:
    0: Running frequency
    1: Frequency reference
    2: Output current
    3: Output torque (absolute value)
    4: Output power
    5: Output voltage
    6: Pulse input
    7: Al1
    8: Al2
    9: Al3
    10: Length
    11: Count value
    12: Communication setting
    13: Motor speed
    14: Output current
    15: Bus voltage
    16: Output torque (actual value)
    Others: F connector
    Description
F5-07 AO1 function
        Address: 0xF50
        Min.: 0
        Max.: 16
        Default: 0
        Value Range:
        Same as F5-06
        Description
F5-08 Expansion card AO2 function
        Address: 0xF508
        Min.: 0
        Max.: }1
        Default: 1
        Value Range:
        Same as F5-06
        Description
F5-09 Maximum FMP output frequency
    Address: 0xF509
    Min.: }0.0
    Effective mode: -
    Unit:
    Data type: Ulnt16
    Change: Changeable at any time
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Effective mode:
Unit: kHz
```

Max.:	100.00
Default:	50.00

Value Range:
0.01 kHz to 100.00 kHz

Description

F5-10 AO1 zero offset coefficient

Address:	0xF50A	Effective mode:	-
Min.:	-100	Unit:	$\%$
Max.:	100.0	Data type:	Int16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
-100% to $+100.0 \%$			
Description			

F5-11 AO1 gain

Address:	$0 x F 50 B$
Min.:	-10
Max.:	10.00
Default:	1.00

Value Range:

-10 to +10.00
Description

F5-12 AO2 zero offset coefficient

Address:	$0 x F 50 C$
Min.:	-100
Max.:	100.0
Default:	0.0

Value Range:

-100\% to +100.0\%

Description

F5-13 AO2 gain

Address:	0xF50D
Min.:	-10
Max.:	10.00
Default:	1.00

Value Range:

-10 to +10.00
Description

F5-14 HDO output filter time

Address:	0xF50E	Effective mode:	
Min.:	0	Unit:	-
Max.:	1000	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0 to 1000
Description

F5-15 AO1 output filter time

Address:	$0 \times$ F50F	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1000	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 to 1000
Description

F5-16 AO2 output filter time
Address: 0xF510
Min.: 0
Max.: 1000
Default: 0
Value Range:
0 to 1000
Description

F5-17 FMR output delay (invalid)

Address:	$0 x F 511$
Min.:	0.0
Max.:	3600.0
Default:	0.0

Value Range:

0.0s to 3600.0s

Description

F5-18 Relay 1 (DO3) output delay (invalid)

Address:	$0 x F 512$
Min.:	0.0
Max.:	3600.0
Default:	0.0

Value Range:

0.0 s to 3600.0 s

Description

F5-19 Relay 2 (DO4) output delay (invalid)

Address:	$0 x F 513$
Min.:	0.0
Max.:	3600.0
Default:	0.0

Value Range:
0.0 s to 3600.0 s

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Description

DO1 output delay (invalid)
Address: 0xF514

Min.: 0.0
Max.: 3600.0
Default: 0.0
Value Range:
0.0s to 3600.0s

Description

2 output delay (invalid)

Address: 0xF515
Min.: 0.0
Max.: $\quad 3600.0$
Default: 0.0
Value Range:
0.0s to 3600.0s

Description

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Description

-

DO active mode
Address: 0xF516
Min.: 0
Max.: 11111
Default: 0

Value Range:

Ones: FMR
0 : Positive logic active
1: Negative logic active
Tens: Relay 1 (DO3)
0 : Positive logic active
1: Negative logic active
Hundreds: Relay 2 (DO4)
0 : Positive logic active
1: Negative logic active
Thousands: DO1
0 : Positive logic active
1: Negative logic active
Ten thousands: DO2
0 : Positive logic active
1: Negative logic active
Description
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time
-

Control board relay (DO3) switch-on delay
Address: 0xF518

Min.: 0.0

Effective mode:
Unit: s

Max.: 3600.0	Data type:	Ulnt16
Default: 0.0	Change:	Changeable at any time
Value Range:		
0.0s to 3600.0 s		
Description		

F5-25 Control board relay (DO3) switch-off delay

Address: 0xF519
Min.: 0.0
Max.: $\quad 3600.0$
Default: 0.0
Value Range:
0.0 s to 3600.0 s

Description

Effective mode: -
Unit: s

Data type: Ulnt16
Change: Changeable at any time

F5-26 FMR output switch-on delay

Address:	$0 x F 51 \mathrm{~A}$
Min.:	0.0
Max.:	3600.0
Default:	0.0

Value Range:

0.0 s to 3600.0 s

Description

F5-27 FMR output switch-off delay

Address:	0xF51B	Effective mode:	-
Min.:	0.0	Unit:	S
Max.:	3600.0	Data type:	Ulnt16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
0.0s to 3600.0s			
Description			

F5-28 DO1 output switch-on delay
Address: 0xF51C Effective mode:
Min.: 0.0
Max.: 3600.0
Default: 0.0
Value Range:
0.0 s to 3600.0 s

Description

F5-29 DO1 output switch-off delay

Address:	0xF51D	Effective mode: -	
Min.:	0.0	Unit:	S
Max.:	3600.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:

0.0 s to 3600.0 s

Description

F5-30 Expansion card relay (DO4) switch-on delay
Address: 0xF51E Effective mode: -
Min.: $0.0 \quad$ Unit: S
Max.: $3600.0 \quad$ Data type: Ulnt16
Default: 0.0
Change: Changeable at any time
Value Range:
0.0s to 3600.0s

Description

F5-31 Expansion card relay (DO4) switch-off delay
Address: 0xF51F Effective mode:
Min.: $0.0 \quad$ Unit: S
Max.: 3600.0
Default: 0.0
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0s to 3600.0s

Description

F5-32 Expansion card DO2 output switch-on delay
Address: 0xF520 Effective mode:
Min.: $0.0 \quad$ Unit: S
Max.: $\quad 3600.0$
Default: 0.0
Value Range:
0.0 s to 3600.0 s

Description

F5-33 Expansion card DO2 output switch-off delay
Address: 0xF521
Min.: 0.0
Max.: $\quad 3600.0$
Default: 0.0
Value Range:
0.0 s to 3600.0 s

Description

F5-34 DO/RO source
Address: 0xF522
Min.: 0×0
Max.: 0xFFFF
Default: 0×0
Value Range:

Bit00: Relay 1 (DO3) output source
0 : Output function
1: Communication
Bit01: FMR output source
0 : Output function
1: Communication
Bit02: DO1 output source
0 : Output function
1: Communication
Bit03: Relay 2 (DO4) output source
0 : Output function
1: Communication
Bit04: DO2 output source
0 : Output function
1: Communication
Bit05: VDO1 output source
0 : Output function
1: Communication
Bit06: VDO2 output source
0 : Output function
1: Communication
Bit07: VDO3 output source
0 : Output function
1: Communication
Bit08: VDO4 output source
0 : Output function
1: Communication
Bit09: VDO11 output source
0 : Output function
1: Communication
(To be continued)
(Continued)
BIT10: VDO6 output source
0 : Output function
1: Communication
Bit11: VDO7 output source
0 : Output function
1: Communication
Bit12: VDO8 output source
0 : Output function
1: Communication
Bit13: VDO9 output source
0 : Output function
1: Communication
Bit14: VDO10 output source
0 : Output function
1: Communication
Bit15: VDO11 output source
0 : Output function
1: Communication
Description

F5-35 DO/RO terminal communication control
Address: 0xF523 Effective mode: -
Min.: 0×0
Max.: 0xFFFF
Default: 0×0
Value Range:

Unit:
Data type: Ulnt16
Change: Changeable at any time

Bit00: Relay 1 (DO3)
0 : Inactive
1: Active
Bit01: FMR
0 : Inactive
1: Active
Bit02: DO1
0 : Inactive
1: Active
Bit03: Relay 2 (DO4)
0 : Inactive
1: Active
Bit04: DO2
0 : Inactive
1: Active
Bit05: VDO1
0 : Inactive
1: Active
Bit06: VDO2
0 : Inactive
1: Active
(To be continued)
(Continued)
Bit07: VDO3
0 : Inactive
1: Active
Bit08: VDO4
0 : Inactive
1: Active
Bit09: VDO5
0 : Inactive
1: Active
Bit10: VDO6
0 : Inactive
1: Active
Bit11: VDO7
0 : Inactive
1: Active
Bit12: VDO8
0 : Inactive
1: Active
Bit13: VDO9
0 : Inactive
1: Active
Bit14: VDO10
0 : Inactive
1: Active
Bit15: VDO11
0 : Inactive
1: Active
Description

F5-36 Minimum input of AO1 curve

Address:	0xF524	Effective mode:	
Min.:	-100	Unit:	$\%$
Max.:	F5-38	Data type:	Int16
Default:	0.0	Change:	Changeable at any time

Value Range:
-100\% to F5-38
Description

F5-37 Setpoint corresponding to minimum input of AO1 curve
Address: 0xF525
Min.: $\quad 0.00$
Max.: $\quad 10.00$
Default: 0.00
Effective mode:
Unit: V
Data type: Int16
Change: Changeable at any time
Value Range:

	0.00 V to 10.00 V			
	Description			
	-			
F5-38	Maximum input of AO1 curve			
	Address:	0xF526	Effective mode:	
	Min.:	F5-36	Unit:	\%
	Max.:	100.0	Data type:	Int16
	Default:	100.0	Change:	Changeable at any time
	Value Range:			
	F5-36 to 100.0\%			
	Description			
	-			
F5-39	Setpoint corresponding to maximum input of AO1 curve			
	Address:	0xF527	Effective mode:	-
	Min.:	0.00	Unit:	V
	Max.:	10.00	Data type:	Int16
	Default:	10.00	Change:	Changeable at any time
	Value Range:			
	0.00 V to 10.00 V			
	Description			
	-			
F5-40	AO1 output offset			
	Address:	0xF528	Effective mode:	-
	Min.:	-10	Unit:	V
	Max.:	10.00	Data type:	Int16
	Default:	0.00	Change:	Changeable at any time
	Value Range:			
	-10 V to +10.00 V			
	Description			
F5-41	Minimum input of AO2 curve			
	Address:	0xF529	Effective mode:	-
	Min.:	-100	Unit:	\%
	Max.:	F5-43	Data type:	Int16
	Default:	0.0	Change:	Changeable at any time
	Value Range:			
	-100\% to F5-43			
	Description			
F5-42	Setpoint corresponding to minimum input of AO2 curve			
	Address:	0xF52A	Effective mode:	-
	Min.:	0.00	Unit:	V
	Max.:	10.00	Data type:	Int16
	Default:	0.00	Change:	Changeable at any time
	Value Ra			
	0.00 V to	. 00 V		

Description

F5-43 Maximum input of AO2 curve

Address:	$0 x F 52 B$
Min.:	F5-41
Max.:	100.0
Default:	100.0

Effective mode: -
Unit: \%
Data type: Int16
Change: Changeable at any time

Value Range:
F5-41 to 100.0\%
Description

F5-44 Setpoint corresponding to maximum input of AO2 curve

Address:	$0 x F 52 C$
Min.:	0.00
Max.:	10.00
Default:	10.00

Effective mode:
Unit: V
Data type: Int16
Change: Changeable at any time
Value Range:
0.00 V to 10.00 V

Description

F5-45 AO2 output offset

Address: 0xF52D
Min.: $\quad-10$
Max.: $\quad 10.00$
Default: 0.00
Value Range:
-10 V to +10.00 V
Description

F5-46 AO curve
Address: 0xF52E Effective mode:
Min.: 0
Max.: $\quad 11$
Default: 11
Effective mode:
Unit: V
Data type: Int16
Change: Changeable at any time

Value Range:
Ones: AO1 curve
0: 2-point curve
1: Gain+Offset
Tens: AO2 curve
0: 2-point curve
1: Gain+Offset
Description

Unit:
Data type: Ulnt16
Change: Changeable at any time

F5-47 AO polarity
Address: 0xF52F

Effective mode:
Min.: 0
Unit:
$\begin{array}{ll}\text { Max.: } & 33 \\ \text { Default. } & 0\end{array}$
Default: 0
Value Range:
Ones: AO1
0: Normal
1: Absolute value
2: Negated value
3: Negated absolute value
Tens: AO2
0: Normal
1: Absolute value
2: Negated value
3: Negated absolute value
Description

F5-48 AO hardware source
Address: 0xF530
Min.: $\quad 0$
Max.: $\quad 11$
Default: 0
Value Range:
Ones: AO1 source
0 : Output function
1: Force setpoint
Tens: AO2 source
0 : Output function
1: Force setpoint

Description

F5-49 AO force setpoint 1
Address: 0xF531
Min.: $\quad 0.00$
Max.: $\quad 10.00$
Default: 0.00
Value Range:
0.00 V to 10.00 V

Description

F5-50 AO force setpoint 2
Address: 0xF532
Min.: $\quad 0.00$
Max.: $\quad 10.00$
Default: 0.00
Value Range:
0.00 V to 10.00 V

Description

Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time

F5-51	Minimum input of HDO curve		
	Address: $0 \times$ P533	Effective mode: -	
Min.:	-100	Unit:	$\%$
	Max.: \quad F5-53	Data type:	Int16
	Default: 0.00	Change:	Changeable at any time
	Value Range:		
	-100\% to F5-53		
	Description		

F5-52 Percentage corresponding to minimum input of HDO curve
Address: 0xF534 Effective mode
Min.: $0.00 \quad$ Unit:
Max.: $100.00 \quad$ Data type: Int16

```
Default: 0.00
```

Change: Changeable at any time
Value Range:
0.00\% to 100.00\%

Description

F5-53 Maximum input of HDO curve

Address:	0xF535	Effective mode:	-
Min.:	F5-51	Unit:	$\%$
Max.:	100.00	Data type:	Int16
Default:	100.00	Change:	Changeable at any time

Value Range:
F5-51 to 100.00\%
Description

F5-54 Percentage corresponding to maximum input of HDO curve
Address: 0xF536
Min.: $\quad 0.00$
Max.: $\quad 100.00$
Default: 100.00
Unit: \%
Data type: Int16
Change: Changeable at any time

Value Range:

0.00% to 100.00%

Description

F5-55 HDO polarity

Address:	0xF537	Effective mode:
Min.:	0	Unit:
Max.:	3	Data type:
Default: 0	Change:	Ulnt16
Value Range:		
Ones: HDO		
0: Normal		
1: Absolute value		
2: Negated value		
3: Negated absolute value		

Description

F5-56 HDO hardware source

Address:	$0 \times F 538$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 : Output function
1: Force value
Description

F5-57 HDO force setpoint

Address:	$0 \times$ F539	Effective mode:	-
Min.:	0.00	Unit:	$\%$
Max.:	100.00	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:
0.00\% to 100.00\%

Description

4.7 F6: Startup/Stop Control Parameters

F6-00 Startup mode

Address: 0xF600
Min.: 0
Max.: 3
Default: 0
Value Range:
0: Direct start
1: Flying start
2: Pre-excitation start (AC asynchronous motor)
3: SVC quick start
Description
Flying start is recommended if you need to start a motor that is rotating at a high speed. Pre-excitation start and SVC quick start apply only to AC asynchronous motors.

F6-01 Speed tracking mode
Address: 0xF601
Min.: 0
Max.: 4
Default: 0
Value Range:

```
Effective mode:
Unit:
Data type: Ulnt16
    Change: Changeable at any time
```

0 : From the stop frequency
1: From the power frequency
2: From the maximum frequency
3: Reserved
4: Magnetic field directional speed tracking (MD290)
Description

F6-02 Speed of speed tracking

Address:	0xF602	Effective mode:	-
Min.:	1	Unit:	-
Max.:	100	Data type:	Ulnt16
Default:	20	Change:	Changeable at any time

Value Range:
1 to 100
Description

F6-03 Startup frequency

Address:	$0 x F 603$	Effective mode:	
Min.:	0.00	Unit:	Hz
Max.:	10.00	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:
0.00 Hz to 10.00 Hz

Description

This parameter defines the startup frequency for direct start of the AC drive. When the frequency reference is lower than the startup frequency, the AC drive will not start but stay standby.

F6-04 Startup frequency hold time

Address:	$0 \times F 604$	Effective mode:	
Min.:	0.0	Unit:	S
Max.:	100.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable only at stop

Value Range:
0.0 s to 100.0 s

Description

This parameter defines the hold time during which the output frequency remains at the startup frequency. After this hold time elapses, the AC drive will accelerate/decelerate to the reference frequency.

F6-05 DC braking current at startup

Address:	$0 x F 605$	Effective mode: -	
Min.:	0	Unit:	$\%$
Max.:	100	Data type:	Ulnt16
Default:	50	Change:	Changeable only at stop

Value Range:

0\% to 100\%

Description

A larger DC braking current indicates stronger braking force. 100\% corresponds to the rated motor current (the current upper limit is 80% of the rated current of the AC drive).

F6-06 DC braking time at startup

Address: 0xF606 Effective mode: -
Min.: 0.0
Max.: $\quad 100.0$
Unit: s
Data type: Ulnt16
Default: 0.0
Change: Changeable only at stop
Value Range:
0.0 s to 100.0 s

Description
This parameter defines the time for DC braking at startup, which is valid only when the startup mode is direct start.

F6-07 Acceleration/Deceleration mode

Address:	$0 x F 607$	Effective mode: -
Min.:	0	Unit:
Max.:	1	Data type:
Default:	0	Change:

Value Range:
0: Straight-line acceleration/deceleration
1: S-curve acceleration/deceleration

Description

0 : The output frequency increases or decreases linearly.
1: When the target frequency changes dynamically in real time, the output frequency increases or decreases based on the S-curve. This mode is applicable to applications requiring supreme comfort and quick response in real time.

F6-08 Time proportion of S-curve start segment

Address:	$0 \times F 608$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	30.0	Change:	Changeable only at stop

Value Range:

0.0\% to +100.0\%

Description

The value ranges from 0.0 to 100.0\% minus the value of F6-09.

F6-09 Time proportion of S-curve end segment

Address:	$0 \times F 609$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	30.0	Change:	Changeable only at stop

Value Range:
0.0\% to $+100.0 \%$

Description

The value ranges from 0.0 to 100.0% minus the value of F6-08.

F6-10 Stop mode
$\begin{array}{llll}\text { Address: } & 0 x F 60 A & \text { Effective mode: } & - \\ \text { Min.: } & 0 & \text { Unit: } & - \\ \text { Max.: } & 2 & \text { Data type: } & \text { Ulnt16 } \\ \text { Default: } & 0 & \text { Change: } & \text { Changeable at any time }\end{array}$
Value Range:

```
0: Decelerate to stop
1: Coast to stop
2: Stop at maximum capability
Description
```

F6-11 Start frequency of DC braking at stop
Address: 0xF60B Effective mode: -
Min.: 0.00 Unit: Hz
Max.: F0-10 Data type: Ulnt16
Default: $0.00 \quad$ Change: Changeable at any time
Value Range:
0.00 Hz to $\mathrm{FO}-10$

Description

The AC drive starts DC braking when the running frequency decreases to the value of this parameter during deceleration to stop.

F6-12 DC braking delay at stop

Address: 0xF60C Effective mode: -
Min.: 0.0 Unit: S
Max.: $100.0 \quad$ Data type: Ulnt16

Default: 0.0
Change: Changeable at any time
Value Range:
0.0 s to 100.0 s

Description

When the running frequency decreases to the start frequency of DC braking at stop, the AC drive stops output and starts DC braking after this waiting time.

F6-13 DC braking current at stop

Address: 0xF60D Effective mode: -
Min.: $0 \quad$ Unit:
Max.: $100 \quad$ Data type: Ulnt16

Default: $50 \quad$ Change: Changeable at any time
Value Range:
0\% to 100\%

Description

A larger DC braking current indicates stronger braking force. 100\% corresponds to the rated motor current (the current upper limit is 80% of the rated current of the AC drive).

F6-14 DC braking time at stop

Address: 0xF60E Effective mode:
Min.: 0.0 Unit: S
Max.: $100.0 \quad$ Data type: Ulnt16
Default: $0.0 \quad$ Change: Changeable at any time
Value Range:
0.0 s to 100.0s

Description
If this parameter is set to $0, D C$ braking is disabled.

F6-15 Braking transistor usage
Address: 0xF60F Effective mode:

	Min.:	0	Unit:	\%
	Max.:	100	Data type:	Ulnt16
	Default:	100	Change:	Changeable at any time
	Value Ra			
	0\% to 100			
	Descript			
	This para continuo	eter deter conduction	the braking tran th built-in brakin	nsistor is applied. 100% indicates g units).
F6-16	Speed tr	king swe	oop Kp	
	Address:	0xF610	Effective mode:	
	Min.:	0	Unit:	-
	Max.:	1000	Data type:	Ulnt16
	Default:	500	Change:	Changeable at any time
	Value Ra			
	0 to 1000			
	Descript			
	-			
F6-17	Speed t	king swe	op Ki	
	Address:	0xF611	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	1000	Data type:	Ulnt16
	Default:	800	Change:	Changeable at any time
	Value Ra			
	0 to 1000			
	Descript			
	-			
F6-18	Speed tr	king curr		
	Address:	0xF612	Effective mode:	
	Min.:	30	Unit:	\%
	Max.:	200	Data type:	Ulnt16
	Default:	80	Change:	Changeable only at stop
	Value Ra			
	30\% to 2			
	Descript			
	-			
F6-19	Current	op multip		
	Address:	0xF613	Effective mode:	-
	Min.:	10	Unit:	\%
	Max.:	600	Data type:	Ulnt16
	Default:	100	Change:	Changeable at any time
	Value R			
	10\% to 6			
	Descript			
	des			
F6-20	S-curve	tting mod		
	Address:	0xF614	Effective mode:	-

Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0 : Symmetrical mode
1: Separate setting of acceleration and deceleration arcs

Description

0: Symmetrical mode (inherited from MD500). In this mode, the settings of F6-08 and F6-09 take effect.

1: Separate setting of acceleration and deceleration arcs. In this mode, the settings of A4-67 to A4-70 take effect.

F6-21 Demagnetization time (valid for asynchronous motors)

Address:	$0 \times F 615$	Effective mode:	-
Min.:	0.00	Unit:	s
Max.:	5.00	Data type:	Ulnt16
Default:	0.50	Change:	Changeable at any time

Value Range:
0.00 s to 5.00 s

Description
This parameter defines the minimum waiting time for restart after shutdown.

F6-23 Overexcitation active mode
Address: 0xF617 Effective mode:
Min.: 0 Unit:
Max.: $2 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0 : Disabled
2: Enabled during deceleration
3: Enabled always

Description

This parameter defines the active mode of overexcitation in vector control mode for asynchronous motors. When it is set to 2 , overexcitation takes effect during acceleration, operation at constant speed, and deceleration.

F6-24 Overexcitation suppression current

Address: 0xF618 Effective mode: -
Min.: $0 \quad$ Unit:
Max.: $150 \quad$ Data type: Ulnt16

Default: 100 Change: Changeable at any time
Value Range:
0\% to 150\%

Description

This parameter defines the target current after overexcitation takes effect and is a percentage relative to the rated motor current.

F6-25 Overexcitation gain

Address:	$0 x F 619$	Effective mode: -	
Min.:	0.01	Unit:	-
Max.:	2.50	Data type:	Ulnt16

Default: 1.25
Change:
Changeable at any time

Value Range:

0.01 to 2.50

Description

F6-26 Forced switch-on of braking transistor

Address: 0xF61A
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Switch-off
1: Switch-on
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

F6-28 Manual self-check enable

Address:	$0 \times F 61 C$	Effective mode:	-
Min.:	0×0	Unit:	-
Max.:	$0 \times F$	Data type:	Ulnt16
Default:	0×7	Change:	Changeable only at stop

Value Range:

Bit00: IGBT shoot-through self-check upon startup
0 : Disabled
1: Enabled
Bit01: Short-to-ground self-check upon startup
0: Disabled
1: Enabled
Bit02: Phase loss self-check upon startup
0 : Disabled
1: Enabled
Bit03: Reserved

Description

This parameter defines the sub items of manual self-check. After enabling self-check by setting this parameter, you can select different self-check commands in F6-29.
Self-check on each sub item is enabled separately by using a bit. The value 1 indicates enabled, and 0
indicates disabled.

F6-29 Manual self-check command

Address:	$0 \times F 61 D$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	2	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0 : None
1: Static self-check
2: Full self-check
Description

This parameter defines the self-check mode. The self-check items are defined by F6-28.
0 : Self-check is not performed.
1: Static self-check is performed. In this mode, self-check on the encoder cannot be performed.
2: Full self-check is performed.
After self-check is completed, this parameter will be restored to 0 .

4.8 F7: Operating Panel and Display Parameters

F7-00 LED segment missing check

Address:	$0 \times F 700$	Effective mode:	
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0: Disabled
1: All indicators of the LED operating panel are steady on.
2: All indicators of the LED operating panel are off.
3: All indicators of the LED operating panel blink.

Description

0 : No effect.
1: All indicators of the LED operating panel are steady on for 20 seconds.
2: All indicators of the LED operating panel are off for 20 seconds.
3: All indicators of the LED operating panel blink for 20 seconds.

F7-01 MF.K key function

Address:	$0 x F 701$	Effective mode:	
Min.:	0	Unit:	-
Max.:	4	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:

0: MF.K key disabled
1: Forced operating panel control
2: Switchover between forward and reverse run
3: Forward jog
4: Reverse jog
Description
0 : The MF.K key has no function.
1: When F0-02 is set to 0 (operating panel), pressing the MF.K key has no effect. When F0-02 is set to 1 (terminal), 2 (communication), or 3 (customization), pressing the MF.K key switches to operating panel control forcibly.

2: Pressing the MF.K key changes the direction of the frequency reference. This function is valid only when the command source is set to operating panel control.
3: Pressing the MF.K key implements forward jog (FJOG). This function is valid only when the command source is set to operating panel control.
4: Pressing the MF.K key implements reverse jog (RJOG). This function is valid only when the command source is set to operating panel control.

```
F7-02 STOP/RESET key function
Address: 0xF702 Effective mode: -
Min.: 0
Max.: 3 Data type: Ulnt16
Default: 1
Value Range:
0: Valid only under operating panel control
1: Valid under any control (OFF1)
2: Valid under any control (OFF2)
3: Valid under any control (OFF3)
Description
0: The STOP/RESET key is valid only in operating panel control mode.
1: The STOP/RESET key is valid in any operation mode and the AC drive stops according to the OFF1
stop mode.
2: The STOP/RESET key is valid in any operation mode and the AC drive stops according to the OFF2
stop mode.
3: The STOP/RESET key is valid in any operation mode and the AC drive stops according to the OFF3
stop mode.
F7-03 LED display 1 in running state
Address: 0xF703 Effective mode: -
Min.: 0x0
Max.: 0xFFFF Data type: Ulnt16
Default: 0x1F Change: Changeable at any time
Value Range:
Bit00: Running frequency (Hz)
Bit01: Reference frequency (Hz)
Bit02: Bus voltage (V)
Bit03: Output voltage (V)
Bit04: Output current (A)
Bit05: Output power (kW)
Bit06: Output torque (%)
Bit07: DI state
Bit08: DO state
Bit09: Al1 voltage (V)
Bit10: Al2 voltage (V)
Bit11: Al3 voltage (V)
Bit12: Count value
Bit13: Length value
Bit14: Load speed
Bit15: PID reference
Description
This parameter defines the parameters displayed on the LED operating panel (switched by using the left and right shift keys) when the AC drive is running A parameter is displayed when the corresponding bit is 1 and not displayed when the corresponding bit is 0 .
F7-04 LED display 2 in running state
Address: 0xF704 Effective mode: -
```

Min.:	0×0
Max.:	$0 \times F F F F$
Default:	0×0

Unit:	-
Data type:	Ulnt16
Change:	Changeable at any time

Value Range:
Bit00: PID feedback
Bit01: PLC stage
Bit02: Input pulse frequency (kHz)
Bit03: Running frequency $2(\mathrm{~Hz})$
Bit04: Remaining running time
Bit05: Al1 voltage before correction (V)
Bit06: Free mapping 0
Bit07: Free mapping 1
Bit08: Motor speed
Bit09: Current power-on duration (Hour)
Bit10: Current running duration (min)
Bit11: Input pulse frequency (Hz)
Bit12: Communication setpoint
Bit13: Encoder feedback speed
Bit14: Main frequency X
Bit15: Auxiliary frequency Y

Description

This parameter defines the parameters displayed on the LED operating panel (switched by using the
left and right shift keys) when the AC drive is running A parameter is displayed when the corresponding bit is 1 and not displayed when the corresponding bit is 0 .

F7-05 LED display in stop state

Address:	$0 \times F 705$	Effective mode:	-
Min.:	0×0	Unit:	-
Max.:	$0 \times$ FFFF	Data type:	Ulnt16
Default:	0×33	Change:	Changeable at any time

Value Range:
Bit00: Reference frequency (Hz)
Bit01: Bus voltage (V)
Bit02: DI state
Bit03: DO state
Bit04: Al1 voltage (V)
Bit05: Al2 voltage (V)
Bit06: Al3 voltage (V)
Bit07: Count value
Bit08: Length value
Bit09: PLC stage
Bit10: Load speed
Bit11: PID reference
Bit12: Input pulse frequency (kHz)
Bit13: Reserved
Bit14: Free mapping 0
Bit15: Free mapping 1

Description

This parameter defines the parameters displayed on the LED operating panel (switched by using the left and right shift keys) when the AC drive is in stop state. A parameter is displayed when the corresponding bit is 1 and not displayed when the corresponding bit is 0 .

F7-06 Load speed display coefficient

Address: 0xF706
Min.: $\quad 1.0 \mathrm{E}-4$
Max.: $\quad 6.5000$
Default: 1.0000
Value Range:
1.0E-4 to 6.5000

Description

F7-07 IGBT heatsink temperature

Address: 0xF707
Min.: $\quad-20$
Max.: $\quad 120$
Default: 0
Value Range:
$-20^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
Description

F7-08 Product SN

Address: 0xF708
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Changeable at any time

Effective mode:
Unit: $\quad{ }^{\circ} \mathrm{C}$

Data type: Int16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

F7-09 Accumulative running duration (hour)

Address: 0xF709

Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 h to 65535 h
Description

F7-10 Performance software version

Address:	$0 x F 70 A$	Effective mode:	-
Min.:	0.00	Unit:	-
Max.:	655.35	Data type:	Ulnt16
Default:	0.00	Change:	Unchangeable

Value Range:

0.00 to 655.35

Description

F7-11 Function software version

Address:	$0 x F 70 B$	Effective mode:	
Min.:	0.00	Unit:	-
Max.:	655.35	Data type:	Ulnt16
Default:	0.00	Change:	Unchangeable

Value Range:
0.00 to 655.35

Description

F7-12 \quad Number of decimal places for load speed display
Address: 0xF70C
Min.: 110
Max.: 222
Default: 220
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

Ones: Decimal places of U0-14/U0-24
0 : No decimal place
1: One decimal place
2: Two decimal places
Tens: Decimal places of U0-19/U0-29
0 : No decimal place
1: One decimal place
2: Two decimal places
Hundreds: Decimal places of U0-30/U0-31
0 : No decimal place
1: One decimal place
2: Two decimal places

Description

F7-13 Accumulative power-on duration (hour)

Address:	$0 x F 70 D$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit: h
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 h to 65535 h
Description

F7-14 Accumulative power consumption

Address:	$0 x F 70 E$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit: kW•h
Data type: Ulnt16
Change: Unchangeable

Value Range:

$0 \mathrm{~kW} \cdot \mathrm{~h}$ to $65535 \mathrm{~kW} \cdot \mathrm{~h}$

Description

F7-15 Temporary performance software version

Address:	$0 \times F 70 F$	Effective mode: -	
Min.:	0.00	Unit:	-
Max.:	655.35	Data type:	Ulnt16
Default:	0.00	Change:	Unchangeable

Value Range:

0.00 to 655.35

Description

F7-16 Temporary function software version

Address:	$0 x F 710$
Min.:	0.00
Max.:	655.35
Default:	0.00

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```


Value Range:

0.00 to 655.35

Description

F7-17 Low-order bits of level-0 menu display address

Address: 0xF711
Min.: 0
Max.: 0
Default: 0

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0: Invalid address
Others: K connector

Description

This parameter corresponds to the variable displayed in free mapping 0 in F7-04 and F7-05.
After this parameter is specified, you can display the value of the connector set by this parameter by displaying free mapping 0 on the level- 0 menu.

F7-18 High-order bits of level-0 menu display address

Address:	$0 x F 712$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	0	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0: Invalid address
Others: K connector

Description

This parameter corresponds to the variable displayed in free mapping 1 in F7-04 and F7-05.
After this parameter is specified, you can display the value of the connector set by this parameter by displaying free mapping 1 on the level- 0 menu.

F7-19 Low-order bits of level-0 menu display format

Address:	$0 \times F 713$	Effective mode:	-
Min.:	0×0	Unit:	-
Max.:	$0 \times 014 \mathrm{~B}$	Data type:	Ulnt16
Default:	0×0	Change:	Changeable at any time

Value Range:
Ones: Unit
0 : None
1: HZ
2: A
3: RPM
4: V
5: Link
6: \%
7: s
8: h
9: kW
10: kW/h
$11:{ }^{\circ} \mathrm{C}$
Tens: Decimal places
0 : No decimal place
1: One decimal place
2: Two decimal places
3: Three decimal places
4: Four decimal places
Hundreds: Enable
0: Disabled
1: Enabled
Description
If the enable bit is 0 , setting this parameter has no effect.
If the enable bit is 1 , the value of free mapping 0 is displayed based on the unit set by the ones place and the number of decimal places set by the tens place.

F7-20 High-order bits of level-0 menu display format
Address: 0xF714 Effective mode:
Min.: 0×0
Max.: $\quad 0 \times 014 \mathrm{~B}$
Default: 0×0
Value Range:

Ones: Unit
0 : None
1: HZ
2: A
3: RPM
4: V
5: Link
6: \%
7: s
8: h
9: kW
10: kW/h
11: ${ }^{\circ} \mathrm{C}$
Tens: Decimal places
0 : No decimal place
1: One decimal place
2: Two decimal places
3: Three decimal places
4: Four decimal places
Hundreds: Enable
0 : Disabled
1: Enabled
Description
If the enable bit is 0 , setting this parameter has no effect.
If the enable bit is 1 , the value of free mapping 1 is displayed based on the unit set by the ones place and the number of decimal places set by the tens place.

F7-21 LED operating panel key test

Address: 0xF715 Effective mode:
Min.: 0
Max.: 1 Data type: Ulnt16
Default: $0 \quad$ Change: Changeable only at stop
Value Range:
0: Disabled
1: Enabled
Description
Setting this parameter to 1 enables the LED operating panel key test mode. In this mode, the test value changes each time a key is pressed.
After all keys are pressed, the test is successful and "-PASS" is displayed. Then the system automatically exits the test mode.

F7-22 LED display update cycle
Address: 0xF716 Effective mode: -
Min.: $\quad 10$
Unit:
Data type: Ulnt16
Max.: $\quad 300$
Default: 10
Change: Changeable at any time
Value Range:
10 to 300

Description

The values on the LED operating panel are filtered to prevent the parameters from jumping too fast and causing difficulty in reading the values. The display update cycle is the filter time.

F7-25 Fault display
Address: 0xF719
Min.: $\quad 0$
Max.: $\quad 1$
Default: 0
Value Range:
0 to 1
Description

F7-26 Storage of LED display in running state

Address:	$0 x F 71 A$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	31	Data type:	Ulnt16

Default: $0 \quad$ Change: Unchangeable

Value Range:
0 to 31
Description

F7-27 Storage of LED display in stop state
Address: 0xF71B
Min.: 0
Max.: $\quad 15$
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 15
Description

F7-28 Accumulative running duration (second)

Address:	0xF71C	Effective mode:	-
Min.:	0	Unit:	s
Max.:	3599	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
Os to 3599s			
Description			

F7-29 Accumulative power-on duration (second)
Address: 0xF71D Effective mode:
Min.: $0 \quad$ Unit: s
Max.: $3599 \quad$ Data type: Ulnt16
Default: 0
Value Range:
Os to 3599s
Description

F7-30 Auxiliary calculation of accumulative power consumption
Address: 0xF71E Effective mode:
Min.: 0 Unit: -

Max.: 65535 Data type: Ulnt16
Default: 0 Change: Unchangeable
Value Range:
0 to 65535
Description

F7-31 Auxiliary calculation of accumulative power consumption of group U0
Address: 0xF71F
Min.: 0
Max.: 65535
Default: 0
Value Range:

0 to 65535
 Description

F7-32 Low-order bits of accumulative power consumption
Address: 0xF720
Min.: 0.0
Max.: 6553.5
Default: 0.0
Effective mode: -
Unit: kW•h
Data type: Ulnt16
Change: Unchangeable
Value Range:
$0.0 \mathrm{~kW} \cdot \mathrm{~h}$ to $6553.5 \mathrm{~kW} \cdot \mathrm{~h}$
Description

F7-33 High-order bits of accumulative power consumption
Address: 0xF721

Min.: 0
Max.: 65535
Default: 0
Effective mode:
Unit: kW•h
Data type: Ulnt16
Change: Unchangeable
Value Range:
$0 \mathrm{~kW} \cdot \mathrm{~h}$ to $65535 \mathrm{~kW} \cdot \mathrm{~h}$
Description

4.9 F8: Auxiliary Function Parameters

F8-00 Jog frequency

Address:	$0 x F 800$
Min.:	0.00
Max.:	F0-10
Default:	2.00

Effective mode:	-
Unit:	Hz
Data type:	Ulnt16
Change:	Changeable at any time

Value Range:
0.00 Hz to F0-10

Description
This parameter defines the running frequency of the AC drive in jogging mode.

F8-01 Jog acceleration time
Address: 0xF801
Min.: 0.0
Max.: 6500.0
Default: 20.0

```
Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time
```

Value Range:
0.0s to 6500.0s

Description

This parameter defines the acceleration time of the AC drive in jogging mode.

F8-02 Jog deceleration time
Address: 0xF802
Min.: 0.0
Max.: 6500.0

Effective mode: -	
Unit:	S
Data type:	Ulnt16

Default: 20.0
Value Range:
0.0s to 6500.0s

Description
This parameter defines the deceleration time of the AC drive in jogging mode.

F8-04 Deceleration time 2
Address: 0xF804
Min.: 0.0
Max.: $\quad 6500.0$
Default: 0.0

Acceleration time 2

Value Range:
0.0 s to 6500.0 s

Description

Change:
Changeable at any time

Address:	$0 \times F 803$	Effective mode:	-
Min.:	0.0	Unit:	s
Max.:	6500.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

The AC drive provides four groups of acceleration time, which can be switched by using the parameter or DI terminal. This parameter defines the second group of acceleration time.

Value Range:
0.0 s to 6500.0 s

Description

The AC drive provides four groups of deceleration time, which can be switched by using the parameter or DI terminal. This parameter defines the second group of deceleration time.

F8-05 Acceleration time 3

Address:	$0 \times F 805$	Effective mode:	-
Min.:	0.0	Unit:	s
Max.:	6500.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0 s to 6500.0s

Description
The AC drive provides four groups of acceleration time, which can be switched by using the parameter or DI terminal. This parameter defines the third group of acceleration time.

F8-06 Deceleration time 3

Address:	0xF806	Effective mode:	S
Min.:	0.0	Unit:	S
Max.:	6500.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0s to 6500.0s

Description

The AC drive provides four groups of deceleration time, which can be switched by using the parameter or DI terminal. This parameter defines the third group of deceleration time.

F8-07 Acceleration time 4

Address:	$0 \times F 807$	Effective mode:	-
Min.:	0.0	Unit:	s
Max.:	6500.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0s to 6500.0s

Description
The AC drive provides four groups of acceleration time, which can be switched by using the parameter or DI terminal. This parameter defines the fourth group of acceleration time.

F8-08 Deceleration time 4

Address:	$0 \times F 808$	Effective mode:	-
Min.:	0.0	Unit:	s
Max.:	6500.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0 s to 6500.0 s

Description

The AC drive provides four groups of deceleration time, which can be switched by using the parameter or DI terminal. This parameter defines the fourth group of deceleration time.

F8-09 Skip frequency 1

Address: 0xF809 Effective mode: -

Min.:	0.00
Max.:	F0-10
Default:	0.00

Unit:	Hz
Data type:	Ulnt16
Change:	Changeable at any time

Value Range:
0.00 Hz to $\mathrm{FO}-10$

Description

The skip frequency enables the AC drive to avoid any frequency at which a mechanical resonance may occur. This parameter defines the first skip frequency. If it is set to 0 , the first skip frequency is canceled.

Skip frequency 2

Address:	$0 x F 80 A$	Effective mode:	
Min.:	0.00	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:

0.00 Hz to F0-10

Description

The skip frequency enables the AC drive to avoid any frequency at which a mechanical resonance may occur. This parameter defines the second skip frequency. If it is set to 0 , the second skip frequency is canceled.

Address:	0xF80B	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:

0.00 Hz to F0-10

Description

During acceleration, when the running frequency increases to a value that is close to the skip frequency, the AC drive runs for a period at the current frequency and then skips over the skip frequency. The skip range is twice the value of F8-11 (skip frequency band).
During deceleration, when the running frequency decreases to a value that is close to the skip frequency, the AC drive runs for a period at the current frequency and then skips over the skip frequency. The skip range is twice the value of F8-11 (skip frequency band).

F8-12 FWD/REV switchover deadzone time

Address:	$0 x F 80 C$	Effective mode:	S
Min.:	0.0	Unit:	S
Max.:	3000.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:

0.0 s to 3000.0 s

Description

This parameter defines the transition time at 0 Hz output during transition between forward running and reverse running.

F8-13 Reverse frequency inhibition
Address: 0xF80D Effective mode: -
Min.: 0 Unit: -
Max.: $1 \quad$ Data type: Ulnt16

Default: $0 \quad$ Change: Changeable at any time
Value Range:
0 : Disabled
1: Enabled
Description

F8-14 Running mode when frequency reference below lower limit
Address: 0xF80E Effective mode:
Min.: 0 Unit: -
Max.: 3 Data type: Ulnt16

Default: $0 \quad$ Change: Changeable at any time

Value Range:

0 : Run at frequency lower limit
1: Stop
2: Run at zero speed
3: Coast to stop

Description

0 : Run at frequency lower limit
If the running frequency is lower than the frequency lower limit, the $A C$ drive runs at the frequency
lower limit.
1: Stop
If the running frequency is lower than the frequency lower limit, the AC drive stops.

2: Run at zero speed
If the running frequency is lower than the frequency lower limit, the AC drive runs at zero speed.
3: Coast to stop
If the running frequency is lower than the frequency lower limit, the $A C$ drive coasts to stop.

F8-15 Droop rate
Address: 0xF80F Effective mode: -
Min.: $\quad 0.00$
Max.: $\quad 10.00$
Default: 0.00
Value Range:
0.00\% to 10.00\%

Description

F8-16 Power-on duration threshold (hour)
Address: 0xF810
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 h to 65535 h
Description

F8-17 Running duration threshold (hour)
Address: 0xF811
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 h to 65535 h
Description

Effective mode:	-
Unit:	h
Data type:	Ulnt16
Change:	Changeable at any time

F8-18 Startup protection

Address: 0xF812
Min.: 0
Max.: $\quad 1$
Default: 1
Value Range:
0: Disabled
1: Enabled
Description

F8-19 Frequency detection value (FDT1)

Address:	$0 \times F 813$	Effective mode:	
Min.:	0.00	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16
Default:	50.00	Change:	Changeable at any time

Value Range:

0.00 Hz to F0-10

Description

When the running frequency is higher than the frequency detection value (FDT1), the DO terminal outputs an active signal; when the running frequency is lower than the result of the frequency detection value (FDT1) minus the frequency detection hysteresis (FDT1), the DO terminal outputs an inactive signal. The valid value range is 0.00 Hz to F0-10 (maximum frequency).

F8-20 Frequency detection hysteresis (FDT1)

Address: 0xF814
Min.: 0.0
Max.: $\quad 100.0$
Default: 5.0
Value Range:
0.0\% to +100.0\%

Description

The frequency detection hysteresis (FDT1) is F8-19 multiplied by F8-20. When the running frequency is higher than F8-19, the DO terminal outputs an active signal. When the running frequency is lower than a specific value ($\mathrm{F} 8-19$ - $\mathrm{F} 8-19 \times$ F8-20), the DO terminal outputs an inactive signal.

F8-21 Frequency reach detection range

Address:	$0 \times F 815$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0\% to +100.0\%

Description

The percentage is relative to the maximum frequency.
When the running frequency of the $A C$ drive is within the range of
Reference frequency \pm Maximum frequency x F8-21,
the DO terminal outputs an active signal.

F8-22 Skip frequency enable during acceleration/deceleration
Address: 0xF816
Min.: 0
Max.: $1 \quad$ Data type: Ulnt16
Default: Change: Changeable at any time
Value Range:
0: Disabled
1: Enabled
Description
This parameter defines whether the skip frequency function is enabled during acceleration/
deceleration.
0 : Disabled
During acceleration/deceleration, when the running frequency reaches the skip frequency boundary, the $A C$ drive continues to run at the running frequency.
0 : Enabled
During acceleration/deceleration, when the running frequency reaches the skip frequency boundary, the AC drive skips over the skip frequency. The skip range is twice the value of F 8 - 11 (skip frequency band).

F8-28 Frequency detection value (FDT2 level)
Address: 0xF81C Effective mode: -
Min.: $\quad 0.00$
Max.: \quad F0-10
Value Range:
0 : No priority
1: Jog preferred
2: OFF1 preferred
Description
This parameter defines the priority of the jog command and normal operation commands.
0 : No priority
The AC drive responds to the operation command that arrives first.
1: Jog preferred
The jog command can interrupt normal running.
2: OFF1 preferred
Normal operation commands can interrupt jogging.

Unit:	Hz
Data type:	Ulnt16

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Default: 50.00 Change: Changeable at any time

Value Range:

0.00 Hz to F0-10

Description

When the running frequency is higher than the frequency detection value (FDT2), the DO terminal outputs an active signal; when the running frequency is lower than the result of the frequency detection value (FDT2) minus the frequency detection hysteresis (FDT2), the DO terminal outputs an inactive signal. The valid value range is 0.00 Hz to F0-10 (maximum frequency).

F8-29 Frequency detection hysteresis (FDT2)

Address:	0xF81D	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	5.0	Change:	Changeable at any time

Value Range:
0.0\% to +100.0\%

Description

The frequency detection hysteresis (FDT2) is F8-28 multiplied by F8-29. When the running frequency is higher than F8-28, the DO terminal outputs an active signal. When the running frequency is lower than a specific value ($\mathrm{F} 8-28$ - $\mathrm{F} 8-28 \times \mathrm{F} 8-29$), the DO terminal outputs an inactive signal.

F8-30 Frequency reach detection value 1

Address:	$0 x F 81 E$	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16
Default:	50.00	Change:	Changeable at any time

Value Range:
0.00 Hz to $\mathrm{FO}-10$

Description

When the running frequency of the $A C$ drive is within the range of Frequency reach detection value 1 (F8-30) \pm Frequency reach detection range 1 (F8-31), the DO terminal outputs an active signal.

F8-31 Frequency reach detection range 1

Address: 0xF81F Effective mode: -
Min.: $0.1 \quad$ Unit:

Max.: $100.0 \quad$ Data type: Ulnt16
Default: $0.1 \quad$ Change: Changeable at any time
Value Range:
0.1\% to +100.0\%

Description

When the running frequency of the $A C$ drive is within the range of
frequency reach detection value 1 (F8-30) \pm frequency reach
detection range 1 (F8-31), the DO terminal
outputs an active signal.

F8-32 Frequency reach detection value 2

Address:	$0 \times F 820$	Effective mode:	
Min.:	0.00	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16

Default: 50.00
Change: Changeable at any time

Value Range:
0.00 Hz to $\mathrm{FO}-10$

Description
When the running frequency of the $A C$ drive is within the range of
Frequency reach detection value 2 (F8-32) \pm Frequency reach
detection range 2 (F8-33), the DO terminal
outputs an active signal.

F8-33 Frequency reach detection range 2

Address:	$0 \times F 821$	Effective mode:	-
Min.:	0.1	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	0.1	Change:	Changeable at any time

Value Range:
0.1\% to +100.0\%

Description

When the running frequency of the $A C$ drive is within the range of frequency reach detection value 2 (F8-32) \pm frequency reach detection range 2 (F8-33), the DO terminal outputs an active signal.

F8-34 Zero current detection level

Address:	$0 x F 822$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	300.0	Data type:	Ulnt16
Default:	5.0	Change:	Changeable at any time

Value Range:
0.0\% to 300.0\%

Description

When the output current of the AC drive is lower than or equal to F8-34 (zero current detection level) for a period longer than the time defined by F8-35 (zero current detection delay), the DO terminal outputs an active signal.

F8-35 Zero current detection delay

Address:	$0 x F 823$	Effective mode:	S
Min.:	0.01	Unit:	S
Max.:	600.00	Data type:	Ulnt16
Default:	0.10	Change:	Changeable at any time

Value Range:

0.01 s to 600.00 s

Description

When the output current of the AC drive is lower than or equal to F8-34 (zero current detection level) for a period longer than the time defined by F8-35 (zero current detection delay), the DO terminal outputs an active signal.

F8-36 Output overcurrent threshold
Address: 0xF824
Min.: 0.0
Max.: $\quad 300.0$
Default: 5.0

Effective mode:	-
Unit:	$\%$
Data type:	Ulnt16
Change:	Changeable at any time

Value Range:
0.0\% to 300.0\%

Description

When the output current of the AC drive remains higher than the setpoint of F8-36 (output overcurrent threshold) for a period longer than the setpoint of F8-37 (output overcurrent detection delay), the DO terminal outputs an active signal.

F8-37 Output overcurrent detection delay
Address: 0xF825 Effective mode: -
Min.: 0.00 Unit: s
Max.: $600.00 \quad$ Data type: Ulnt16
Default: $0.00 \quad$ Change: Changeable at any time

Value Range:

0.00 s to 600.00 s

Description

When the output current of the AC drive remains higher than the setpoint of $\mathrm{F} 8-36$ (output overcurrent threshold) for a period longer than the setpoint of F8-37 (output overcurrent detection delay), the DO terminal outputs an active signal.

F8-38 Detection level of current 1

Address: 0xF826

Effective mode:	-
Unit:	$\%$
Data type:	Ulnt16
Change:	Changeable at any time

Max.: $\quad 300.0$
Default: 100.0
Change: Changeable at any time

Value Range:

0.0\% to 300.0\%

Description

When the output current of the AC drive is within the range of F8-38 (detection level of current 1) \pm F839 (detection width of current 1) x Rated motor current, the DO terminal outputs an active signal.

F8-39 Detection width of current 1

Address:	0xF827	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	300.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0\% to 300.0\%

Description

When the output current of the AC drive is within the range of F8-38 (detection level of current 1) \pm F839 (detection width of current 1) x Rated motor current, the DO terminal outputs an active signal.

F8-40 Detection level of current 2

Address:	$0 \times F 828$	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	300.0	Data type:	Ulnt16
Default:	100.0	Change:	Changeable at any time

Value Range:
0.0\% to 300.0\%

Description

When the output current of the AC drive is within the range of F8-40 (detection level of current 2) \pm F841 (detection width of current 2) x Rated motor current, the DO terminal outputs an active signal.

F8-41 Detection width of current 2

Address:	0xF829	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	300.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0\% to 300.0\%

Description
When the output current of the AC drive is within the range of F8-40 (detection level of current 2) \pm F841 (detection width of current 2) x Rated motor current, the DO terminal outputs an active signal.

F8-42 Timing function
Address: 0xF82
Min.: $\quad 0$
Max.: $\quad 1$
Default: 0
Value Range:
0: Disabled
1: Enabled
Description

F8-43 Timing duration source
Address: 0xF82B
Min.: 0
Max.: 3
Default: 0
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Value Range:
0: F8-44
1: AI1
2: AI2
3: AI3
Others: F connector

Description

The analog input range corresponds to F8-44.

F8-44 Timing duration

Address: 0xF82C
Min.: 0.0
Max.: $\quad 6500.0$
Default: 0.0
Value Range:
0.0 min to 6500.0 min

Description

F8-45 Al1 input voltage lower limit

Address:	$0 x F 82 \mathrm{D}$
Min.:	0.00
Max.:	F8-46
Default:	3.10

Effective mode: -
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0.00 V to F8-46

Description

F8-47 IGBT temperature reach (threshold)

Address:	0xF82F	Effective mode:	-
Min.:	0	Unit:	${ }^{\circ} \mathrm{C}$
Max.:	100	Data type:	Ulnt16
Default:	75	Change:	Changeable at any time

Value Range:
$0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Description

Address:	0xF82E	Effective mode:	-
Min.:	F8-45	Unit:	V
Max.:	10.00	Data type:	Ulnt16
Default:	6.80	Change:	Changeable at any time

Effective mode:

Data type: Ulnt16
Change: Changeable at any time

Value Range:
F8-45 to 10.00 V
Description
Al1 input voltage upper limit
-

F8-48 Cooling fan control

Address:	$0 x F 830$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0 : Working during AC drive running
1: Working always

Description

F8-49 Wakeup frequency
Address: 0xF831
Min.: \quad F8-51
Max.: \quad F0-10
Default: 0.00
Value Range:
F8-51 to F0-10
Description
In hibernation state, when the frequency reference is greater than or equal to F8-49 (wakeup frequency) and the current running command is valid, the AC drive starts directly after the delay defined by F8-50 (wakeup delay) elapses.

F8-50 Wakeup delay
Address: 0xF832 Effective mode: -
Min.: 0.0

Effective mode: -

Unit:	Hz
Data type:	Ulnt16

Change: Changeable at any time

Unit: $\quad s$

```
Max.: 6500.0
Data type: Ulnt16
Default: 0.0
Change: Changeable at any time
```

Value Range:
0.0s to 6500.0s

Description
In hibernation state, when the frequency reference is greater than or equal to F8-49 (wakeup frequency) and the current running command is valid, the AC drive starts directly after the delay defined by F8-50 (wakeup delay) elapses.

F8-51 Hibernation frequency

Address:	$0 \times F 833$	Effective mode:	
Min.:	0.00	Unit:	Hz
Max.:	F8-49	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:
0.00 Hz to F8-49

Description

When the frequency reference is lower than or equal to F8-51 (hibernation frequency) during running, the AC drive enters the hibernation state and stops after the time defined by F8-52 (hibernation delay) elapses.

F8-52 Hibernation delay

Address:	0xF834	Effective mode:	-
Min.:	0.0	Unit:	S
Max.:	6500.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0 s to 6500.0 s

Description

When the frequency reference is lower than or equal to F8-51 (hibernation frequency) during running, the $A C$ drive enters the hibernation state and stops after the time defined by F8-52 (hibernation delay) elapses.

F8-53 Current running duration threshold

Address: 0xF835 Effective mode: -
Min.: 0.0
Max.: 6500.0
Default: 0.0
Unit: min
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0.0 min to 6500.0 min

Description

F8-54 Output power correction coefficient

Address:	0xF836	Effective mode: -	
Min.:	0.0	Unit:	$\%$
Max.:	200.0	Data type:	Ulnt16
Default:	100.0	Change:	Changeable at any time

Value Range:

0.0\% to 200.0\%

Description

This parameter defines the correction coefficient of linear correction on the output power when the output power (U0-05) is not equal to expected value.

F8-55 Deceleration time for quick stop

Address:	0xF837	Effective mode:	-
Min.:	0.0	Unit:	S
Max.:	6500.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:

0.0 s to 6500.0 s

Description

This parameter defines the deceleration time for quick stop.

F8-56 Real-time target speed source

Address:	$0 \times F 838$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	8	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:

0: RFG output (default)
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

Description

F8-57 Undervoltage percentage for storage upon undervoltage

Address: 0xF839
Min.: 70
Max.: 120
Default: 100
Value Range:
70\% to 120\%
Description

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time
-

F8-58 Number of E2P operations per unit time
Address: 0xF83A Effective mode: -

Min.: 0
Max.: 100
Default: 0
Value Range:
0 to 100

Description

Address: 0xF83C
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Invalid
1: Set to 1
Others: B connector
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Main status word 2

Address: 0xF83D
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Invalid
1: Set to 1
Others: B connector
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
F8-62 Target speed reach hysteresis

Address:	$0 x F 83 E$	Effective mode: -	
Min.:	0.0	Unit:	$\%$
Max.:	600.0	Data type:	Ulnt16
Default:	3.0	Change:	Changeable at any time

Value Range:
0.0\% to 600.0\%

Description

F8-63 Target speed reach time
Address: 0xF83F Effective mode:

Min.:	0.00
Max.:	100.00
Default:	3.00

Value Range:
0.00 s to 100.00 s
Description
F8-64 Speed comparison reach threshold 1

Address:	$0 \times F 840$
Min.:	0.0
Max.:	600.0
Default:	100.0

Value Range:
0.0\% to 600.0\%
Description
F8-65 Speed comparison reach hysteresis 1

Address:	$0 x$ F841
Min.:	0.0
Max.:	600.0
Default:	3.0

Value Range:
0.0\% to 600.0\%
Description
F8-66 Speed comparison reach time 1

Address:	$0 x$ F842
Min.:	0.00
Max.:	100.00
Default:	3.00

Value Range:
0.00 s to 100.00 s
Description
F8-67 Speed comparison reach threshold 2

Address:	$0 x F 843$
Min.:	0.0
Max.:	600.0
Default:	100.0

Value Range:
0.0\% to 600.0\%
Description
F8-68 Speed comparison reach hysteresis 2

Address:	$0 x F 844$	Effective mode: -	
Min.:	0.0	Unit:	$\%$
Max.:	600.0	Data type:	Ulnt16

Default: 3.0
Change:
Changeable at any time

Value Range:
0.0\% to 600.0\%

Description

F8-69 Speed comparison reach time 2

Address:	$0 x F 845$
Min.:	0.00
Max.:	100.00
Default:	3.00

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.00 s to 100.00 s

Description

Skip frequency 3

Address:	$0 \times F 848$	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:

0.00 Hz to F0-10

Description

The skip frequency enables the AC drive to avoid any frequency at which a mechanical resonance may occur. This parameter defines the third skip frequency. If it is set to 0 , the third skip frequency is canceled.

F8-73 Skip frequency 4
Address: 0xF849 Effective mode: -
Min.: 0.00 Unit: Hz
Max.: F0-10 Data type: Ulnt16
Default: $0.00 \quad$ Change: Changeable at any time
Value Range:
0.00 Hz to $\mathrm{FO}-10$

Description

The skip frequency enables the AC drive to avoid any frequency at which a mechanical resonance may occur. This parameter defines the fourth skip frequency. If it is set to 0 , the fourth skip frequency is canceled.

F8-74 Power-on duration threshold (second)

Address:	$0 \times F 84 A$	Effective mode:	-
Min.:	0	Unit:	S
Max.:	3599	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
Os to 3599s
Description

```
F8-75 Running duration threshold (second)
\begin{tabular}{llll} 
Address: & \(0 x F 84 B\) & Effective mode: & - \\
Min.: & 0 & Unit: & S \\
Max.: & 3599 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}
Value Range:
Os to 3599s
Description
```


4.10 F9: Fault and Protection Parameters

F9-00 Motor overload protection

Address: 0xF900
Min.: $\quad 0$
Max.: $\quad 1$
Default: 1
Value Range:
0: Disabled
1: Enabled
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

F9-01 Motor overload protection gain

Address: 0xF901
Min.: $\quad 0.20$
Max.: $\quad 10.00$
Default: 1.00
Value Range:
0.20 to 10.00

Description

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

F9-02 Motor overload pre-warning coefficient

Address:	$0 \times F 902$	Effective mode: -	
Min.:	50	Unit:	$\%$
Max.:	100	Data type:	Ulnt16
Default:	80	Change:	Changeable at any time

Value Range:
50\% to 100\%
Description

F9-03 Overvoltage stall suppression gain
Address: 0xF903 Effective mode:
Min.: $\quad 1$
Max.: $\quad 100$
Default: 30
Value Range:
1 to 100

Unit:
Data type: Ulnt16
Change: Changeable at any time

Description

Increasing F9-03 will improve the control effect of the bus voltage but cause fluctuations in the output frequency. If the output frequency fluctuates greatly, you can decrease F9-03 as appropriate. F9-03 functions the same as F3-24.

F9-04 Overvoltage stall protection voltage

Address:	0xF904	Effective mode:	-
Min.:	330.0	Unit:	V
Max.:	800.0	Data type:	Ulnt16
Default:	770.0	Change:	Changeable at any time

Value Range:
330.0 V to 800.0 V

Description

This parameter defines the bus voltage upon which the AC drive starts overvoltage stall protection. F9-04 functions the same as F3-22.

F9-07 Short-to-ground detection
Address: 0xF907 Effective mode: -
Min.: 0 Unit: -
Max.: $11 \quad$ Data type: Ulnt16
Default: $1 \quad$ Change: Changeable at any time

Value Range:

Ones: Short-to-ground detection upon power-on
0: Disabled
1: Enabled
Tens: Short-to-ground detection before running
0 : Disabled
1: Enabled
Description
If short-to-ground self-check upon startup is enabled, self-check before startup is not enforced when
flying start is enabled.

F9-08 Braking unit applied voltage

Address:	0xF908	Effective mode:	V
Min.:	330.0	Unit:	V
Max.:	800.0	Data type:	Ulnt16
Default:	760.0	Change:	Changeable only at stop

Value Range:
330.0 V to 800.0 V

Description

F9-09 Auto reset attempts

Address:	$0 \times F 909$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	100	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 to 100
Description

F9-10 Relay action during auto reset

Address:	$0 \times F 90$ A	Effective mode:
Min.:	0	Unit:
Max.:	1	Data type:

F9-11 Auto reset interval

Address:	0xF90B	Effective mode:	-
Min.:	0.1	Unit:	s
Max.:	600.0	Data type:	Ulnt16
Default:	1.0	Change:	Changeable at any time

Value Range:
$0.1 s$ to 600.0 s
Description

F9-12 Input phase loss/Contactor pickup protection
Address: 0xF90C
Min.: 0
Max.: $\quad 13$
Default: 11
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
Ones: Input phase loss protection
0 : Disabled
1: Protection enabled when both software and hardware input phase loss conditions are met
2: Protection enabled when software input phase loss conditions are met
3: Protection enabled when hardware input phase loss conditions are met
Tens: Contactor pickup protection
0 : Disabled
1: Enabled
Description

F9-13 Output phase loss protection

Address:	0xF90D	Effective mode:	-
Min.:	0	Unit:	-
Max.:	11	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

Value Range:

Ones: Output phase loss protection during running
0 : Disabled
1: Enabled
Tens: Output phase loss protection before running
0 : Disabled
1: Enabled

Description

If output phase loss self-check upon startup is enabled, self-check before startup is not enforced after flying start is enabled.

F9-14 1st fault type

Address: 0xF90E Effective mode: -
Min.: 0 Unit
Max.: 999
Default: 0

Value Range:

0 : No fault
1: Reserved
2: Overcurrent (ErrO2)
5: Overvoltage (Err05)
8: Pre-charge resistor overload (Err08)
9: Undervoltage (Err09)
10: AC drive overload (Err10)
11: Motor overload (Err11)
12: Input phase loss (Err12)
13: Output phase loss (Err13)
14: IGBT overheat (Err14)
15: External fault (Err15)
16: Communication exception (Err16)
17: Contactor exception (Err17)
18: Current detection exception (Err18)
19: Motor auto-tuning exception (Err19)
20: Encoder/PG card exception
21: Parameter read/write exception (Err21)
22: Encoder card exception (Err22)
23: Motor short-to-ground (Err23)
26: Accumulative running duration reach (Err26)
(To be continued)
(Continued)
27: User-defined fault
28: User-defined alarm
29: Accumulative power-on duration reach (Err29)
30: Load loss (Err30)
31: PID feedback loss (Err31)
32: Parameter exception (Err32)
40: Pulse-by-pulse current limit fault (Err40)
41: Reserved (Err41)
42: Excessive speed deviation (Err42)
43: Motor overspeed (Err43)
45: Motor overtemperature (Err45)
47: STO fault (Err47)
55: Slave fault under master-slave control (Err55)
56: Self-check fault (Err56)
57: IGBT fault (Err57)
58: Hardware sensor fault (Err58)
59: Two-phase imbalance (Err59)
61: Braking overload (Err61)
62: Braking module exception (Err62)
63: External alarm (Err63)
82: Pre-charge contactor feedback exception (Err82)
85: Timing exception (Err85)
93: Motor control exception (Err93)
94: Motor parameter exception (Err94)
169: Fault reset fault (Err169)
174: Wire breakage (Err174)

Description

F9-15 2nd fault type

Address:	0xF90F	Effective mode:	
Min.:	0	Unit:	-
Max.:	999	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
Same as F9-15			
Description			

F9-16 \quad 3rd (latest) fault type

Address: 0xF910
Min.: 0
Max.: 999
Default: 0
Value Range:
Same as F9-15

Description

F9-17 Frequency upon the 3rd (latest) fault

Address: 0xF911
Min.: 0.00
Max.: 655.35
Default: 0.00
Value Range:
0.00 Hz to 655.35 Hz

Description

F9-18 Current upon the 3rd (latest) fault
Address: 0xF912
Min.: $\quad 0.00$
Max.: $\quad 655.35$
Default: 0.00
Value Range:
0.00 A to 655.35 A

Description

F9-19 Bus voltage upon the 3rd (latest) fault
Address: 0xF913
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0 V to 6553.5 V

Description

F9-20 DI state upon the 3rd (latest) fault
Address: 0xF914
Min.: 0×0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description

F9-21 DO state upon the 3rd (latest) fault
Address: 0xF915
Min.: 0×0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description

Effective mode:	-
Unit:	Hz
Data type:	Int16
Change:	Unchangeable

Data type: Int16
Change: Unchangeable

Effective mode:
Unit: A
Data type: Int16
Change: Unchangeable

Effective mode:
Unit: V
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

F9-22	AC drive state upon the 3rd (latest) fault			
	Address: $0 \times$ F916	Effective mode: -		
Min.:	0	Unit:	-	
Max.: 65535	Data type:	Unt16		
Default: 0	Change:	Unchangeable		
Value Range:				
0 to 65535				
	Description			

F9-23 Power-on duration upon the 3rd (latest) fault
Address: 0xF917 Effective mode: -
Min.: $0 \quad$ Unit: min
Max.: 65535 Data type: Ulnt16

Default: 0
Change: Unchangeable
Value Range:
0 min to 65535 min
Description

F9-24 Running duration upon the 3rd (latest) fault
Address: 0xF918
Min.: 0.0
Max.: 6553.5
Default: 0.0
Efective mode:
Unit: min
Data type: Ulnt16
Change: Unchangeable

Value Range:

0.0 min to 6553.5 min

Description

F9-25 Status word A upon the 3rd (latest) fault

Address:	$0 \times F 919$	Effective mode:	-
Min.:	0×0	Unit:	-
Max.:	0xFFFF	Data type:	Ulnt16
Default: 0×0	Change:	Unchangeable	
Value Range:			
0x0 to 0xFFFF			
Description			

F9-26 Status word B upon the 3rd (latest) fault

Address:	$0 \times F 91 A$	Effective mode:	-
Min.:	0×0	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default: 0×0	Change:	Unchangeable	
Value Range:			
0x0 to 0xFFFF			
Description			

F9-27 Frequency upon the 2nd fault
Address: 0xF91B Effective mode:

Min.:	0.00
Max.:	655.35
Default:	0.00

Value Range:
0.00 Hz to 655.35 Hz

Description

Unit:	Hz
Data type:	Int16
Change:	Unchangeable

F9-28 Current upon the 2nd fault
Address: 0xF91C
Min.: $\quad 0.00$
Max.: 655.35
Default: 0.00
Value Range:
0.00 A to 655.35 A

Description

```
Effective mode: -
Unit: A
Data type: Int16
Change: Unchangeable
```

F9-29 Bus voltage upon the 2nd fault
Address: 0xF91D
Min.: 0.0
Max.: 6553.5
Default: 0.0

Value Range:

0.0 V to 6553.5 V

Description

F9-30 DI state upon the 2nd fault

Address:	$0 x F 91 E$
Min.:	0×0
Max.:	$0 x F F F F$
Default:	0×0

Value Range:

0×0 to 0xFFFF

Description

F9-31 DO state upon the 2nd fault
Address: 0xF91F
Min.: 0×0
Max.: 0xFFFF
Default: 0×0

Value Range:

0x0 to 0xFFFF

Description

F9-32 AC drive state upon the 2nd fault

Address:	$0 x F 920$
Min.:	0

Effective mode:	-
Unit:	-
Data type:	Ulnt16

Default: 0
Value Range:
0 to 65535
Description

F9-33 Power-on duration upon the 2nd fault
Address: 0xF921

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 min to 65535 min

Description

F9-34 Running duration upon the 2nd fault
Address: 0xF922
Min.: 0.0
Max.: 6553.5
Default: 0.0

Value Range:

0.0 min to 6553.5 min

Description

F9-35 Status word A upon the 2nd fault
Address: 0xF923
Min.: 0x0
Max.: 0xFFFF
Default: 0x0

Value Range:

0x0 to 0xFFFF
Description

F9-36 Status word B upon the 2nd fault
Address: 0xF924

Min.: 0×0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

F9-37 Frequency upon the 1st fault
Address: 0xF925
Min.: $\quad 0.00$
Max.: $\quad 655.35$
Default: 0.00
Value Range:

Change: Unchangeable

Effective mode:
Unit: min
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit: min
Data type: Ulnt16
Change: Unchangeable

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
0.00 Hz to 655.35 Hz

Description

F9-38 Current upon the 1st fault
Address: 0xF926
Min.: $\quad 0.00$
Max.: 655.35
Default: 0.00
Value Range:
0.00 A to 655.35 A

Description

F9-39 Bus voltage upon the 1st fault
Address: 0xF927
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0 V to 6553.5 V

Description

F9-40 DI state upon the 1st fault

Address:	$0 \times F 928$
Min.:	0×0
Max.:	$0 \times F F F F$
Default:	0×0

Value Range:

0×0 to 0xFFFF

Description

F9-41 DO state upon the 1st fault
Address: 0xF929
Min.: 0×0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit: V
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit: A
Data type: Int16
Change: Unchangeable

Description

F9-43 Power-on duration upon the 1st fault
Address: 0xF92B

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 min to 65535 min
Description

F9-44 Running duration upon the 1st fault

Address:	$0 x$ F92C
Min.:	0.0
Max.:	6553.5
Default:	0.0

Effective mode: -
Unit: min
Data type: Ulnt16
Change: Unchangeable

Value Range:

0.0 min to 6553.5 min

Description

F9-45 Status word A upon the 1st fault

Address:	$0 x F 92 \mathrm{D}$
Min.:	0×0
Max.:	$0 x F F F F$
Default:	0×0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Value Range:

0x0 to 0xFFFF

Description

F9-46 Status word B upon the 1st fault

Address:	$0 x F 92 E$
Min.:	0×0
Max.:	$0 x F F F F$
Default:	0×0

Value Range:

0x0 to 0xFFFF
Description
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

F9-47 Fault protection action selection 1

Address:	$0 x F 92 F$
Min.:	0
Max.:	4455
Default:	0

Value Range:

Ones: Motor overload (Err11)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
5: Ignore
Tens: Input phase loss (Err12)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
5: Ignore
Hundreds: Output phase loss (Err13)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
Thousands: External fault (Err15)
0: Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
Ten thousands: Reserved
Description

F9-48 Fault protection action selection 2
Address: 0xF930
Min.: 0
Max.: 40015
Default: 0
Value Range:

Ones: Encoder/PG card exception (Err20)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
5: Ignore
Tens: Parameter read/write exception (Err21)
0 : Coast to stop
1: Stop according to the stop mode
Hundreds: Reserved (Err24)
0 : Coast to stop
Thousands: Reserved (Err25)
0 : Coast to stop
Ten thousands: Running duration reach (Err26)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
Description

F9-49 Fault protection action selection 3
Address: 0xF931
Min.: 0
Max.: 45444
Default: 220
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:

Ones: User-defined fault 1 (Err27)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
Tens: User-defined fault 2 (Err28)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
Hundreds: Power-on duration reach (Err29)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
Thousands: Load loss (Err30)
0: Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
5: Ignore
Ten thousands: PID loss during running (Err31)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
Description

F9-50 Fault protection action selection 4
Address: 0xF932
Min.: 0
Max.: 55
Default: 2
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:

Ones: Excessive speed deviation (Err42)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
5: Ignore
Tens: Motor overspeed (Err43)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
5: Ignore
Thousands: Magnetic pole position auto-tuning error (Err55)
0 : Coast to stop

Description

F9-51 Fault protection action selection 5
Address: 0xF933
Min.: 0
Max.: 50555
Default: 10111
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

Ones: Modbus timeout (Err160)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
5: Ignore
Tens: CANOpen fault (Err161)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
5: Ignore
Hundreds: CANlink fault (Err162)
0: Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
5: Ignore
Thousands: Reserved
Ten thousands: Expansion card fault (Err164)
0 : Coast to stop
1: Stop according to the stop mode
2: Continue to run
3: Run with power limit
4: Run with current limit
5: Ignore
Description

F9-54 Frequency for continuing to run upon fault
Address: 0xF936
Effective mode: -
Min.: 0
Max.: 4
Default: 1

Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0 : Current running frequency
1: Frequency reference
2: Frequency upper limit
3: Frequency lower limit
4: Alternative frequency upon exception
Description

F9-55 Alternative frequency upon exception

Address:	0xF937	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	100.0	Change:	Changeable at any time

Value Range:
0.0\% to +100.0\%

Description

F9-56 Al3 temperature mode - motor temperature sensor type
Address: 0xF938 Effective mode:
Min.: 0
Max.: 2 Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0 : No temperature sensor (Al channel used as analog input)
1: PT100
2: PT1000
Description

F9-57 Al3 temperature mode - motor overheat protection threshold
Address: 0xF939 Effective mode:

Min.: F9-58 Unit: ${ }^{\circ} \mathrm{C}$
Max.: 200
Default: 110
Data type: Ulnt16
Change: Changeable at any time
Value Range:
F9-58 to $200^{\circ} \mathrm{C}$
Description

F9-58 Al3 temperature mode - motor overheat pre-warning threshold

Address:	0xF93A	Effective mode:	-
Min.:	0	Unit:	${ }^{\circ} \mathrm{C}$
Max.:	F9-57	Data type:	Ulnt16
Default: 90	Change:	Changeable at any time	
Value Range:			
$0^{\circ} \mathrm{C}$ to F9-57			
Description			

F9-59 Power dip ride-through
Address: 0xF93B
Effective mode: -
Min.: 0
Unit:
Max.: 3
Default: 0
Data type: Ulnt16
Change: Changeable only at stop
Value Range:

0 : Disabled

1: Decelerate
2: Decelerate to stop
3: Suppress voltage dip

Description

This parameter defines whether the AC drive runs continuously upon instantaneous power failure. When instantaneous power failure occurs, the AC drive keeps the motor in the power generating state to keep the bus voltage around the "voltage threshold for enabling power dip ride-through". This prevents the AC drive from stopping due to undervoltage.

0 : Disabled
The power dip ride-through function is disabled.

1: Decelerate and keep bus voltage constant
When power failure occurs, the bus voltage stays around the "voltage threshold for enabling power dip ride-through". In this mode, when the grid resumes power supply, the AC drive accelerates to the target frequency based on the acceleration time.

2: Decelerate to stop
When power failure occurs, the AC drive decelerates to stop. In this mode, if the AC drive has not decelerated to 0 when the grid resumes power supply, it resumes running.

3: Suppress voltage dip
In this mode, the AC drive will not stop due to undervoltage caused by voltage dip. The voltage dip suppression time is set by F9-66.

F9-61 Delay of voltage recovery from power dip

Address:	$0 \times F 93 D$	Effective mode:	S
Min.:	0.0	Unit:	S
Max.:	100.0	Data type:	Ulnt16
Default:	0.5	Change:	Changeable only at stop

Value Range:

0.0 s to 100.0 s

Description

This parameter defines the time required for the bus voltage to rise from F9-60 (voltage threshold for disabling power dip ride-through) to the voltage before power failure.
F9-62 Voltage threshold for enabling power dip ride-through
Address: 0xF93E Effective mode: -
Min.: 60 Unit:
Max.: 100 Data type: Ulnt16
Default: 80 Change: Changeable only at stop
Value Range:
60\% to 100\%

Description

This parameter defines the voltage level at which the bus voltage is maintained upon power failure. Upon power failure, the bus voltage is maintained around F9-62 (voltage threshold for enabling power dip ride-through).
F9-63 Protection upon load loss

Address:	0xF93F	Effective mode:
Min.:	0	Unit:
Max.:	1	Data type:
Default:	0	Change:

Value Range:

0: Disabled
1: Enabled
Description
F9-64 Load loss detection level
Address: 0xF940 Effective mode:
Min.: 0.0
Max.: 100.0
Default: 10.0
Unit: $\%$
Data type: Ulnt16
Value Range:
0.0\% to +100.0\%

Description

F9-65 Load loss detection time

Address:	$0 x F 941$
Min.:	0.0
Max.:	60.0
Default:	1.0

Effective mode: -
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0.0s to 60.0s

Description

F9-67 Overspeed detection level

Address:	$0 \times$ F943	Effective mode: -
Min.:	0.0	Unit:

Max.:	50.0	Data type:	Ulnt16
Default:	20.0	Change:	Changeable at any time

Default: 20.0
Change: Changeable at any time
Value Range:
0.0\% to 50.0\%

Description

F9-68 Overspeed detection time
Address: 0xF944 Effective mode:
Min.: 0.0
Max.: $\quad 60.0$
Default: 1.0
Value Range:
0.0s to 60.0s

Description

F9-69 Detection level of excessive speed deviation

Address:	$0 \times$ F945	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	50.0	Data type:	Ulnt16
Default:	20.0	Change:	Changeable at any time

Value Range:

0.0\% to 50.0\%

Description

F9-70 Detection time of excessive speed deviation

Address:	$0 x F 946$
Min.:	0.0
Max.:	60.0
Default:	5.0

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0s to 60.0s

Description

F9-71 Power dip ride-through gain Kp

Address:	0xF947	Effective mode:	-
Min.:	1	Unit:	-
Max.:	100	Data type:	Ulnt16
Default:	40	Change:	Changeable at any time

Value Range:
1 to 100
Description

F9-72 Power dip ride-through integral coefficient Ki

Address:	$0 x$ F948	Effective mode:
Min.:	1	Unit:
Max.:	100	Data type:
Default:	30	Change:

Value Range:

1 to 100
Description

F9-73 Deceleration time of power dip ride-through
Address: 0xF949 Effective mode: -
Min.: $0.0 \quad$ Unit: S

Max.: $300.0 \quad$ Data type: Ulnt16
Default: 20.0
Change: Changeable at any time

Value Range:

0.0 s to 300.0 s

Description

F9-74 Voltage dip suppression time

Address:	$0 \times F 94 A$	Effective mode:	-
Min.:	0.1	Unit:	S
Max.:	600.0	Data type:	Ulnt16
Default: 0.5	Change:	Changeable at any time	
Value Range:			
0.1s to 600.0s			
Description			

F9-75 AI2 temperature mode - motor temperature sensor type

Address:	$0 x$ F94B	Effective mode:	-
Min.:	0	Unit:	-
Max.:	4	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 : No temperature sensor (Al channel used as analog input)
1: PT100
2: PT1000
3: KTY84-130
4: PTC130
Description

F9-76 Al2 temperature mode - motor overheat protection threshold
Address: 0xF94C
Min.: F9-77
Max.: 200
Default: 110
Effective mode: -
Unit: $\quad{ }^{\circ} \mathrm{C}$
Data type: Ulnt16
Change: Changeable at any time

Value Range:

F9-77 to $200^{\circ} \mathrm{C}$
Description

F9-77 Al2 temperature mode - motor overheat pre-warning threshold
Address: 0xF94D Effective mode:

Min.:	0	Unit:	${ }^{\circ} \mathrm{C}$
Max.:	F9-76	Data type:	Ulnt16
Default:	90	Change:	Changeable at any time
Value Range:			
0° C to F9-76			
Description			

F9-78 AI2 temperature mode - motor temperature reach
Address: 0xF94E Effective mode:

Min.: 0
Max.: $\quad 100$
Default: 75
Unit:
${ }^{\circ} \mathrm{C}$

Default. 75
Value Range:
$0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Description

F9-79 Auto reset of STO state

Address:	0xF94F	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time
Value Range:			
0: Manual reset			
1: Auto reset			
Description			

F9-80 Al3 temperature mode - motor temperature reach

Address:	$0 \times F 950$	Effective mode:	-
Min.:	0	Unit:	${ }^{\circ} \mathrm{C}$
Max.:	100	Data type:	Ulnt16
Default:	75	Change:	Changeable at any time

Value Range:
$0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Description

4.11 FA: Process Control PID Parameters

FA-00 PID reference source
Address: 0xFA00
Min.: $\quad 0$
Max.: 6
Default: 0
Value Range:

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

0: FA-01
1: AI1
2: AI2
3: Al3
4: Pulse input (DI5)
5: Communication
6: Multi-reference
Others: F connector

Description

This parameter specifies the PID reference source. The PID reference is a relative value. The value 100% corresponds to 100% of the feedback signal of the controlled system.
0: FA-01
The PID target reference is the value of FA-01 (PID reference).
1: AI1
The PID reference source is the AI1 input.
2: AI2
The PID reference source is the AI2 input.
3: AI3
The PID reference source is the AI3 input.
4: Pulse reference (DI5)
The PID reference is set by the pulse frequency through the DI5. The frequency is calculated based on the curve reflecting the relationship between the pulse frequency and running frequency.
5: Communication
The PID reference is set by remote communication.
6: Multi-reference
In the multi-reference mode, different combinations of DI terminal states correspond to different frequency references. The four multi-reference terminals can provide 16 state combinations, corresponding to 16 frequency reference values. Note: When FA-00 is set to 6 (multi-reference), FC-51 (multi-reference 0 source) cannot be set to 5 (PID reference).
Others: F connector
A parameter of the floating-point connector is selected as the PID target reference.

FA-01 PID reference

Address:	0xFA01	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	50.0	Change:	Changeable at any time

Value Range:
0.0\% to +100.0\%

Description

When FA-00 (PID reference source) is set to 0 , this parameter must be set. The setpoint 100% corresponds to the maximum feedback value.

FA-02 PID feedback source

Address: 0xFA02
Min.: 0
Max.: 8
Default: 0
Value Range:

0: AI1
1: AI2
2: AI3
3: Al1-AI2
4: Pulse reference (DIO1)
5: Communication
6: Al1+AI2
7: MAX(|AI1|, |AI2|)
8: $\operatorname{Min}(|\mathrm{Al} 1|,|\mathrm{Al} 2|)$
Others: F connector

Description

This parameter defines the PID feedback source.

FA-03 PID action direction
Address: 0xFA03

Min.: 0
Max.: 1
Default: 0

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:
0: Forward
1: Reverse
Others: B connector

Description

0: Forward
When the feedback value is lower than the PID reference, the output frequency of the AC drive increases.
1: Reverse
When the feedback value is lower than the PID reference, the output frequency of the AC drive
decreases.
Others: B connector
The PID action direction is determined by a parameter in the bit connector. (0 indicates forward and 1 indicates reverse.)

FA-04 PID reference and feedback range

Address:	0xFA04	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	1000	Change:	Changeable at any time

Value Range:
0 to 65535
Description
This parameter is used for display of the PID reference and feedback, which are dimensionless. For example, if this parameter is set to 1000 , the PID reference (0% to 100%) corresponds linearly to the feedback value (0 to 1000).

FA-05 Proportional gain Kp1

Address:	0xFA05	Effective mode:	-
Min.:	0.0	Unit:	-
Max.:	1000.0	Data type:	Ulnt16
Default:	20.0	Change:	Changeable at any time

Value Range:

0.0 to 1000.0

Description

This parameter defines the proportional gain Kp in PID control. The deviation reduction speed depends on the proportional coefficient Kp. A larger Kp tends to reduce the deviation faster, but may cause system oscillation, especially at large hysteresis. A smaller Kp indicates lower possibility of oscillation but also slower deviation reduction.

FA-08 PID cut-off frequency in reverse direction

Address:	0xFA08	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16
Default:	2.00	Change:	Changeable at any time

Effective mode: -
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Integral time Ti1

Address:	0xFA06	Effective mode:	S
Min.:	0.01	Unit:	S
Max.:	10.00	Data type:	Ulnt16
Default:	2.00	Change:	Changeable at any time

Value Range:
0.01 s to 10.00 s

Description

This parameter defines the integral time Ti in PID control. It determines the integral adjustment intensity of the PID controller. Shorter integral time indicates greater adjustment intensity.

Derivative time Td1

Address:	0xFA07	Effective mode:	-
Min.:	0.000	Unit:	S
Max.:	10.000	Data type:	Ulnt16
Default:	0.000	Change:	Changeable at any time

Value Range:
0.000s to 10.000 s

Description

This parameter defines the derivative time Td in PID control. It determines the deviation variation adjustment intensity of the PID controller. Longer derivative time indicates greater adjustment intensity.

Value Range:
0.00 Hz to $\mathrm{FO}-10$

Description

When the frequency source is "PID only", the PID cut-off frequency in reverse direction is the minimum value of the current PID output. When the frequency source is "main + PID", FA-08 takes into account the "main + PID" as a whole and outputs the minimum frequency value calculated through the "main + PID" operation. This parameter does not take effect when set to 0 .

FA-09 PID deviation limit
Address: 0xFA09
Min.: $\quad 0.0$
Max.: $\quad 100.0$
Default: 0.0
Value Range:

0.0% to $+100.0 \%$

Description

When the deviation is within the PID deviation limit, no adjustment is required. This parameter helps balance the accuracy and stability of the system output.

FA-10

FA-13 PID output filter time

Address:	OxFAOD	Effective mode: -	
Min.:	0.00	Unit:	S
Max.:	60.00	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:

0.00 s to 60.00s

Description

This parameter defines the filter time of PID output. The filter enhances smooth output but lowers the responsiveness of the process closed-loop

FA-15 Proportional gain Kp2

Address: 0xFA0F Effective mode: -
Min.: 0.0

Unit:

```
Max.: 1000.0 Data type: Ulnt16
Default: 20.0
Change: Changeable at any time
```

Value Range:
0.0 to 1000.0

Description

This parameter defines the proportional gain Kp in PID control. The deviation reduction speed depends on the proportional coefficient Kp. A larger Kp tends to reduce the deviation faster, but may cause system oscillation, especially at large hysteresis. A smaller Kp indicates lower possibility of oscillation but also slower deviation reduction.

FA-16 Integral time Ti2

Address:	0xFA10	Effective mode: -	
Min.:	0.01	Unit:	S
Max.:	10.00	Data type:	Ulnt16
Default:	2.00	Change:	Changeable at any time

Value Range:
0.01 s to 10.00 s

Description

This parameter defines the integral time Ti in PID control. It determines the integral adjustment intensity of the PID controller. Shorter integral time indicates greater adjustment intensity.

FA-17 Derivative time Td2

Address:	$0 \times F A 11$	Effective mode:	-
Min.:	0.000	Unit:	S
Max.:	10.000	Data type:	Ulnt16
Default:	0.000	Change:	Changeable at any time

Value Range:
0.000 s to 10.000 s

Description

This parameter defines the derivative time Td in PID control. It determines the deviation variation adjustment intensity of the PID controller. Longer derivative time indicates greater adjustment intensity.

FA-18 PID parameter switchover condition

Address:	$0 x F A 12$	Effective mode:	
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0: No switchover
1: Switchover by DI
2: Automatic switchover based on deviation
3: Automatic switchover based on running frequency

Description

This parameter defines the switchover between two groups of PID parameters.
0 : No switchover
No switchover is performed.

1: Switchover by DI
To use this function, the DI terminal must be assigned with function 43 (PID parameter switchover). If the DI is inactive, parameter group 1 (FA-05 to FA-07) is selected. If the DI is active, parameter group 2 (FA-15 to FA-17) is selected.
2: Automatic switchover based on deviation
If the absolute value of the deviation between the reference and the feedback is lower than that set by FA-19 (PID parameter switchover deviation 1), parameter group 1 applies. If the absolute value of the deviation between the reference and the feedback is higher than that set by FA-20 (PID parameter switchover deviation 2), parameter group 2 applies. If this absolute value is between FA-19 (PID parameter switchover deviation 1) and FA-20 (PID parameter switchover deviation 2), the PID parameters are the linear interpolation values of the two groups of parameters.
3: Switchover based on running frequency
PID parameters are switched automatically based on the running frequency of the AC drive.

FA-19 PID parameter switchover deviation 1

Address:	0xFA13	Effective mode:	-
Min.:	0.0	Unit:	\%
Max.:	FA-20	Data type:	Ulnt16
Default:	20.0	Change:	Changeable at any time

Value Range:
0.0\% to FA-20

Description
The value 100% corresponds to the maximum deviation between the reference and feedback. The value range is 0.0% to FA-20 (PID parameter switchover deviation 2).

FA-20 PID parameter switchover deviation 2

Address:	0xFA14	Effective mode:	-
Min.:	FA-19	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	80.0	Change:	Changeable at any time

Value Range:
FA-19 to 100.0\%
Description
The value 100% corresponds to the maximum deviation between the reference and feedback. The value range is FA-19 (PID parameter switchover deviation 1) to 100.0%.

FA-21 PID initial value

Address: 0xFA15 Effective mode: -
Min.: 0.0 Unit:
Max.: $100.0 \quad$ Data type: Ulnt16
Default: $0.0 \quad$ Change: Changeable at any time

Value Range:
0.0% to $+100.0 \%$

Description

When the AC drive starts up, the PID starts the closed-loop algorithm only after the PID output is fixed to the PID initial value (FA-21) for longer than the time set by FA-22 (hold time of PID initial value).

FA-22 Hold time of PID initial value

Address:	$0 x F A 16$	Effective mode: -
Min.:	0.00	Unit:

Max.:	650.00	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:
0.00s to 650.00s

Description
When the AC drive starts up, the PID starts the closed-loop algorithm only after the PID output is fixed to the PID initial value (FA-21) for longer than the time set by FA-22 (hold time of PID initial value).

FA-23 Maximum deviation between two PID outputs

Address:	$0 x F A 17$
Min.:	0.00
Max.:	100.00
Default:	1.00

Effective mode: -
Min.: $\quad 0.00$

Default: 1.00
Unit: $\%$

Value Range:
0.00\% to 100.00%

Description

FA-24 Minimum deviation between two PID outputs
Address: 0xFA18 Effective mode:

Min.: $\quad 0.00$
Max.: $\quad 100.00$
Default: 1.00

Value Range:

0.00% to 100.00%

Description

FA-25 PID integral property
Address: 0xFA19 Effective mode: -
Min.: 0 Unit: -
Max.: 11 Data type: Ulnt16
Default: $10 \quad$ Change: Changeable at any time
Value Range:
Ones: Integral separation
0: Disabled
1: Enabled
Tens: Whether to stop integration when the output reaches the limit
0 : Continue integration
1: Stop integration
Description
Ones: Integral separation
0: Disabled When integral separation is disabled, it remains inactive no matter whether the multifunctional DI is active.
1: Enabled When integral separation is enabled, PID integration stops when the DI assigned with the PID integral pause function is active (F4-00 = 22 for example). In this case, only PID proportional and derivative actions are active.
Tens: Whether to stop integration when the output reaches the limit
When the PID calculation output reaches the maximum or minimum value, you can choose whether to stop the integration. If you set this bit to 1 , PID integration stops, which may help reduce the PID overshoot.

FA-29 Upper threshold of detection on feedback loss
Address: 0xFA1D
Min.: 0.0
Max.: $\quad 100.0$
Default: 100.0
Value Range:
0.0% to $+100.0 \%$
Value Range:
0.0 s to 20.0 s

Description

 27 (PID feedback loss detection time), the AC drive reports E31.00.PID operation at stop
Address: 0xFA1C Effective mode: -
Min.: 0 Unit: -
Max.: $1 \quad$ Data type: Ulnt16

Value Range:
0 : Disabled
1: Enabled
Others: B connector
Description
0: Disabled

1: Enabled
feedback and reference
Others: B connector

Effective mode: -
Unit: \quad s
Data type: Ulnt16
Change: Changeable at any time

This parameter is used to determine whether the PID feedback is lost. When the PID feedback remains lower than the value of FA-26 (lower threshold of detection on feedback loss) or higher than the value of FA-29 (upper threshold of detection on feedback loss) for a period longer than the time set by FA-

Default: $0 \quad$ Change: Changeable at any time

When the motor is not running, PID operation is not performed, and the output is cleared.

When the motor is not running, PID operation is still performed, and the output changes with the

Whether to perform PID operation at stop is determined by a parameter in the bit connector.

Address:	$0 x F A 1 D$	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	100.0	Change:	Changeable at any time

Description

This parameter is used to determine whether the PID feedback is lost. When the PID feedback remains higher than the value of FA-29 (upper threshold of detection on feedback loss) for a period longer than the time set by FA-27 (PID feedback loss detection time), the AC drive reports E31.00. The setpoint 100.0% indicates that detection on feedback loss is disabled.

FA-30 Source of maximum output

Address:	0xFA1E	Effective mode:	-
Min.:	0	Unit:	-
Max.:	8	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0: [1]
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

Description

This parameter defines the source of the maximum PID output.
When PID is used as the frequency reference source, the PID output is restricted by frequency limits; otherwise, the PID output range is defined by FA-30 and FA-31.

FA-31 Source of minimum output

Address:	0xFA1F	Effective mode:	-
Min.:	0	Unit:	-
Max.:	8	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0: [0]
1: AI1
2: Al2
3: Al3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

Description

This parameter defines the source of the minimum PID output.
When PID is used as the frequency reference source, the PID output is restricted by frequency limits; otherwise, the PID output range is defined by FA-30 and FA-31.

FA-32

FA-34 General PID enable

Address: 0xFA22 Effective mode: -
Min.: $\quad 0$
Max.: $\quad 1$
Default: 1

0 : Disabled
1: Enabled
Others: B connector
Description
0: Disabled
PID operation is not performed, and the output is cleared.

1: Enabled
PID operation is performed based on parameters in group FA.
Others: B connector
Whether to enable the PID function is determined by a parameter in the bit connector.

4.12 FB: Wobble, Fixed Length, and Counting Parameters

FB-00 Wobble setting mode

Address: 0xFB00

Min.: $\quad 0$
Max.: 1
Default: 0

Value Range:

0 : Relative to center frequency
1: Relative to maximum frequency
Description

FB-01 Wobble amplitude
Address: 0xFB01
Min.: 0.0
Max.: $\quad 100.0$
Default: 0.0
Value Range:
0.0\% to +100.0\%

Description

FB-02 Wobble step
Address: 0xFB02
Effective mode:
Min.: $\quad 0.0$
Max.: $\quad 50.0$
Default: 0.0
Value Range:
0.0\% to 50.0\%

Description

FB-03 Wobble cycle
Address: 0xFB03
Min.: $\quad 0.1$
Max.: $\quad 3000.0$
Default: 10.0
Value Range:
0.1 s to 3000.0 s

Description

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit: s
Data type: Ulnt16
Change: Changeable at any time
FB-04 Triangular wave rise time coefficient
Address: 0xFB04
Min.: 0.1
Max.: $\quad 100.0$
Default: 50.0
Value Range:
0.1\% to +100.0\%
Description
Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any timeEffective mode:Unit:Data type: Ulnt16Change: Changeable at any time
Value Range:
0 to 65535
Description
FB-06 Actual length

Address:	$0 x F B 06$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Max.: 6553.5
Default: 100.0
Value Range:
0.1 to 6553.5
Description
FB-08 Reference count value
Address: 0xFB08
Min.: 0
Max.: 65535
Default: 1000
Value Range:
0 to 65535
Description
Effective mode:
Unit:Data type: Ulnt16
ChangeEffective mode:Unit:Data type: Ulnt16Change: Changeable at any time
FB-09 Designated count valueAddress: 0xFB09

Min.: 0	Unit:	-	
Max.:	65535	Data type:	Ulnt16
Default: 1000	Change:	Changeable at any time	
Value Range:			
0 to 65535			
Description			

FB-20 Motor-driven potentiometer enable

Address:	$0 \times F B 14$	Effective mode:	
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0: Disabled
1: Enabled
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
The motor-driven potentiometer can implement virtual potentiometer output.
0 : The motor-driven potentiometer is disabled.
1 : The motor-driven potentiometer is enabled.
$3-18$: The value is determined by the corresponding DI.
Others: The value is determined by the corresponding connector.

FB-21 Memory retention at power failure of motor-driven potentiometer

Address:	$0 \times F B 15$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
0: Disabled			
: Enabled			
Description			

If memory retention at power failure is enabled and the motor-driven potentiometer is enabled before power failure, the output value of the motor-driven potentiometer after power-on is the last output value before the power failure.
0 : Non-retentive upon power failure
1: Retentive upon power failure

FB-22 Initial value of motor-driven potentiometer
Address: 0xFB16 Effective mode: -
Min.: -600 Unit: \%
Max.: $600.0 \quad$ Data type: Int16
Default: $0.0 \quad$ Change: Changeable at any time
Value Range:
-600\% to +600.0\%
Description
This parameter defines the per-unit value of the motor-driven potentiometer in initial state after it is enabled.

FB-23 Value increase time base of motor-driven potentiometer
Address: 0xFB17 Effective mode:
Min.: 0.00 Unit: S
Max.: 655.35 Data type: Ulnt16
Default: $20.00 \quad$ Change: Changeable at any time
Value Range:
0.00s to 655.35s

Description

This parameter defines the increase rate of the motor potentiometer count value, specifically the time required to increase from 0 to the maximum frequency.

FB-24 Value decrease time base of motor-driven potentiometer
Address: 0xFB18 Effective mode: -
Min.: 0.00 Unit: S
Max.: 655.35 Data type: Ulnt16
Default: $20.00 \quad$ Change: Changeable at any time
Value Range:
0.00s to 655.35s

Description

This parameter defines the decrease rate of the motor potentiometer count value, specifically the time required to decrease from the maximum frequency to 0 .

FB-25 Source of motor-driven potentiometer increase command
Address: 0xFB19
Effective mode:
Min.: 0
Max.: 18
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time

0 : Inactive
1: Active
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector

Description

This parameter defines the source of the output value increase command of the motor-driven potentiometer.
0 : The increase command source is invalid.
1: The increase command source is valid.
$3-18$: The increase command source is the corresponding DI value.
Others: The increase command source is the corresponding connector value.

FB-26 Source of motor-driven potentiometer decrease command

Address: 0xFB1A
Effective mode:
Min.: 0
Max.: 18
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 : Inactive
1: Active
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
This parameter defines the source of the output value decrease command of the motor-driven potentiometer.
0 : The decrease command source is invalid.
1 : The decrease command source is valid.
$3-18$: The decrease command source is the corresponding DI value.
Others: The decrease command source is the corresponding connector value.
FB-27 Maximum output value of motor-driven potentiometer

Address:	0xFB1B	Effective mode:	
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default:	600.0	Change:	Changeable at any time

Value Range:
-600\% to +600.0\%
Description
This parameter defines the maximum per-unit value that the motor-driven potentiometer can output.
FB-28 Minimum output value of motor-driven potentiometer
Address: 0xFB1C Effective mode:
Min.: -600
Max.: 600.0
Default: -600
Unit: \%
Data type: Int16
Change: Changeable at any time
Value Range:
-600\% to +600.0\%
Description
This parameter defines the minimum per-unit value that the motor-driven potentiometer can output.
FB-29 Source 1 of motor-driven potentiometer pause command
Address: 0xFB1D
Effective mode:

	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	0 : Inactiv			
	1: Active			
	3: DI1			
	4: DI2			
	5: DI3			
	6: DI4			
	7: DI5			
	8: DI6			
	9: DI7			
	10: DI8			
	11: DI9			
	12: DI10			
	13: DI11			
	14: DI12			
	15: DI13			
	16: DI14			
	17: DI15			
	18: DI16			
	Others: Descript	nnector		
	When the potention 0 : The pa	pause com ter paus e is invalid	alid; when the paus	ause command is 1 , the motor-driven
	1 : The paus	e is valid		
	3-18: Th	ommand	rresponding DI.	
	Others: T	command	corresponding co	nnector.
FB-30	Source 2	motor-d	use command	
	Address:	0xFB1E	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			

0 : Inactive
1: Active
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
When the pause command is 0 , the pause is invalid; when the pause command is 1 , the motor-driven potentiometer pauses.
0 : The pause is invalid.
1: The pause is valid.
$3-18$: The command is the value input by the corresponding DI.
Others: The command is the value input by the corresponding connector.

FB-31 Source 1 of motor-driven potentiometer reset command
Address: 0xFB1F
Effective mode:
Min.: 0
Max.: 18
Default: 0

Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0 : Inactive
1: Active
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector

Description

When the reset command is 0 , the reset is invalid; when the reset command is 1 , the output of the motor-driven potentiometer is reset.
0 : The reset is invalid.
1 : The reset is valid.
$3-18$: The command is the value input by the corresponding DI.
Others: The command is the value input by the corresponding connector.

FB-32 Source 2 of motor-driven potentiometer reset command

Address: 0xFB20
Effective mode:
Min.: 0
Max.: 18
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 : Inactive
1: Active
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector

Description

When the reset command is 0 , the reset is invalid; when the reset command is 1 , the output of the motor-driven potentiometer is reset.
0 : The reset is invalid.
1 : The reset is valid.
$3-18$: The command is the value input by the corresponding DI.
Others: The command is the value input by the corresponding connector.

FB-33 Source of motor-driven potentiometer reset value

Address: 0xFB21
Min.: 0
Max.: 8
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0: Digital setting
1: Al1
2: Al2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

This parameter defines the specific per-unit value of reset after the motor-driven potentiometer receives the reset command.
0 : Value of FB-34
1-3: Corresponding AI input value
4: Pulse input value
5: Value input through communication
6: Multi-reference output value
7: Motor-driven potentiometer output value
8: General PID output value
Others: Connector value

FB-34	Reset value of motor-driven potentiometer			
	Address:	0xFB22	Effective m	
	Min.:	-600	Unit:	\%
	Max.:	600.0	Data type:	
	Default:	0.0	Change:	

Value Range:
-600% to $+600.0 \%$

Description

This parameter specifies the reset value of the motor-driven potentiometer when FB-33 is set to 0 .

FB-35 Source of motor-driven potentiometer force command
Address: 0xFB23 Effective mode:
Min.: 0
Max.: 18
Default: 0
Value Range:
0 : Inactive
1: Active
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

When the force command is 0 , the force is invalid; when the force command is 1 , the output of the motor-driven potentiometer is forced to the designated value.
0 : The force invalid.
1 : The force is valid.
$3-18$: The command is the value input by the corresponding DI.
Others: The command is the value input by the corresponding connector.

Source of motor-driven potentiometer force value

Address: 0xFB24
Min.: $\quad 0$
Max.: 8
Default: 0
Value Range:
0 : Digital setting
1: AI1
2: Al2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

Description

This parameter defines the forced per-unit value after the motor-driven potentiometer receives the force command.
0 : Value of FB-37
1-3: Corresponding AI input value
4: Pulse input value
5: Value input through communication
6: Multi-reference output value
7: Motor-driven potentiometer output value
8: General PID output value
Others: Connector value

FB-37 Force value of motor-driven potentiometer

Address:	$0 \times F$ F25	Effective mode:	-
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default:	0.0	Change:	Changeable at any time

Value Range:

-600\% to +600.0\%

Description

This parameter specifies the force value of the motor-driven potentiometer when FB-36 is set to 0 .

FB-38 High-order bits of motor-driven potentiometer storage
Address: 0xFB26
Min.: 0
Max.: 65535

Effective mode: -
Unit:
Data type: Ulnt16
Default: 0
Change:
Changeable at any time

Value Range:
0 to 65535
Description

FB-39 Low-order bits of motor-driven potentiometer storage
Address: 0xFB27 Effective mode

Min.: $0 \quad$ Unit:
Max.: 65535
Default: 0
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 to 65535
Description

FB-46 Simple UP/DOWN output

Address:	0xFB2E	Effective mode: -	
Min.:	-32767	Unit:	-
Max.:	32767	Data type:	Int16
Default:	0	Change:	Unchangeable

Value Range:
-32767 to +32767
Description

4.13 FC: Multi-reference Parameters

FC-00 Multi-reference 1
Address: 0xFC00 Effective mode: -
Min.: $\quad-100$
Max.: $\quad 100.0$
Default: 0.0
Value Range:
-100% to $+100.0 \%$

Description

The unit of the multi-reference value is \%. The AC drive provides four multi-reference terminals, which provide 16 state combinations, corresponding to 16 frequency setpoints.
This parameter defines the frequency reference of each speed when the frequency reference source is set to multi-reference. FC-00 to FC-15 correspond to a total of 16 frequency setpoints for 16 segments numbered from 0 to 15 . The frequency setpoint is calculated as a percentage to the maximum frequency. The value 100% corresponds to F0-10 (maximum frequency).
The source of multi-reference 1 is selected in FC-51, and the other multi-reference values are set by parameters.
When outputting to a floating-point connector, the multi-reference value can be used not only as the frequency reference, but also torque, voltage, or other reference input. The multi-reference value is a percentage of the rated value.

```
FC-01 Multi-reference 2
    Address: 0xFC01
    Min.: -100
    Max.: 100.0
    Default: 0.0
    Value Range:
    -100% to +100.0%
    Description
    Same as FC-00
FC-02 Multi-reference 3
    Address: 0xFC02
    Min.: -100
    Max.: 100.0
    Default: 0.0
    Value Range:
    -100% to +100.0%
    Description
    Same as FC-00
FC-03 Multi-reference 4
    Address: 0xFC03
    Min.: -100
    Max.: 100.0
    Default: 0.0
    Value Range:
    -100% to +100.0%
    Description
    Same as FC-00
FC-04 Multi-reference 5
    Address: 0xFC04
    Min.: -100
    Max.: 100.0
    Default: 0.0
    Value Range:
    -100% to +100.0%
    Description
    Same as FC-00
FC-05 Multi-reference 6
    Address: 0xFC05
    Min.: -100
    Max.: 100.0
    Default: 0.0
    Value Range:
    -100% to +100.0%
    Description
    Same as FC-00
FC-06 Multi-reference 7
Address: 0xFC06
Effective mode:
```

	Min.:	-100	Unit:	\%
	Max.:	100.0	Data type:	Int16
	Default:	0.0	Change:	Changeable at any time
	Value Ra			
	-100\% to	100.0\%		
	Descript			
	Same as			
FC-07	Multi-re	ence 8		
	Address:	0xFC07	Effective mode:	-
	Min.:	-100	Unit:	\%
	Max.:	100.0	Data type:	Int16
	Default:	0.0	Change:	Changeable at any time
	Value Ra			
	-100\% to	100.0\%		
	Descript			
	Same as			
FC-08	Multi-re	ence 9		
	Address:	0xFC08	Effective mode:	-
	Min.:	-100	Unit:	\%
	Max.:	100.0	Data type:	Int16
	Default:	0.0	Change:	Changeable at any time
	Value Ra			
	-100\% to	100.0\%		
	Descript			
	Same as			
FC-09	Multi-re	ence 10		
	Address:	0xFC09	Effective mode:	
	Min.:	-100	Unit:	\%
	Max.:	100.0	Data type:	Int16
	Default:	0.0	Change:	Changeable at any time
	Value Ra			
	-100\% to	100.0\%		
	Descript			
	Same as			
FC-10	Multi-re	ence 11		
	Address:	0xFC0A	Effective mode:	-
	Min.:	-100	Unit:	\%
	Max.:	100.0	Data type:	Int16
	Default:	0.0	Change:	Changeable at any time
	Value Ra			
	-100\% to	100.0\%		
	Descript			
	Same as			
FC-11	Multi-re	ence 12		
	Address:	0xFCOB	Effective mode:	-
	Min.:	-100	Unit:	\%
	Max.:	100.0	Data type:	Int16

	Default: 0.0		Change:	Changeable at any time		
	Value Range:					
	-100\% to +100.0\%					
	Description					
	Same as FC-00					
FC-12	Multi-reference 13					
	Address:	0xFCOC		Effective mode:	-	
	Min.:	-100		Unit:	\%	
	Max.:	100.0	Data type:	Int16		
	Default:	0.0	Change:	Changeable at any time		
	Value Range:					
	-100\% to +100.0\%					
	Description					
	Same as FC-00					
FC-13	Multi-reference 14					
	Address:	0xFCOD	Effective mode:	-		
	Min.:	-100	Unit:	\%		
	Max.:	100.0	Data type:	Int16		
	Default:	0.0	Change:	Changeable at any time		
	Value Range:					
	-100\% to +100.0\%					
	Description					
	Same as FC-00					
FC-14	Multi-reference 15					
	Address:	0xFC0E	Effective mode:	-		
	Min.:	-100	Unit:	\%		
	Max.:	100.0	Data type:	Int16		
	Default:	0.0	Change:	Changeable at any time		
	Value Range:					
	-100\% to +100.0\%					
	Description					
	Same as FC-00					
FC-15	Multi-reference 16					
	Address:	0xFC0F	Effective mode:	-		
	Min.:	-100	Unit:	\%		
	Max.:	100.0	Data type:	Int16		
	Default:	0.0	Change:	Changeable at any time		
	Value Range: -100% to $+100.0 \%$					
	Description					
	Same as FC-00					
FC-16	Simple PLC running mode					
	Address:	0xFC10	Effective mode:	-		
	Min.:	0	Unit:	-		
	Max.:	2	Data type:	Ulnt16		
	Default:	0	Change:	Changeable at any time		

Value Range:

0 : Stop after running for one cycle
1: Keep final values after running for one cycle
2: Repeat after running for one cycle

Description

FC-17 Simple PLC memory retention upon power failure
Address: 0xFC11
Effective mode:
Min.: 0
Max.: $\quad 11$
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
Ones: Retentive upon power failure
0 : No
1: Yes
Tens: Retentive upon stop
0 : No
1: Yes
Description

FC-18 Running time of PLC reference 0

Address: 0xFC12 Effective mode:
Min.: $0.0 \quad$ Unit: $\mathrm{S}(\mathrm{h})$

Max.: 6553.5
Data type: Ulnt16
Default: 0.0
Change: Changeable at any time
Value Range:
0.0 s (h) to 6553.5 s (h)

Description

FC-19 Acceleration/Deceleration time of PLC reference 0
Address: 0xFC13 Effective mode:
Min.: $0 \quad$ Unit:
Max.: 3 Data type: Ulnt16
Default: 0
Change: Changeable at any time
Value Range:
0 to 3
Description

FC-20 Running time of PLC reference 1

Address:	0xFC14	Effective mode:	
Min.:	0.0	Unit:	$\mathrm{s}(\mathrm{h})$
Max.:	6553.5	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0 s (h) to 6553.5 s (h)

Description

FC-21 Acceleration/Deceleration time of PLC reference 1

Address:	$0 x F C 15$	Effective mode:	
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time
Value Range:			
0 to 3			
Description			

FC-22 Running time of PLC reference 2
Address: 0xFC16 Effective mode: -

Min.: 0.0
Unit: $\quad \mathrm{s}(\mathrm{h})$
Max.: 6553.5
Data type: Ulnt16
Default: 0.0
Change: Changeable at any time
Value Range:
0.0 s (h) to 6553.5 s (h)

Description

FC-23 Acceleration/Deceleration time of PLC reference 2

Address:	$0 \times F C 17$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 to 3
Description

FC-24 Running time of PLC reference 3

Address:	0xFC18	Effective mode:	-
Min.:	0.0	Unit:	$\mathrm{S}(\mathrm{h})$
Max.:	6553.5	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
$0.0 \mathrm{~s}(\mathrm{~h})$ to 6553.5 s (h)
Description

FC-25 Acceleration/Deceleration time of PLC reference 3

Address:	$0 \times F C 19$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time
Value Range:			
0 to 3			
Description			

FC-26 Running time of PLC reference 4
Address: 0xFC1A Effective mode:

Min.: 0.0	Unit:	$\mathrm{s}(\mathrm{h})$	
Max.:	6553.5	Data type:	Ulnt16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
$0.0 \mathrm{~s}(\mathrm{~h})$ to $6553.5 \mathrm{~s}(\mathrm{~h})$			
Description			

FC-27 Acceleration/Deceleration time of PLC reference 4

Address:	$0 x F C 1 B$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
0 to 3			
Description			

FC-28 Running time of PLC reference 5

Address:	0xFC1C	Effective mode:	
Min.:	0.0	Unit:	$\mathrm{s}(\mathrm{h})$
Max.:	6553.5	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
$0.0 \mathrm{~s}(\mathrm{~h})$ to 6553.5 s (h)
Description

FC-29 Acceleration/Deceleration time of PLC reference 5

Address:	0xFC1D	Effective mode:	-
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0 to 3
Description

FC-30 Running time of PLC reference 6

Address:	$0 x F C 1 E$
Min.:	0.0
Max.:	6553.5
Default:	0.0

Value Range:
$0.0 \mathrm{~s}(\mathrm{~h})$ to 6553.5 s (h)
Description

FC-31 Acceleration/Deceleration time of PLC reference 6

Address:	$0 x F C 1 F$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16

Default: $0 \quad$ Change: Changeable at any time

Value Range:
0 to 3
Description

FC-32 Running time of PLC reference 7
Address: 0xFC20 Effective mode:
Min.: $\quad 0.0$
Max.: 6553.5
Unit: $\quad s(h)$
Data type: Ulnt16
Default: 0.0
Change: Changeable at any time
Value Range:
$0.0 \mathrm{~s}(\mathrm{~h})$ to 6553.5 s (h)
Description

FC-33 Acceleration/Deceleration time of PLC reference 7

Address:	$0 x F C 21$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 to 3
Description

FC-34 Running time of PLC reference 8
Address: 0xFC22 Effective mode: -
Min.: $0.0 \quad$ Unit: $\mathrm{s}(\mathrm{h})$

Max.: 6553.5
Data type: Ulnt16
Default: 0.0
Change: Changeable at any time
Value Range:
$0.0 \mathrm{~s}(\mathrm{~h})$ to 6553.5 s (h)
Description

FC-35 Acceleration/Deceleration time of PLC reference 8
Address: 0xFC23
Min.: $\quad 0$
Max.: 3
Default: 0
Value Range:
0 to 3
Description

FC-36 Running time of PLC reference 9
Address: 0xFC24 Effective mode: -

Min.: 0.0
Max.: 6553.5
Default: 0.0

Unit: $\quad \mathrm{s}(\mathrm{h})$
Data type: Ulnt16
Change: Changeable at any time

Value Range:

```
0.0s (h) to 6553.5s (h)
```


Description

FC-37 Acceleration/Deceleration time of PLC reference 9

Address:	$0 \times F C 25$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time
Value Range:			
0 to 3			
Description			

FC-38 Running time of PLC reference 10

Address:	0xFC26	Effective mode:	
Min.:	0.0	Unit:	$\mathrm{s}(\mathrm{h})$
Max.:	6553.5	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
$0.0 \mathrm{~s}(\mathrm{~h})$ to 6553.5 s (h)
Description

FC-39 Acceleration/Deceleration time of PLC reference 10

Address:	$0 \times F C 27$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0 to 3
Description

FC-40 Running time of PLC reference 11
Address: 0xFC28 Effective mode: -

Min.:	0.0
Max.:	6553.5
Default:	0.0

Unit: $\quad \mathrm{s}(\mathrm{h})$
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0.0 s (h) to 6553.5 s (h)

Description

Effective mode:
Unit:

Change: Changeable at any time
-

FC-41 Acceleration/Deceleration time of PLC reference 11
Address: 0xFC29 Effective mode: -
Min.: $0 \quad$ Unit: -
Max.: $3 \quad$ Data type: Ulnt16

Default: $0 \quad$ Change: Changeable at any time

Value Range:

0 to 3

Description

FC-42 Running time of PLC reference 12

Address:	0xFC2A	Effective mode:	-
Min.:	0.0	Unit:	$\mathrm{S}(\mathrm{h})$
Max.:	6553.5	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0s (h) to 6553.5s (h)

Description

FC-43 Acceleration/Deceleration time of PLC reference 12

Address:	$0 x F C 2 B$	Effective mode:
Min.:	0	Unit:
Max.:	3	Data type:
Default:	0	Change:

Value Range:

0 to 3
Description

FC-44 Running time of PLC reference 13

Address:	0xFC2C	Effective mode: -	
Min.:	0.0	Unit:	$\mathrm{S}(\mathrm{h})$
Max.:	6553.5	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:

0.0s (h) to 6553.5s (h)

Description

FC-45 Acceleration/Deceleration time of PLC reference 13

Address: 0xFC2D
Min.: $\quad 0$
Max.: 3
Default: 0

0 to 3
Description

FC-46 Running time of PLC reference 14
Address: 0xFC2E Effective mode:
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0 s (h) to 6553.5 s (h)

Description

Unit: $\quad s(h)$
Data type: Ulnt16
Change: Changeable at any time
-

FC-47 Acceleration/Deceleration time of PLC reference 14

Address:	$0 \times F C 2 F$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time
Value Range:			
0 to 3			
Description			

FC-48 Running time of PLC reference 15
Address: 0xFC30 Effective mode: -
Min.: 0.0
Unit: $\quad \mathrm{s}(\mathrm{h})$
Max.: 6553.5
Data type: Ulnt16
Default: 0.0
Change: Changeable at any time
Value Range:
0.0 s (h) to 6553.5 s (h)

Description

FC-49 Acceleration/Deceleration time of PLC reference 15
Address: 0xFC31
Min.: 0
Max.: 3
Default: 0
Effective mode:
Unit:

Value Range:
0 to 3
Description

FC-50 PLC running time unit

Address:	$0 \times F C 32$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0: s (second)
1: h (hour)
Description

FC-51 Multi-reference 0 source

Address:	$0 \times F C 33$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	6	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time
Value Range:			

0: FC-00
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: PID
6: Preset frequency (F0-08)
Others: F connector
Description
This parameter defines the source of multi-reference value 1 .

FC-52 Current multi-reference

Address: 0xFC34 Effective mode: -
Min.: 0
Max.: $\quad 15$
Default: 0
Value Range:
0 : Multi-reference 1
1: Multi-reference 2
2: Multi-reference 3
3: Multi-reference 4
4: Multi-reference 5
5: Multi-reference 6
6: Multi-reference 7
7: Multi-reference 8
8: Multi-reference 9
9: Multi-reference 10
10: Multi-reference 11
11: Multi-reference 12
12: Multi-reference 13
13: Multi-reference 14
14: Multi-reference 15
15: Multi-reference 16
Description
This parameter shows the current active multi-reference.

FC-53 Current multi-reference value
Address: 0xFC35 Effective mode: -
Min.: -600 Unit: \%

Max.: $600.0 \quad$ Data type: Int16
Default: 0.0 Change: Unchangeable
Value Range:
-600\% to $+600.0 \%$
Description
This parameter shows the value of the current active multi-reference.

FC-55 Multi-reference value bit0

Address:	$0 \times F C 37$	Effective mode:
Min.:	0	Unit:

Max.:	18	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0: 0
1: 1
2: Terminal function input
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
This parameter defines the source of bit0 of the multi-reference value.

FC-56 Multi-reference value bit1
Address: 0xFC38 Effective mode: -
Min.: 0
Max.: 18
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:

0: 0
1: 1
2: Terminal function input
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
This parameter defines the source of bit1 of the multi-reference value.

FC-57 Multi-reference value bit2
Address: 0xFC39
Effective mode: -
Min.: 0
Max.: 18
Default: 0
Value Range:

0: 0
1: 1
2: Terminal function input
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
This parameter defines the source of bit2 of the multi-reference value.

FC-58 Multi-reference value bit3
Address: 0xFC3A
Min.: 0
Max.: 18
Default: 0
Value Range:

0: 0
1: 1
2: Terminal function input
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
This parameter defines the source of bit3 of the multi-reference value.

FC-59 Current STEP of PLC

Address: 0xFC3B Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

FC-60 High-order bits of PLC current STEP running time
Address: 0xFC3C

Effective mode: -
Min.: 0
Max.: 65535
Unit:
Data type: Ulnt16
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

FC-61 Low-order bits of PLC current STEP running time

Address: 0xFC3D
Min.: 0
Max.: 65535
Default: 0
Value Range:
Van

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Unit:
Data type: Ulnt16
Change: Unchangeable

0 to 65535
Description

4.14 FD: Communication Parameters

> | FD-00 | Baud rate | |
| :--- | :--- | :--- |
| | Address: | $0 x F D 00$ |
| | Min.: $\quad 0$ | |
| | Max.: $\quad 6009$ | |
| | Default: $\quad 5005$ | |
| | Value Range: | |
| | Ones: Modbus | |
| 0: 300 bps | | |
| | 1: 600 bps | |
| 2: 1200 bps | | |
| | 3: 2400 bps | |
| 4: 4800 bps | | |
| | 5: 9600 bps | |
| | 6: 19200 bps | |
| 7: 38400 bps | | |
| 8: 57600 bps | | |
| 9: 115200 bps | | |
| | Tens: Reserved | |

Effective mode: -

Hundreds: Reserved

Thousands: CANLink/CANOpen
0: 20
1: 50
2: 100
3: 125
4: 250
5: 500
6: 1M
Description

```
FD-01 Modbus data format
    Address: 0xFD01 Effective mode:
    Min.: 0
    Max.: 7
    Default: 0
```

 Value Range:
 [^1]
Description

FD-08 Expansion card communication timeout time

Address: 0xFD08
Min.: 0.0
Max.: $\quad 60.0$
Default: 0.0
Value Range:
0.0s to 60.0s

Description

FD-10 CANopen/CANlink switchover

Address:	0xFDOA	Effective mode:	-
Min.:	1	Unit:	-
Max.:	2	Data type:	Ulnt16
Default:	2	Change:	Changeable at any time

Value Range:

1: CANopen
2: CANlink
Description

FD-14 Number of frames received per unit time

Address:	$0 \times F D 0 E$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:

0 to 65535
Description

FD-15 Maximum RX error count

Address:	$0 x F D 0 F$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:

0 to 65535
Description

FD-16 Maximum TX error count

Address:	$0 x$ FD10	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:

0 to 65535

Description

FD-17 Bus-off count per unit time
Address: 0xFD11 Effective mode: -
Min.: 0 Unit:
Max.: 65535
Default: 0
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

FD-19 CAN communication disconnection coefficient
Address: 0xFD13 Effective mode:
Min.: 1 Unit:
Max.: 15 Data type: Ulnt16
Default: 3
Change: Changeable only at stop
Value Range:
1 to 15
Description

FD-20 PROFIBUS DP communication address

Address:	$0 \times F D 14$	Effective mode:	
Min.:	0	Unit:	-
Max.:	125	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0 to 125
Description

FD-21 PROFIBUS DP communication disconnection coefficient

Address:	$0 x F D 15$
Min.:	0
Max.:	65535
Default:	350

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0 to 65535
Description

FD-27 Storage of parameters written through communication
Address: 0xFD1B Effective mode:
Min.: $0 \quad$ Unit:

Max.: 1
Default: 0
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 to 1
Description

FD-28	Auto reset upon communication fault			
	Address:	0xFD1C	Effective mode:	
	Min.:	0	Unit:	-
	Max.:	1	Data type:	Ulnt16
	Default:	1	Change:	Changeable at any time
	Value Ra			
	0 to 1			
	Descript			
	-			
FD-29	Communication state			
	Address:	0xFD1D	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	999	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 to 999			
	Description			
FD-30	Number of RPDO mapped bytes			
	Address:	0xFD1E	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0 to 65535			
	Description			
FD-31	Number of TPDO mapped bytes			
	Address:	0xFD1F	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0 to 65535			
	Description			
FD-32	Group AF mapping mode switchover			
	Address:	0xFD20	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	1	Data type:	Ulnt16
	Default:	0	Change:	Changeable only at stop
	Value Range:			
	0: Parameters written through communication are not saved			
	1: Parameters written through communication are saved			
	Description			

FD-37 DHCP function

Address:	$0 \times F D 25$	Effective mode:
Min.:	0	Unit:
Max.:	1	Data type:
Default: 0	Change:	Clnt16
Value Range:		
0: Disabled		
1: Enabled		
Description		

FD-38 MSB of IP address
Address: 0xFD26
Min.: 0
Max.: 255
Default: 0
Value Range:
0 to 255
Description

FD-39 Second MSB of IP address

Address: 0xFD27
Min.: 0
Max.: 255
Default: 0
Value Range:
0 to 255
Description

FD-40 Third byte of IP address
Address: 0xFD28
Min.: 0
Max.: 255
Default: 0
Value Range:
0 to 255
Description

FD-41 LSB of IP address
Address: 0xFD29
Min.: 0
Max.: 255
Default: 0
Value Range:
0 to 255
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

```
FD-42 MSB of subnet mask
Address: 0xFD2A
    Min.: 0
    Max.: 255
    Default: 0
    Value Range:
    0 to 255
Description
FD-43 Second MSB of subnet mask
    Address: 0xFD2B
    Min.: 0
    Max.: 255
    Default: 0
    Value Range:
    0 to 255
    Description
FD-44 Third byte of subnet mask
    Address: 0xFD2C
    Min.: 0
    Max.: 255
    Default: 0
    Value Range:
    0 to 255
    Description
FD-45 LSB of subnet mask
    Address: 0xFD2D
    Min.: 0
    Max.: 255
    Default: 0
    Value Range:
    0 to 255
    Description
FD-46 MSB of gateway
    Address: 0xFD2E
    Min.: 0
    Max.: 255
    Default: 0
    Value Range:
    0 to 255
    Description
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop
FD-47 Second MSB of gateway
    Address: 0xFD2F
Effective mode:
```

Min.:	0	Unit:	-
Max.:	255	Data type:	Ulnt16
Default: 0	Change:	Changeable only at stop	
Value Range:			
0 to 255			
Description			

FD-48 Third byte of gateway
Address: 0xFD30
Min.: 0
Max.: 255
Default: 0
Value Range:
0 to 255
Description
FD-49 LSB of gateway
Address: 0xFD31
Min.: 0
Max.: 255
Default: 0
Value Range:
0 to 255
Description
FD-58 Ethernet/IP expansion card error code
Address: 0xFD3A
Min.: 0
Max.: 255
Default: 0

Value Range:

0 to 255
Description
FD-61 High-order byte of MAC address
Address: 0xFD3D
Min.: 0×0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description
FD-62 Middle byte of MAC address

Address:	$0 x F D 3 E$
Min.:	0×0
Max.:	$0 x F F F F$

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop
```

	Default: 0x0	Change:	Changeable only at stop
	Value Range:		
	0x0 to 0xFFFF		
	Description		
	-		
FD-63	Low-order byte of MAC address		
	Address: 0xFD3F	Effective mode:	-
	Min.: 0×0	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: 0x0	Change:	Changeable only at stop
	Value Range:		
	0x0 to 0xFFFF		
	Description		
FD-92	Slave alias backup		
	Address: 0xFD5C	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0 to 65535		
	Description		
FD-93	Null pointer		
	Address: 0xFD5D	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0 to 65535		
	Description		
FD-94	Communication software version		
	Address: 0xFD5E	Effective mode:	-
	Min.: 0.00	Unit:	-
	Max.: 655.35	Data type:	Ulnt16
	Default: 0.00	Change:	Unchangeable
	Value Range:		
	0.00 to 655.35		
	Description		

4.15 FE: User-Defined Parameters

FE-00 User-defined parameter 0
Address: 0x2F00 Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Changeable at any time |
| Value Range: | | |
| 0 to 65535 | | |
| Description | | |

FE-01 User-defined parameter 1
Address: 0x2F01

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```


FE-02 User-defined parameter 2

Address: 0x2F02
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

FE-03 User-defined parameter 3
Address: 0x2F03
Min.: 0
Max.: 65535
Default: 0

Value Range:

0 to 65535
Description

FE-04 User-defined parameter 4
Address: 0x2F04
Min.: 0
Max.: 65535
Default: 0

Value Range:

0 to 65535

Description

FE-05 User-defined parameter 5
$\begin{array}{ll}\text { Address: } & 0 \times 2 \text { F05 } \\ \text { Min.: } & 0\end{array}$
Max.: 65535
$\begin{array}{ll}\text { Effective mode: - } \\ \text { Unit: } & - \\ \text { Data type: } & \text { Ulnt16 }\end{array}$

	Default: 0	Change:	Changeable at any time
	Value Range:		
	0 to 65535		
	Description		
	-		
FE-06	User-defined parameter 6		
	Address: 0x2F06	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0 to 65535		
	Description		
	-		
FE-07	User-defined parameter 7		
	Address: 0x2F07	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0 to 65535		
	Description		
	-		
FE-08	User-defined parameter 8		
	Address: 0x2F08	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0 to 65535		
	Description		
	-		
FE-09	User-defined parameter 9		
	Address: 0x2F09	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0 to 65535		
	Description		
	-		
FE-10	User-defined parameter 10		
	Address: 0x2F0A	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		

0 to 65535
 Description

FE-11 User-defined parameter 11
Address: 0x2FOB Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

FE-12 User-defined parameter 12
Address: 0x2FOC Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

FE-13 User-defined parameter 13
Address: 0x2F0D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

FE-14 User-defined parameter 14

Address: 0x2F0E
Min.: 0
Max.: 65535
Default: 0

Value Range:

0 to 65535
Description

FE-15 User-defined parameter 15
Address: 0x2F0F
Min.: 0
Max.: 65535
Default: 0

Value Range:

0 to 65535

Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Description

FE-16 User-defined parameter 16
Address: 0x2F10 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

FE-17 User-defined parameter 17
Address: 0x2F11 Effective mode:
Min.: 0
Max.: 65535
Default: 0

Value Range:

0 to 65535
Description

FE-18 User-defined parameter 18

Address:	0×2 F12	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

FE-19 User-defined parameter 19
Address: 0x2F13
Min.: 0
Max.: 65535
Default: 0

Value Range:

0 to 65535
Description

FE-20 User-defined parameter 20
Address: 0x2F14
Min.: 0
Max.: 65535
Default: 0

Value Range:

0 to 65535
Description

Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Changeable at any time

Effective mode:
Unit:

Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

FE-21 User-defined parameter 21

Address: 0x2F15
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

FE-22 User-defined parameter 22
Address: 0x2F16
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

FE-23 User-defined parameter 23
Address: 0x2F17
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

FE-24 User-defined parameter 24

Address:	0x2F18	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Address: 0x2F18
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

FE-25 User-defined parameter 25
Address: 0x2F19
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:

Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

FE-26 User-defined parameter 26
Address: 0x2F1A

Effective mode:

Min.: 0	Unit:	-	
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
0 to 65535			
Description			

FE-27 User-defined parameter 27
Address: 0x2F1B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

FE-28 User-defined parameter 28
Address: 0x2F1C Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

FE-29 User-defined parameter 29

Address:	0x2F1D	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

FE-30 User-defined parameter 30
Address: 0×2 F1E
Min.: 0
Max.: 65535
Default: 0

Value Range:

0 to 65535

Description

FE-31 User-defined parameter 31
Address: $0 \times 2 \mathrm{~F} 1 \mathrm{~F}$
Min.: 0
Max.: 65535

Default: 0

Change:
Changeable at any time
Value Range:
0 to 65535
Description

4.16 FP: Parameter Management

FP-00 User password

Address:	0×1 F00	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 to 65535
Description
If a user password is set, the menu is accessible only when the correct password is entered.

FP-01 Parameter initialization

Address: 0x1F01 Effective mode:
Min.: 0
Max.: 503
Unit:
Data type: Ulnt16
Default: 0
Change: Changeable only at stop
Value Range:
0 : No operation
1: Restore default settings (excluding motor parameters)
2: Clear records
4: Back up current user parameters
501: Restore user parameters from backup
503: Restore default settings (including motor parameters)

Description

1: Most of the parameters are restored to factory settings. However, motor parameters, including F0-
22 (decimal places of frequency reference), fault records, F7-09 (accumulative running duration), F7-
13 (accumulative power-on duration), F7-14 (accumulative power consumption), and F7-07 (IGBT heatsink temperature), are not restored.
2: Fault records, F7-09 (accumulative running duration), F7-13 (accumulative power-on duration), and F7-14 (accumulative power consumption) are cleared.
4: The current parameter settings are backed up.
501: Parameters backed up by setting FP-01 to 4 are restored.
503: All AC drive parameters, excluding manufacturer parameters in group FF, FP-00, and FP-01, are restored to default settings.

FP-02 Parameter display

Address:	0x1F02	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	63	Change:	Changeable at any time

Value Range:

```
    Bit00: Group U
    0: Hidden
    1: Displayed
    Bit01: Group A
    0: Hidden
    1: Displayed
    Bit02: Group B
    0: Hidden
    1: Displayed
    Bit03: Group C
    0: Hidden
    1: Displayed
    Bit04: Group H
    0: Hidden
    1: Displayed
    Bit05: Group L
    0: Hidden
    1: Displayed
Description
This parameter determines whether to display the parameters of groups U, A, B, C, H, and L on the operating panel. Parameters in a group are displayed when the corresponding bit is 1 and not displayed when the corresponding bit is 0 .
FP-03 Display of individualized parameters
Address: 0x1F03 Effective mode: -
Min.: 0 Unit
Max.: }11
Default: 111
```

Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

```
Ones: User mode
0 : Hidden
1: Displayed
Tens: Correction mode
0 : Hidden
1: Displayed
Hundreds: Error menu
0: Hidden
1: Displayed
Description
This parameter determines whether to display the user-defined parameters, user-modified parameters, and error menus on the operating panel.
FP-04 Parameter modification
Address: 0x1F04
Effective mode:
Unit:
Min.: \(\quad 0\)
Max.: 1
Default: 0
Data type: Ulnt16
Change: Changeable at any time
Value Range:
```


0: Modification allowed

1: Modification prohibited

Description

This parameter defines whether the AC drive parameters can be modified.

FP-07 Expert password

Address: 0x1F07
Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
If the expert password is not set, the expert permission is obtained automatically.
If the expert password is set, you need to enter the expert password in FP-09 to obtain the expert permission.

FP-08 Factory password

Address:	0×1 F08
Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535
Description
If the factory password is not set, the factory permission is obtained automatically.
If the factory password is set, you need to enter the factory password in FP-09 to obtain the factory permission.

FP-09 Password input window

Address:	0x1F09	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Defaut.
Value Range:
0 to 65535

Description

This parameter is used to input the monitoring password, expert password, and factory password. You can enter a password to obtain the corresponding permissions.

FP-14	Parameter clearing		
	Address: 0x1F0E	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 1000	Data type:	Ulnt16
	Default: 0	Change:	Changeable only at stop
	Value Range:		
	0: No operation		
	1: Clear all record (faults and time) parameters		
	2: Clear fault information		
	500: Clear all backup user parameters		
	1000: Clear all backup motor parameters		
	Description		
	-		
FP-15	Parameter restoration		
	Address: 0x1F0F	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 2204	Data type:	Ulnt16
	Default: 0	Change:	Changeable only at stop
	Value Range:		
	0: No operation		
	500: Restore user backup		
	501: Restore user macro backup 1		
	502: Restore user macro backup 2		
	503: Restore user macro backup 3		
	504: Restore user macro backup 4		
	505: Restore user macro backup 5		
	506: Restore user macro backup 6		
	2011: Restore motor macro backup parameter 1 to motor 1		
	2012: Restore motor macro backup parameter 1 to motor 2		
	2013: Restore motor macro backup parameter 1 to motor 3		
	2014: Restore motor macro backup parameter 1 to motor 4		
	2021: Restore motor macro backup parameter 2 to motor 1		
	2022: Restore motor macro backup parameter 2 to motor 2		
	2023: Restore motor macro backup parameter 2 to motor 3		
	2024: Restore motor macro backup parameter 2 to motor 4		
	2031: Restore motor macro backup parameter 3 to motor 1		
	2032: Restore motor macro backup parameter 3 to motor 2		
	2033: Restore motor macro backup parameter 3 to motor 3		
	2034: Restore motor macro backup parameter 3 to motor 4		
	2041: Restore motor macro backup parameter 4 to motor 1		
	2042: Restore motor macro backup parameter 4 to motor 2		
	2043: Restore motor macro backup parameter 4 to motor 3		
	2044: Restore motor macro backup parameter 4 to motor 4		
	2051: Restore motor macro backup parameter 5 to motor 1		
	2052: Restore motor macro backup parameter 5 to motor 2		
	(To be continued)		

(Continued)
2053: Restore motor macro backup parameter 5 to motor 3
2054: Restore motor macro backup parameter 5 to motor 4
2061: Restore motor macro backup parameter 6 to motor 1
2062: Restore motor macro backup parameter 6 to motor 2
2063: Restore motor macro backup parameter 6 to motor 3
2064: Restore motor macro backup parameter 6 to motor 4
2071: Restore motor macro backup parameter 7 to motor 1
2072: Restore motor macro backup parameter 7 to motor 2
2073: Restore motor macro backup parameter 7 to motor 3
2074: Restore motor macro backup parameter 7 to motor 4
2081: Restore motor macro backup parameter 8 to motor 1
2082: Restore motor macro backup parameter 8 to motor 2
2083: Restore motor macro backup parameter 8 to motor 3
2084: Restore motor macro backup parameter 8 to motor 4
2091: Restore motor macro backup parameter 9 to motor 1
2092: Restore motor macro backup parameter 9 to motor 2
2093: Restore motor macro backup parameter 9 to motor 3
2094: Restore motor macro backup parameter 9 to motor 4
2101: Restore motor macro backup parameter 10 to motor 1
2102: Restore motor macro backup parameter 10 to motor 2
2103: Restore motor macro backup parameter 10 to motor 3
2104: Restore motor macro backup parameter 10 to motor 4
2111: Restore motor macro backup parameter 11 to motor 1
2112: Restore motor macro backup parameter 11 to motor 2
2113: Restore motor macro backup parameter 11 to motor 3
2114: Restore motor macro backup parameter 11 to motor 4
2121: Restore motor macro backup parameter 12 to motor 1
2122: Restore motor macro backup parameter 12 to motor 2
2123: Restore motor macro backup parameter 12 to motor 3
2124: Restore motor macro backup parameter 12 to motor 4
2131: Restore motor macro backup parameter 13 to motor 1
2132: Restore motor macro backup parameter 13 to motor 2
(Continued)
2133: Restore motor macro backup parameter 13 to motor 3
2134: Restore motor macro backup parameter 13 to motor 4
2141: Restore motor macro backup parameter 14 to motor 1
2142: Restore motor macro backup parameter 14 to motor 2
2143: Restore motor macro backup parameter 14 to motor 3
2144: Restore motor macro backup parameter 14 to motor 4
2151: Restore motor macro backup parameter 15 to motor 1
2152: Restore motor macro backup parameter 15 to motor 2
2153: Restore motor macro backup parameter 15 to motor 3
2154: Restore motor macro backup parameter 15 to motor 4
2161: Restore motor macro backup parameter 16 to motor 1
2162: Restore motor macro backup parameter 16 to motor 2
2163: Restore motor macro backup parameter 16 to motor 3
2164: Restore motor macro backup parameter 16 to motor 4
2171: Restore motor macro backup parameter 17 to motor 1
2172: Restore motor macro backup parameter 17 to motor 2
2173: Restore motor macro backup parameter 17 to motor 3
2174: Restore motor macro backup parameter 17 to motor 4
2181: Restore motor macro backup parameter 18 to motor 1
2182: Restore motor macro backup parameter 18 to motor 2
2183: Restore motor macro backup parameter 18 to motor 3
2184: Restore motor macro backup parameter 18 to motor 4
2191: Restore motor macro backup parameter 19 to motor 1
2192: Restore motor macro backup parameter 19 to motor 2
2193: Restore motor macro backup parameter 19 to motor 3
2194: Restore motor macro backup parameter 19 to motor 4
2201: Restore motor macro backup parameter 20 to motor 1
2202: Restore motor macro backup parameter 20 to motor 2
2203: Restore motor macro backup parameter 20 to motor 3
2204: Restore motor macro backup parameter 20 to motor 4
Description

FP-16 User backup

Address:	0×1 F10	Effective mode: -	
Min.:	0	Unit:	-
Max.:	1204	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:

0: No operation
400: Back up user parameters
401: Back up user macro parameters to address 1
402: Back up user macro parameters to address 2
403: Back up user macro parameters to address 3
404: Back up user macro parameters to address 4
405: Back up user macro parameters to address 5
406: Back up user macro parameters to address 6
1011: Back up parameters of motor 1 to address 1
1012: Back up parameters of motor 2 to address 1
1013: Back up parameters of motor 3 to address 1
1014: Back up parameters of motor 4 to address 1
1021: Back up parameters of motor 1 to address 2
1022: Back up parameters of motor 2 to address 2
1023: Back up parameters of motor 3 to address 2
1024: Back up parameters of motor 4 to address 2
1031: Back up parameters of motor 1 to address 3
1032: Back up parameters of motor 2 to address 3
1033: Back up parameters of motor 3 to address 3
1034: Back up parameters of motor 4 to address 3
1041: Back up parameters of motor 1 to address 4
1042: Back up parameters of motor 2 to address 4
1043: Back up parameters of motor 3 to address 4
1044: Back up parameters of motor 4 to address 4
(To be continued)
(Continued)
1051: Back up parameters of motor 1 to address 5
1052: Back up parameters of motor 2 to address 5
1053: Back up parameters of motor 3 to address 5
1054: Back up parameters of motor 4 to address 5
1061: Back up parameters of motor 1 to address 6
1062: Back up parameters of motor 2 to address 6
1063: Back up parameters of motor 3 to address 6
1064: Back up parameters of motor 4 to address 6
1071: Back up parameters of motor 1 to address 7
1072: Back up parameters of motor 2 to address 7
1073: Back up parameters of motor 3 to address 7
1074: Back up parameters of motor 4 to address 7
1081: Back up parameters of motor 1 to address 8
1082: Back up parameters of motor 2 to address 8
1083: Back up parameters of motor 3 to address 8
1084: Back up parameters of motor 4 to address 8
1091: Back up parameters of motor 1 to address 9
1092: Back up parameters of motor 2 to address 9
1093: Back up parameters of motor 3 to address 9
1094: Back up parameters of motor 4 to address 9
1101: Back up parameters of motor 1 to address 10
1102: Back up parameters of motor 2 to address 10
1103: Back up parameters of motor 3 to address 10
1104: Back up parameters of motor 4 to address 10
1111: Back up parameters of motor 1 to address 11
1112: Back up parameters of motor 2 to address 11
1113: Back up parameters of motor 3 to address 11
1114: Back up parameters of motor 4 to address 11
(Continued)
1121: Back up parameters of motor 1 to address 12
1122: Back up parameters of motor 2 to address 12
1123: Back up parameters of motor 3 to address 12
1124: Back up parameters of motor 4 to address 12
1131: Back up parameters of motor 1 to address 13
1132: Back up parameters of motor 2 to address 13
1133: Back up parameters of motor 3 to address 13
1134: Back up parameters of motor 4 to address 13
1141: Back up parameters of motor 1 to address 14
1142: Back up parameters of motor 2 to address 14
1143: Back up parameters of motor 3 to address 14
1144: Back up parameters of motor 4 to address 14
1151: Back up parameters of motor 1 to address 15
1152: Back up parameters of motor 2 to address 15
1153: Back up parameters of motor 3 to address 15
1154: Back up parameters of motor 4 to address 15
1161: Back up parameters of motor 1 to address 16
1162: Back up parameters of motor 2 to address 16
1163: Back up parameters of motor 3 to address 16
1164: Back up parameters of motor 4 to address 16
1171: Back up parameters of motor 1 to address 17
1172: Back up parameters of motor 2 to address 17
1173: Back up parameters of motor 3 to address 17
1174: Back up parameters of motor 4 to address 17
1181: Back up parameters of motor 1 to address 18
1182: Back up parameters of motor 2 to address 18
1183: Back up parameters of motor 3 to address 18
1184: Back up parameters of motor 4 to address 18
1191: Back up parameters of motor 1 to address 19
1192: Back up parameters of motor 2 to address 19
1193: Back up parameters of motor 3 to address 19
1194: Back up parameters of motor 4 to address 19
1201: Back up parameters of motor 1 to address 20
1202: Back up parameters of motor 2 to address 20
1203: Back up parameters of motor 3 to address 20
1204: Back up parameters of motor 4 to address 20
Description

4.17 A0: Torque Control Parameters

A0-00 Speed/Torque control mode
Address: 0xA000

Effective mode: -
Min.: 0
Unit:

Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0: Speed control
1: Torque control

Description

This parameter specifies the control target: speed control or torque control.

A0-01 Torque reference source in torque control mode (torque upper limit source)

Address: 0xA001
Min.: $\quad 0$
Max.: 7
Default: 0

0: A0-03
1: AI1
2: Al2
3: AI3
4: Pulse
5: Communication
6: MIN (AI1, AI2)
7: MAX (AI1, AI2)
Others: F connector

Description

This parameter defines the torque reference source. There are a total of seven torque reference sources.

A0-03 Torque reference in torque control mode

Address:	0xA003	Effective mode: -	
Min.:	-200	Unit:	$\%$
Max.:	200.0	Data type:	Int16
Default:	150.0	Change:	Changeable at any time

Value Range:

-200\% to +200.0\%

Description

This parameter defines the torque reference in torque control mode. The torque reference is a relative value. The value 100.0% corresponds to the rated torque of the AC drive. The value range is 200.0% to $+200.0 \%$, indicating that the maximum torque is twice the rated torque.
When the torque reference is a positive value, the AC drive runs in the forward direction. When it is a negative value, the $A C$ drive runs in the reverse direction.

A0-04 Torque reference filter time (upper limit)
Address: 0xA004 Effective mode: -
Min.: $0 \quad$ Unit: ms

Max.: 10000 Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time

Value Range:

0 ms to 10000 ms

Description

This parameter defines the torque reference filter time.

A0-05	Maximum forward frequency in torque control			
	Address:	0xA005	Effective mode:	
	Min.:	0.00	Unit:	Hz
	Max.:	F0-10	Data type:	Ulnt16
	Default:	0.00	Change:	Changeable at any time
	Value Range:			
	0.00 Hz to F0-10			
	Description			
	This parameter defines the maximum running frequency of the $A C$ drive in forward direction in torque			
A0-06	Maximum reverse frequency in torque control			
	Address:	0xA006	Effective mode:	-
	Min.:	0.00	Unit:	Hz
	Max.:	F0-10	Data type:	Ulnt16
	Default:	0.00	Change:	Changeable at any time
	Value Range:			
	0.00 Hz to FO-10			
	Description			
	This parameter defines the maximum running frequency of the $A C$ drive in reverse direction in torque control mode.			
A0-07	Torque rising filter time			
	Address:	0xA007	Effective mode:	-
	Min.:	0.00	Unit:	s
	Max.:	650.00	Data type:	Ulnt16
	Default:	0.00	Change:	Changeable at any time
	Value Range:			
	0.00s to 650.00s			
	Description			
	This parameter defines the torque reference ramp-up time (relative to the rated torque).			
A0-08	Torque falling filter time			
	Address:	0xA008	Effective mode:	
	Min.:	0.00	Unit:	s
	Max.:	650.00	Data type:	Ulnt16
	Default:	0.00	Change:	Changeable at any time
	Value Range:			
	0.00 s to 650.00s			
	Description			
	This parameter defines the torque reference ramp-down time (relative to the rated torque).			
A0-10	Torque mode			
	Address:	0xA00A	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	1	Data type:	Ulnt16
	Default:	0	Change:	Changeable only at stop
	Value Range:			
	0: MD500 torque mode			
	1: Vanguard torque mode			

Description

This parameter defines the torque mode (MD500 compatible mode or vanguard torque mode).

A0-11

A0-12 Torque deceleration time gain
Address: $0 x A 00 C$ Effective mode: -
Min.: 0 Unit: -
Max.: $8 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0: 100\%
1: AI1
2: AI2
3: Al3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
This parameter defines the torque reference ramp-down time adjustment gain in vanguard torque mode.

A0-13 Torque reference source
Address: 0xA00D Effective mode: -
Min.: 0 Unit: -
Max.: $8 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:

0: Digital setting
1: AI1
2: Al2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

Description

This parameter defines the torque reference source in vanguard torque mode.

A0-14 Torque reference

Address:	OxA00E	Effective mode: -	
Min.:	-400	Unit:	$\%$
Max.:	400.0	Data type:	Int16
Default:	0.0	Change:	Changeable at any time

Value Range:
-400\% to +400.0\%

Description

This parameter defines the torque reference in vanguard torque mode.

A0-15 Speed limit source in torque control mode

Address:	$0 x A 00 F$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0 : Digital setting
1: Speed reference channel
Description
This parameter defines the speed limit source in vanguard torque mode.

A0-16 Speed limit in torque control mode

Address:	0xA010	Effective mode:	-
Min.:	-100	Unit:	$\%$
Max.:	100.0	Data type:	Int16
Default:	0.0	Change:	Changeable at any time

Value Range:
-100\% to +100.0\%
Description
This parameter defines the speed limit in torque control mode.

A0-17 Speed limit offset mode

Address:	$0 \times A 011$	Effective mode:	
Min.:	0	Unit:	-
Max.:	2	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0: Bidirectional offset
1: Unidirectional offset
2: Compatible solution
Description
This parameter defines the speed limit offset mode in vanguard torque mode.

A0-18 Speed limit offset source

Address: 0xA012 Effective mode: -
Min.: $\quad 0$
Max.: 8
Default: 0

Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:
0 : Digital setting
1: Al1
2: AI2
3: Al3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
This parameter defines the speed limit offset source in vanguard torque mode.
A0-19 Speed limit offset
Address: 0xA013
Min.: 0.0
Max.: $\quad 300.0$
Default: 5.0

```
Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time
```

Value Range:
0.0\% to 300.0\%

Description
This parameter defines the speed limit offset in vanguard torque mode.

A0-20 Source of supplementary torque reference 1

Address:	$0 x A 014$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	8	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0: Digital setting
1: AI1
2: Al2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

Description

This parameter defines the source of supplementary torque 1 in vanguard torque mode.

A0-21 Supplementary torque reference 1

Address:	0xA015	Effective mode:	-
Min.:	-400	Unit:	$\%$
Max.:	400.0	Data type:	Int16
Default:	0.0	Change:	Changeable at any time

Value Range:
-400\% to +400.0\%
Description
This parameter defines supplementary torque reference 1 in vanguard torque mode.

A0-22 Source of supplementary torque reference 2

Address:	$0 x A 016$	Effective mode: -
Min.:	0	Unit:

Max.: $8 \quad$ Data type: Ulnt16

Default: $0 \quad$ Change: Changeable at any time
Value Range:
0: 0
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
This parameter defines the source of supplementary torque 2 in vanguard torque mode.

A0-23 Supplementary torque reference 2 input enable

Address:	$0 \times$ A017	Effective mode:	
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

Value Range:

0: Disabled
1: Enabled
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector

Description

This parameter defines whether to enable input of supplementary torque 2 in vanguard torque mode. When it is disabled, supplementary torque 2 does not take effect.

A0-25 Torque acceleration time

Address:	0xA019	Effective mode:	-
Min.:	0.000	Unit:	S
Max.:	60.000	Data type:	Ulnt16
Default:	0.000	Change:	Changeable at any time

Value Range:
0.000s to 60.000s

Description

This parameter defines the torque reference ramp-up time (relative to the rated torque) in vanguard torque mode.

A0-26 Torque deceleration time

Address:	$0 x A 01 A$	Effective mode:	S
Min.:	0.000	Unit:	S
Max.:	60.000	Data type:	Ulnt16
Default:	0.000	Change:	Changeable at any time

Value Range:

0.000 s to 60.000 s

Description

This parameter defines the torque reference ramp-down time (relative to the rated torque) in vanguard torque mode.

A0-27 Torque reference gain
Address: 0xA01B Effective mode: -
Min.: $\quad 0$
Unit:
Max.: $8 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0: 100\%
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
This parameter defines the source of the torque reference gain coefficient in vanguard torque mode.

4.18 A1: Virtual I/O Parameters

A1-00 VDI1 function
Address: 0xA100
Min.: 0
Max.: $\quad 80$
Default: 0
Value Range:
Same as F4-00
Description
Same as F4-00

A1-01 VDI2 function
Address: 0xA101
Min.: 0
Max.: $\quad 80$
Default: 0
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Value Range:
Same as F4-00
Description
Same as F4-00

A1-02 VDI3 function
Address: 0xA102 Effective mode:

	Min.:	0	Unit:	-
	Max.:	80	Data type:	Ulnt16
	Default:	0	Change:	Changeable only at stop
	Value R			
	Same as			
	Descrip			
	Same as			
A1-03	VDI4 function			
	Address:	$0 x A 103$	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	80	Data type:	Ulnt16
	Default:	0	Change:	Changeable only at stop
	Value Range:			
	Same as F4-00			
	Description			
	Same as F4-00			
A1-04	VDI5 function			
	Address:	0xA104	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	80	Data type:	Ulnt16
	Default:	0	Change:	Changeable only at stop
	Value Range:			
	Same as F4-00			
	Description			
	Same as F4-00			
A1-05	VDI active state source			
	Address:	0xA105	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	55555	Data type:	Ulnt16
	Default:	0	Change:	Changeable only at stop
	Value R			

Tens: VDI1 active state source
0: VDO1
1: A1-06
2: DI1
3: Communication setpoint (bit10 of F4-50)
4: Al1
5: Reserved
Tens: VDI2 active state source
0 : VDO2
1: A1-06
2: DI2
3: Communication setpoint (bit11 of F4-50)
4: AI2
5: Reserved
Hundreds: VDI3 active state source
0: VDO3
1: A1-06
2: DI3
3: Communication setpoint (bit12 of F4-50)
4: Al3
5: Reserved
Thousands: VDI4 active state source
0: VDO4
1: A1-06
2: DI4
3: Communication setpoint (bit13 of F4-50)
4-5: Reserved
Ten thousands: VDI5 active state source
$0:$ VDO5
1: A1-06
2: DI5
3: Communication setpoint (bit14 of F4-50)
4-5: Reserved
Description

A1-06 VDI state

Address:	$0 x A 106$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	11111	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

Ones: VDI1
0 : Inactive
1: Active
Tens: VDI2
0 : Inactive
1: Active
Hundreds: VDI3
0 : Inactive
1: Active
Thousands: VDI4
0: Inactive
1: Active
Ten thousands: VDI5
0 : Inactive
1: Active
Description

A1-07 AI1 (used as DI) function

Address:	0xA107	Effective mode:	-
Min.:	0	Unit:	-
Max.:	80	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
Same as F4-00
Description
Same as F4-00

A1-08 AI2 (used as DI) function

Address:	0xA108	Effective mode:	
Min.:	0	Unit:	-
Max.:	80	Data type:	Ulnt16
Default: 0	Change:	Changeable only at stop	
Value Range:			
Same as F4-00			
Description			
Same as F4-00			

A1-09 AI3 (used as DI) function
Address: 0xA109
Min.: 0
Max.: 80
Default: 0
Value Range:
Same as F4-00
Description
Same as F4-00

A1-10 AI (used as DI) active mode
Address: 0xA10A
Effective mode:

	Min.:	0	Unit:	-
	Max.:	111	Data type:	Ulnt16
	Default:	0	Change:	Changeable only at stop
	Value Ra			
	Ones: Al			
	0 : Active			
	1: Active			
	Tens: Al2			
	0 : Active			
	1: Active			
	Hundred			
	0 : Active			
	1: Active			
	Descript			
A1-11	VDO1 fu	tion		
	Address:	$0 \times A 10 B$	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	43	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as	-01		
	Descript			
	Same as	-01		
A1-12	VDO2 fu	tion		
	Address:	$0 \times A 10 C$	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	43	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as	-01		
	Descript			
	Same as	-01		
A1-13	VDO3 fu	tion		
	Address:	0xA10D	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	43	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as	-01		
	Descript			
	Same as			
A1-14	VD04 fu	tion		
	Address:	0xA10E	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	43	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time

	Value Range:		
	Same as F5-01		
	Description		
	Same as F5-01		
A1-15	VDO5 function		
	Address: 0xA10F	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 43	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as F5-01		
	Description		
	Same as F5-01		
A1-16	VDO1 output delay (invalid)		
	Address: 0xA110	Effective mode:	-
	Min.: 0.0	Unit:	s
	Max.: 3600.0	Data type:	Ulnt16
	Default: 0.0	Change:	Changeable at any time
	Value Range:		
	0.0 s to 3600.0 s		
	Description		
	-		
A1-17	VDO2 output delay (invalid)		
	Address: 0xA111	Effective mode:	-
	Min.: 0.0	Unit:	s
	Max.: 3600.0	Data type:	Ulnt16
	Default: 0.0	Change:	Changeable at any time
	Value Range:		
	0.0s to 3600.0s		
	Description		
	-		
A1-18	VDO3 output delay (invalid)		
	Address: 0xA112	Effective mode:	-
	Min.: 0.0	Unit:	s
	Max.: 3600.0	Data type:	Ulnt16
	Default: 0.0	Change:	Changeable at any time
	Value Range:		
	0.0s to 3600.0s		
	Description		
	-		
A1-19	VDO4 output delay (invalid)		
	Address: 0xA113	Effective mode:	-
	Min.: 0.0	Unit:	s
	Max.: 3600.0	Data type:	Ulnt16
	Default: 0.0	Change:	Changeable at any time
	Value Range:		
	0.0s to 3600.0s		

Description

A1-20 VDO5 output delay (invalid)

Address: 0xA114
Min.: 0.0
Max.: 3600.0
Default: 0.0
Value Range:
0.0s to 3600.0s

Description

A1-21 VDO active mode

Address: 0xA115
Min.: 0
Max.: 11111
Default: 0
Value Range:
Ones: VDO1
0 : Positive logic active
1: Negative logic active
Tens: VDO2
0 : Positive logic active
1: Negative logic active
Hundreds: VDO3
0 : Positive logic active
1: Negative logic active
Thousands: VDO4
0 : Positive logic active
1: Negative logic active
Ten thousands: VDO5
0 : Positive logic active
1: Negative logic active
Description

A1-22 VDO1 output switch-on delay
Address: 0xA116
Min.: 0.0
Max.: 3600.0
Default: 0.0
Value Range:
0.0 s to 3600.0 s

Description

A1-23 VDO2 output switch-on delay
Address: 0xA117
Min.: 0.0

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
S

Max.: 3600.0	Data type:	Ulnt16
Default: 0.0	Change:	Changeable at any time
Value Range:		
0.0s to 3600.0 s		
Description		

A1-24 VDO3 output switch-on delay
Address: 0xA118
Min.: 0.0
Max.: 3600.0
Default: 0.0
Value Range:
0.0s to 3600.0s

Description

A1-25 VDO4 output switch-on delay
Address: 0xA119
Min.: 0.0
Max.: 3600.0
Default: 0.0
Value Range:
0.0 s to 3600.0 s

Description

A1-26 VDO5 output switch-on delay

Address:	$0 x A 11 \mathrm{~A}$
Min.:	0.0
Max.:	3600.0
Default:	0.0

Value Range:

0.0 s to 3600.0 s

Description

A1-27 VDO1 output switch-off delay

Address:	$0 \times A 11 B$
Min.:	0.0
Max.:	3600.0
Default:	0.0

Value Range:

0.0 s to 3600.0 s

Description

A1-28 VDO2 output switch-off delay

Address:	$0 \times A 11 \mathrm{C}$
Min.:	0.0
Max.:	3600.0
Default:	0.0

Effective mode: -
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: \quad s
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0.0 s to 3600.0 s

Description

A1-29 VDO3 output switch-off delay
Address: 0xA11D
Min.: 0.0
Max.: 3600.0
Default: 0.0
Value Range:
0.0s to 3600.0s

Description

A1-30 VDO4 output switch-off delay
Address: 0xA11E
Min.: 0.0
Max.: $\quad 3600.0$
Default: 0.0
Value Range:
0.0 s to 3600.0 s

Description

A1-31 VDO5 output switch-off delay

Address:	$0 x A 11 F$
Min.:	0.0
Max.:	3600.0
Default:	0.0

Value Range:

0.0 s to 3600.0 s

Description

A1-32 VDO6 function
Address: 0xA120
Min.: 0
Max.: 43
Default: 0

Value Range:

Same as F5-01
Description
Same as F5-01

A1-33 VDO7 function
Address: 0xA12
Min.: 0
Max.: 43
Default: 0

Value Range:

Same as F5-01

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: S
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

Ones: VD06
0: Positive logic active
1: Negative logic active
Tens: VDO7
0 : Positive logic active
1: Negative logic active
Hundreds: VDO8
0 : Positive logic active
1: Negative logic active
Thousands: VDO9
0 : Positive logic active
1: Negative logic active
Ten thousands: VDO10
0 : Positive logic active
1: Negative logic active
Description

A1-39 VDO11 active mode
Address: 0xA127
Min.: 0
Max.: 1
Default: 0
Value Range:
0 : Positive logic active
1: Negative logic active
Description

A1-40 VDI6 function
Address: 0xA128
Min.: 0
Max.: 79
Default: 0
Value Range:
Same as A1-00
Description
Same as A1-00

A1-41 VDI6 hardware source
Address: 0xA129
Min.: $\quad 0$
Max.: 5
Default: 0
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Ones: VDI6
0: VDO6
1: A1-42
2: DI6
3: Communication setpoint (bit15 of F4-50)
4: Reserved
5: Reserved
Description

A1-42 VDI6 state

Address:	0xA12A	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

Ones: VDI6
0 : Inactive
1: Active
Description

A1-43 VDI1-VDI5 active mode

Address: $0 x A 12 B$
Effective mode: -
Min.: 0
Max.: 11111
Default: 0
Value Range:
Ones: VDI1
0 : Active low
1: Active high
Tens: VDI2
0 : Active low
1: Active high
Hundreds: VDI3
0 : Active low
1: Active high
Thousands: VDI4
0 : Active low
1: Active high
Ten thousands: VDI5
0 : Active low
1: Active high
Description

A1-44 VDI6 active mode
Address: 0xA12C
Min.: $\quad 0$

Effective mode: -
Unit:

Max.: 1	Data type:	Ulnt16
Default: 0	Change:	Changeable only at stop
Value Range:		
Ones: VDI6		
0: Active low		
1: Active high		
Description		

A1-50 DIO edge count reset
Address: 0xA132
Effective mode:
Min.: 0
Max.: 5
Default: 0
Value Range:
0 : Not reset
1: Counting module 1
2: Counting module 2
3: Counting module 3
4: Counting module 4
5: All counting modules
Description

A1-51 DIO edge counting channel selection 1
Address: 0xA133
Min.: 0
Max.: 32
Default: 0
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

0: None
1: DI1
2: DI2
3: DI3
4: DI4
5: DI5
6: DI6
7: DI7
8: DI8
9: DI9
10: DI10
11: VDI1
12: VDI2
13: VDI3
14: VDI4
15: VDI5
16: VDI6
17: Relay 1 (DO3)
18: FMR
19: DO1
20: Relay 2 (DO4)
21: DO2
22: VDO1
23: VDO2
24: VDO3
25: VDO4
26: VDO5
27: VDO6
28: VDO7
29: VDO8
30: VDO9
31: VDO10
32: VDO11
Description

A1-52 DIO edge counting channel selection 2
Address: 0xA134 Effective mode: -
Min.: 0
Max.: $\quad 32$
Default: 0
Value Range:
Same as A1-51
Description

A1-53 DIO edge counting channel selection 3

Address: 0xA135
Min.: 0
Max.: $\quad 32$
Default: 0
Value Range:
Same as A1-51
Description

A1-54 DIO edge counting channel selection 4

Address: 0xA136
Min.: 0
Max.: 32
Default: 0
Value Range:
Same as A1-51
Description

A1-55 DIO edge counting comparison value 1
Address: 0xA137
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

A1-56 DIO edge counting comparison value 2
Address: 0xA138

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

A1-57 DIO edge counting comparison value 3
Address: 0xA139
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

A1-58 DIO edge counting comparison value 4
Address: $0 x A 13 \mathrm{~A}$
Effective mode:

Min.: 0	Unit:	-	
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
0 to 65535			
Description			

A1-59 DIO edge counting module count value 1
Address: 0xA13B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

A1-60 DIO edge counting module count value 2
Address: 0xA13C
Min.: 0
Max.: 65535
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Value Range:

0 to 65535
Description

A1-61 DIO edge counting module count value 3

Address:	$0 \times A 13 D$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

A1-62 DIO edge counting module count value 4
Address: 0xA13E Effective mode: -

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Address: 0xA13D
Min.: 0
Max.: 65535
Default: 0
Change: Unchangeable

Min.: 0
Max.: 65535
Default: 0
0 to 65535
Description

Value Range:

Unit
Data type: Ulnt16
Change: Unchangeable

4.19	A2: Motor 2 Nameplate anc	earning Pa	rameters 1
A2-00	Motor type		
	Address: 0xA200	Effective mode:	
	Min.: 0	Unit:	-
	Max.: 2	Data type:	Ulnt16
	Default: 0	Change:	Changeable only at stop
	Value Range:		
	0: Common asynchronous motor		
	1: Variable frequency asynchronous motor		
	2: Permanent magnet synchronous motor		
	Description		
A2-01	Rated motor power		
	Address: 0xA201	Effective mode:	-
	Min.: 0.1	Unit:	kW
	Max.: 1000.0	Data type:	Ulnt16
	Default: 3.7	Change:	Changeable only at stop
	Value Range:		
	0.1 kW to 1000.0 kW		
	Description		
A2-02	Rated motor voltage		
	Address: 0xA202	Effective mode:	-
	Min.: 1	Unit:	V
	Max.: 2000	Data type:	Ulnt16
	Default: 380	Change:	Changeable only at stop
	Value Range:		
	1 V to 2000 V		
	Description		
A2-03	Rated motor current		
	Address: 0xA203	Effective mode:	
	Min.: 0.01	Unit:	A
	Max.: 655.35	Data type:	Ulnt16
	Default: 9.00	Change:	Changeable only at stop
	Value Range:		
	0.01 A to 655.35 A		
	Description		
A2-04	Rated motor frequency		
	Address: 0xA204	Effective mode:	-
	Min.: 0.01	Unit:	Hz
	Max.: F0-10	Data type:	Ulnt16
	Default: 50.00	Change:	Changeable only at stop
	Value Range:		
	0.01 Hz to FO-10		

Description

A2-05

A2-06 Asynchronous motor stator resistance
Address: 0xA206

Min.: 0.001
Max.: $\quad 65.535$
Default: 1.204

Value Range:

0.001Ω to 65.535Ω

Description

A2-07 Asynchronous motor rotor resistance

Address:	$0 x A 207$
Min.:	0.001
Max.:	65.535
Default:	0.908

Value Range:

0.001Ω to 65.535Ω

Description

```
Effective mode: -
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop
```

Effective mode: Unit: $\quad \Omega$
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: $\quad \Omega$
Data type: Ulnt16
Change: Changeable only at stop

A2-08 Asynchronous motor leakage inductance

Address:	$0 x A 208$
Min.:	0.01

Max.: $\quad 655.35$
Default: 5.28
Value Range:
0.01 mH to 655.35 mH

Description

A2-09 Asynchronous motor mutual inductance
Address: 0xA209
Min.: 0.1
Max.: $\quad 6553.5$
Default: 156.8
Value Range:
0.1 mH to 6553.5 mH

Description
Effective mode: -
Unit: $\quad \mathrm{mH}$
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: $\quad \mathrm{mH}$
Data type: Ulnt16
Change: Changeable only at stop

Description

A2-17 Synchronous motor D axis inductance
Address: 0xA211
Min.: 0.01
Max.: 655.35
Default: 5.28
Value Range:
0.01 mH to 655.35 mH

Description
 Description

A2-18 Synchronous motor Q axis inductance

Address:	$0 x A 212$
Min.:	0.01
Max.:	655.35
Default:	5.28

Value Range:
0.01 mH to 655.35 mH

Value Range:
0.001Ω to 65.535Ω
Description
Asynchronous motor no-load current

Address:	$0 x A 20 \mathrm{~A}$
Min.:	0.01
Max.:	A2-03
Default:	4.20

Value Range:

0.01 A to A2-03

Description

Synchronous motor stator resistance

Address:	$0 \times A 210$
Min.:	0.001
Max.:	65.535
Default:	1.204

-

Address:	$0 x A 211$
Min.:	0.01
Max.:	655.35
Default:	5.28

Effective mode:
Unit: A
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:	-
Unit:	Ω
Data type:	Ulnt16
Change:	Changeable only at stop

Effective mode:
Unit: mH
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: mH
Data type: Ulnt16
Change: Changeable only at stop

A2-20 Synchronous motor back EMF coefficient

Address:	$0 x A 214$
Min.:	0.0
Max.:	6553.5
Default:	300.0

Value Range:

0.0 V to 6553.5 V

Description

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable only at stop

A2-27 Encoder PPR
Address: 0xA21B

Effective mode:

Min.:	1
Max.:	65535
Default:	1024

Value Range:
1 to 65535
Description

A2-29 Speed feedback PG card
Address: 0xA21D
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Local PG card
1: Extension PG card
Description

A2-30 A/B phase sequence of encoder
Address: 0xA21E
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Forward
1: Reverse
Description

A2-31 Encoder installation angle
Address: 0xA21F
Min.: 0.0
Max.: $\quad 359.9$
Default: 0.0
Value Range:
0.0° to 359.9°

```
Unit:
Data type: Ulnt16
Change: Changeable only at stop
```

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Description

A2-34

Speed feedback PG wire breakage detection time

Address:	$0 \times A 224$
Min.:	0.0
Max.:	10.0
Default:	0.0

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable only at stop

Value Range:
0.0 s to 10.0 s

Description

A2-37 Auto-tuning

Address: 0xA225 Effective mode:
Min.: 0 Unit
Max.: $\quad 13$
Default: 0

Data type: Ulnt16
Change: Changeable only at stop

Value Range:
0: No operation
1: Static auto-tuning on partial parameters of asynchronous motor
2: Dynamic auto-tuning on asynchronous motor
3: Static auto-tuning on all parameters of asynchronous motor
4: Inertia auto-tuning
5: Deadzone auto-tuning
11: With-load auto-tuning on synchronous motor (excluding back EMF)
12: No-load dynamic auto-tuning on synchronous motor
13: Static auto-tuning on all parameters of synchronous motor (excluding zero point angle)
Description

A2-38 Speed loop proportional gain 1

Address:	$0 \times A 226$	Effective mode:	-
Min.:	1	Unit:	-
Max.:	100	Data type:	Ulnt16
Default:	30	Change:	Changeable at any time

Value Range:
1 to 100
Description

A2-39 Speed loop integral time 1

Address: 0xA227
Min.: $\quad 0.01$
Max.: $\quad 10.00$
Default: 0.50
Value Range:
0.01 s to 10.00 s

Description

```
Effective mode: -
Unit: s
Data type: Ulnt16
Change: Changeable at any time
```

A2-40 Switchover frequency 1
Address: 0xA228
Min.: $\quad 0.00$
Max.: \quad A2-43
Default: 5.00

Value Range:

0.00 Hz to A2-43

Description

A2-41 Speed loop proportional gain 2

Address:	$0 x A 229$
Min.:	1
Max.:	100
Default:	20

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

1 to 100
Description

```
Effective mode: -
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time
```


A2-42 Speed loop integral time 2

Address:	$0 x A 22 A$
Min.:	0.01
Max.:	10.00
Default:	1.00

Value Range:

0.01 s to 10.00 s

Description

A2-43 Switchover frequency 2
Address: 0xA22B
Min.: A2-40
Max.: \quad F0-10
Default: $\quad 10.00$
Value Range:
A2-40 to F0-10
Description

A2-44 Vector control slip gain
Address: 0xA22C
Effective mode:

Min.:	50	Unit:	\%
Max.:	200	Data type:	Ulnt16
Default: 100	Change:	Changeable at any time	
Value Range:			
50% to 200%			
Description			

A2-45 Speed feedback filter time in SVC mode

Address: 0xA22D Effective mode: -

Min.: 0.000
Max.: $\quad 0.100$
Unit: s
Data type: Ulnt16
Change: Changeable at any time
Default: 0.015
Value Range:
0.000 s to 0.100 s

Description

A2-47 Torque upper limit source in speed control mode (motoring)
Address: 0xA22F Effective mode:
Min.: $0 \quad$ Unit:
Max.: $7 \quad$ Data type: Ulnt16
Default: 0
Change: Changeable at any time
Value Range:
0: Digital setting (F2-10)
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: MIN (AI1, AI2)
7: MAX (AI1, AI2)
Others: F connector
Description

A2-48 Torque upper limit in speed control mode

Address:	0xA230	Effective mode: -	
Min.:	0.0	Unit:	$\%$
Max.:	200.0	Data type:	Ulnt16
Default:	150.0	Change:	Changeable at any time

Value Range:

0.0\% to 200.0\%

Description

A2-49 Torque upper limit source in speed control mode (generating)
Address: 0xA231
Min.: $\quad 0$
Max.: 8
Default: 0

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0: Digital setting (F2-10)
1: Al1
2: AI2
3: AI3
4: Pulse reference (DI5)
5: Communication
6: MIN (AI1, AI2)
7: MAX (AI1, AI2)
8: Digital setting (F2-12)
Others: F connector

Description

A2-50 Torque upper limit in speed control mode (generating)
Address: 0xA232
Min.: 0.0
Max.: 200.0
mode:

Default: 150.0
Data type: Ulnt16

Value Range:
0.0\% to 200.0\%

Description

A2-56 Field weakening mode

Address:	$0 \times A 238$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	2	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop

Value Range:

0 : No field weakening
1: Auto adjustment
2: Calculation+Auto adjustment
Description
0 : No field weakening
Without field weakening control, the maximum motor speed is related to the bus voltage of the AC drive. The output current is smaller under the same load, but the running frequency cannot reach the frequency reference. Do not select this function if a higher speed is required.
1: Auto adjustment
This field weakening mode is simple and reliable. In scenarios requiring quick field weakening, the
field weakening coefficient (F2-19) can be increased as appropriate. However, if the coefficient is too large,
the current may be unstable.
2: Calculation+Auto adjustment
In this mode, the field weakening current is adjusted quickly. This mode can be selected in scenarios where the auto adjustment mode cannot
meet requirements.

A2-61 Generating power upper limit
Address: 0xA23D
Min.: 0.0
Max.: 200.0
Default: 20.0
Value Range:
0.0\% to 200.0\%

Description
Value Range:
0: Disabled
1: Enabled in the whole process
2: Enabled at constant speed
3: Enabled during deceleration
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

-

A2-62 Motor 2 control mode
Address: 0xA23E
Min.: 0
Max.: 2
Default: 2
Value Range:
0: SVC
1: FVC
2: V/f
Description

A2-64 Torque boost
Address: 0xA240
Min.: $\quad 0.0$
Max.: $\quad 30.0$
Default: 3.0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0.0\% to 30.0\%

Description

V/f oscillation suppression gain
Address: 0xA242 Effective mode:
Min.: $0 \quad$ Unit:
Max.: $100 \quad$ Data type: Ulnt16
Default: 40
Change: Changeable at any time
Value Range:
0 to 100
Description

Initial position angle detection of synchronous motor

Address:	$0 \times A 244$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	2	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0 : Detected upon running
1: Not detected
2: Detected upon initial running after power-on Description
The initial position angle detection can prevent reverse rotation at startup, but it causes certain noise. For scenarios where reverse rotation is not allowed at startup and the rotor position of the motor will change after stop, F2-25 must be set to 0 .
It can be set to 1 or 2 in other scenarios.

Satient pole rate adjustment gain of synchronous motor

Address:	$0 x A 246$	Effective mode:	-
Min.:	0.20	Unit:	-
Max.:	3.00	Data type:	Ulnt16
Default:	1.00	Change:	Changeable at any time

Value Range:

0.20 to 3.00

Description

If F2-28 is set to 1 , you can adjust F2-27 when the output current does not decrease or even increase under the same load. When the load remains unchanged, adjust F2-27 until the output current is the smallest.

A2-75 $\quad Z$ signal correction
Address: 0xA24B
Min.: $\quad 0$
Max.: $\quad 1$
Default: 1
Value Range:
0 : Disabled
1: Enabled
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
-

A2-80 Low speed carrier frequency
Address: 0xA250 Effective mode:

Min.: 0.8
Max.: \quad F0-15
Default: 2.0
Value Range:
0.8 kHz to F0-15

Description

A2-86 Position lock
Address: 0xA256 Effective mode:
Min.: $\quad 0$
Max.: $\quad 1$
Default: 0
Unit: -

Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 to 1
Description

A2-87 Switchover frequency
Address: 0xA257
Min.: $\quad 0.00$
Max.: \quad A2-40
Default: 0.30
Effective mode:
Unit: $\quad \mathrm{Hz}$

Data type: Ulnt16
Change: Changeable at any time

Value Range:

0.00 Hz to A2-40

Description

A2-88

A2-89 Position lock speed loop integral time

Address:	$0 x A 259$
Min.:	0.01
Max.:	10.00
Default:	0.50

Value Range:

0.01 s to 10.00 s

Description

Value Range:
1 to 100
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
-

A2-92 Auto-tuning free mode
Address: 0xA25C
Min.: $\quad 0$
Max.: 2
Default: 0

Effective mode:
Unit: S
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0: Disabled
1: Auto-tuning upon initial running after power-on
2: Auto-tuning upon running
Description

A2-94 Initial position compensation angle
Address: 0xA25E Effective mode:
Min.: 0.0
Max.: $\quad 359.9$
Unit:
Data type: Ulnt16
Change: Changeable at any time
Default: 0.0
Value Range:
0.0 to 359.9

Description

4.20	A3: Motor 2 V/f Control	meters	
A3-00	V/f curve		
	Address: 0xA300	Effective mode:	
	Min.: 0	Unit:	
	Max.: 11	Data type:	Ulnt16
	Default: 0	Change:	Changeable only at stop
	Value Range:		
	0 : Straight-line V/f curve		
	1: Multi-point V/f curve		
	2: Reserved		
	3: Reserved		
	4: Reserved		
	5: Reserved		
	6: Reserved		
	7: Reserved		
	8: Reserved		
	9: Reserved		
	10: V / f complete separation mode		
	11: V/f half separation mode		
	Description		
A3-01	Torque boost		
	Address: 0xA301	Effective mode:	
	Min.: 0.0	Unit:	\%
	Max.: $\quad 30.0$	Data type:	Ulnt16
	Default: 3.0	Change:	Changeable at any time
	Value Range:		
	0.0\% to 30.0\%		
	Description		
A3-02	Cut-off frequency of torque boost		
	Address: 0xA302	Effective mode:	
	Min.: 0.00	Unit:	Hz
	Max.: \quad F0-10	Data type:	Ulnt16
	Default: $\quad 50.00$	Change:	Changeable only at stop
	Value Range:		
	0.00 Hz to FO-10		
	Description		
	-		
A3-03	Multi-point V/f frequency 1		
	Address: 0xA303	Effective mode:	-
	Min.: 0.00	Unit:	Hz
	Max.: A3-05	Data type:	Ulnt16
	Default: 0.00	Change:	Changeable only at stop
	Value Range: 0.00 Hz to A3-05		

Description

A3-04 Multi-point V/f voltage 1

Address:	$0 x A 304$
Min.:	0.0
Max.:	100.0
Default:	0.0

Value Range:

0.0\% to +100.0\%

Description

A3-05 Multi-point V/f frequency 2

Address:	$0 x A 305$
Min.:	A3-03
Max.:	A3-07
Default:	0.00

Value Range:

A3-03 to A3-07

Description

A3-06 Multi-point V/f voltage 2
Address: 0xA306
Min.: 0.0
Max.: $\quad 100.0$
Default: 0.0
Value Range:
0.0% to $+100.0 \%$

Description

A3-07 Multi-point V/f frequency 3

Address:	0xA307	Effective mode:	-
Min.:	A3-05	Unit:	Hz
Max.:	A2-04	Data type:	Ulnt16
Default:	0.00	Change:	Changeable only at stop

A3-08 Multi-point V/f voltage 3
Address: 0xA308
Min.: 0.0
Max.: $\quad 100.0$
Default: 0.0
Value Range:
0.0\% to $+100.0 \%$

Description

```
Effective mode:
Unit: %
Data type: Ulnt16
Change: Changeable only at stop
```

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop

Value Range:
A3-05 to A2-04
Description

Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Changeable only at stop

A3-09 V/f slip compensation gain
Address: 0xA309
Min.: 0.0
Max.: 200.0
Default: 0.0
Value Range:
0.0 to 200.0

Description

A3-10 \quad V/f overexcitation gain

Address: 0xA30A
Min.: 0
Max.: 200
Default: 64
Value Range:
0 to 200
Description

A3-11 V/f oscillation suppression gain
Address: 0xA30B
Min.: 0
Max.: $\quad 100$
Default: 40
Value Range:
0 to 100
Description

A3-12 V/f oscillation suppression
Address: 0xA30C
Min.: 0
Max.: $\quad 1$
Default: 1
Value Range:
0 : Disabled
1: Enabled
Description

A3-13 Voltage source for V/f separation
Address: 0xA30D
Min.: $\quad 0$
Max.: 8
Default: 0
Value Range:

```
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

0: Digital setting (A3-14)
1: AI1
2: AI2
3: AI3
4: Pulse reference (DI5)
5: Multi-reference
6: Simple PLC
7: PID
8: Communication
Others: F connector

Description

This parameter defines the source of the target voltage in V / f separation mode.
0 : Digital setting (F3-14)
The V/f separation voltage is set by F3-14 (V/f separation voltage).
1: AI1
The V/f separation voltage is input with current or voltage signals through the AI1 terminal. The frequency is calculated according to the preset AI curve.
2: AI2
The V/f separation voltage is input with current or voltage signals through the AI2 terminal. The frequency is calculated according to the preset AI curve.
3: AI3
The V/f separation voltage is input with current or voltage signals through the AI3 terminal. The frequency is calculated according to the preset AI curve. The AC drive has two AI terminals by default, and the AI3 terminal needs to be provided through the I/O expansion card.
4: Pulse reference (DI5)
The V/f separation voltage is set through DI5. The frequency is calculated based on the curve reflecting the relationship between the pulse frequency and running frequency.
5: Multi-reference
When multi-reference is used as the source of the V / f separation voltage, different combinations of DI terminal states correspond to different reference values. The four multi-reference terminals can provide 16 state combinations, corresponding to 16 reference values (percentage x maximum frequency) of parameters in group FC.
6: Simple PLC
The V/f separation voltage is set by simple PLC. For details, see the function description of simple PLC.
7: PID
The V/f separation voltage is set by PID. For details, see the PID function description.
8: Communication
The main frequency is set through communication. The running frequency is input through remote communication. The AC drive must be equipped with a communication card to implement communication with the host controller. This mode applies to remote control or centralized control of multiple equipment.
Others: F connector
A function code is set for a floating-point connector, and the value of the connector is read as the motoring torque upper limit in speed control mode. This mode is used for expansion besides the common sources.

A3-14 V/f separation voltage

Address: 0xA30E Effective mode:
Min.: $0 \quad$ Unit: V

Max.: A2-02 Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0 V to A2-02
Description
This parameter defines the V/f separation voltage.

A3-15 Voltage rise time of V/f separation

Address:	$0 \times A 30 F$	Effective mode:	-
Min.:	0.0	Unit:	s
Max.:	1000.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0s to 1000.0s

Description

This parameter defines the time required for the output voltage to rise from 0 to the rated motor voltage.

A3-16 Voltage fall time of V/f separation

Address:	$0 x A 310$	Effective mode:	-
Min.:	0.0	Unit:	S
Max.:	1000.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0 s to 1000.0 s

Description

This parameter defines the time required for the output voltage to fall from the rated motor voltage to 0 .

A3-17 Stop mode for V/f separation

Address:	$0 x A 311$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	2	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0 : Frequency and voltage decline to 0 independently
1: Frequency declines to 0 after voltage declines to 0
2: Coast to stop (new)

Description

0 : The frequency and voltage decrease to 0 independently.
1: The frequency decreases to 0 according to the deceleration time after the voltage decreases to 0 according to the deceleration time.
2: The AC drive coasts to stop without following the stop deceleration curve.

A3-18 Overcurrent stall suppression action current

Address:	$0 \times A 312$	Effective mode:	
Min.:	50	Unit:	$\%$
Max.:	200	Data type:	Ulnt16

Default: 150
Change:
Changeable only at stop

Value Range:
50\% to 200\%
Description

A3-19 Overcurrent stall suppression
Address: 0xA313 Effective mode:
Min.: 0
Max.: 1
Default: 1
Value Range:
0: Disabled
1: Enabled
Description
Unit:
Data type: Ulnt16
Change: Changeable only at stop
-

A3-20 Overcurrent stall suppression gain

Address:	0xA314	Effective mode:	
Min.:	1	Unit:	-
Max.:	100	Data type:	Ulnt16
Default:	20	Change:	Changeable at any time

Value Range:
1 to 100
Description

A3-21 Compensation coefficient of speed multiplying overcurrent stall suppression action current
Address: 0xA315
Min.: 50
Max.: 200
Default: 100
Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
50\% to 200\%
Description

A3-22 Overvoltage stall suppression action voltage
Address: 0xA316 Effective mode: -
Min.: 330.0 Unit: V
Max.: $800.0 \quad$ Data type: Ulnt16
Default: 770.0
Change: Changeable at any time
Value Range:
330.0 V to 800.0 V

Description

A3-23 Overvoltage stall suppression

Address:	$0 \times A 317$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop

Value Range:

0: Disabled
1: Enabled
Description

A3-24 Overvoltage stall suppression frequency gain
Address: 0xA318
Min.: 1
Max.: $\quad 100$
Default: 30
Value Range:
1 to 100
Description

A3-25 Overvoltage stall suppression voltage gain

Address:	$0 x A 319$	Effective mode:	-
Min.:	1	Unit:	-
Max.:	100	Data type:	Ulnt16
Default:	30	Change:	Changeable at any time

Value Range:
1 to 100
Description

A3-26 Frequency rise threshold for overvoltage stall suppression
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Description

Address: 0xA31A
Min.: 0
Max.: 50
Default: 5
Value Range:
0 Hz to 50 Hz
Description

A3-27 Slip compensation filter time
Address: 0xA31B Effective mode:
Min.: 0.1
Max.: $\quad 10.0$
Default: 0.5
Effective mode: -
Unit: Hz
Data type: Ulnt16
Change: Changeable only at stop

Value Range:
0.1 s to 10.0 s

Description

A3-28 Multi-point curve source
Address: 0xA31C
Min.: $\quad 0$
Max.: 2
Default: 0

Unit: \quad s
Data type: Ulnt16
Change: Changeable only at stop

Value Range:

0: 3-point curve
1: Multi-point curve module A
2: Multi-point curve module B

Description

0: 3-point curve
The 3-point curve is used by default, which is set in F3-03 to F3-08.
1: Multi-point curve module A
The output of free module A is used as the voltage reference of the multi-point curve.
2: Multi-point curve module B
The output of free module B is used as the voltage reference of the multi-point curve.

A3-35 Overcurrent suppression threshold (relative to rated motor current)
Address: 0xA323
Effective mode:
Min.: 80
Max.: $\quad 300$
Default: 200
Value Range:
80\% to 300\%
Description

A3-36 Frequency threshold for overcurrent suppression field weakening
Address: 0xA324
Effective mode:
Min.: 100
Max.: 500
Default: 100
Value Range:
100\% to 500\%
Description

A3-37

IT filter time
Address: 0xA325
Min.: 10
Max.: 1000
Default: 100
Value Range:
10 ms to 1000 ms
Description

Effective mode:
Unit: ms

Data type: Ulnt16
Change: Changeable only at stop

Slip compensation mode

Address: 0xA326
Min.: 0
Max.: 2
Default: 1
Value Range:
0: Disabled
1: Slip compensation without PG
2: Slip compensation with PG

Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

VdcMaxCtrl allowed runtime

Address:	$0 x A 327$
Min.:	0.0
Max.:	100.0
Default:	0.0

Value Range:
0.0 s to 100.0 s

Description

A3-40 Upper limit of V / f separation voltage
Address: 0xA328
Effective mode:
Min.: $\quad 50.0$
Unit: \%
Max.: 200.0
Default: 100.0
Value Range:
50.0\% to 200.0\%

Description

This parameter defines the upper limit of the V/f separation voltage, which is a percentage relative to the rated motor voltage.

RFG time of V / f separation frequency

Address: 0xA329
Min.: 0
Max.: 1
Default: 0

```
Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable only at stop
```


Description

This parameter defines the RFG time of the V/f separation frequency. When it is set to 0 , the frequency reference acceleration/deceleration time is forced to 0 ; when it is set to 1 , the acceleration/ deceleration time is set as normal.

A3-42 Cut-off frequency of V / f oscillation suppression filter

Address: 0xA32A Effective mode: -
Min.: 1.0 Unit: Hz
Max.: $50.0 \quad$ Data type: Ulnt16

Default: 8.0
Change: Changeable at any time
Value Range:
1.0 Hz to 50.0 Hz

Description

A3-43 Cut-off frequency threshold for V/f oscillation suppression
Address: $0 x A 32 B$ Effective mode:
Min.: $\quad 10$
Max.: 3000
Default: 200
Value Range:
10 Hz to 3000 Hz
Description

A3-44 VdcMaxCtrl feedforward coefficient
Address: 0xA32C
Min.: 0
Max.: 500
Default: 0
Value Range:
0\% to 500\%
Description

A3-50 PMVVC low-speed IF
Address: 0xA332
Min.: $\quad 0$
Max.: $\quad 1$
Default: 1
Value Range:
0 : Disabled
1: Enabled
Description

A3-51 PMVVC low-speed IF current

Address:	0xA333	Effective mode:	-
Min.:	30	Unit:	-
Max.:	250	Data type:	Ulnt16
Default:	100	Change:	Changeable only at stop

Value Range:

30 to 250
Description

A3-52 PMVVC low-speed IF speed switching threshold
Address: 0xA334
Effective mode:
Min.: $2.0 \quad$ Unit:
Max.: $100.0 \quad$ Data type: Ulnt16
Default: 10.0
Change: Changeable only at stop
Value Range:
2.0\% to 100.0\%

Description

A3-53 PMVVC oscillation suppression gain coefficient
Address: 0xA335
Min.: 0
Max.: 500
Default: 100
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 to 500
Description

A3-54 PMVVC filter time coefficient

Address:	$0 \times$ A336	Effective mode:	-
Min.:	0	Unit:	-
Max.:	500	Data type:	Ulnt16
Default: 100	Change:	Changeable at any time	
Value Range:			
0 to 500			
Description			

A3-55 PMVVC energy conservation control mode
Address: 0xA337 Effective mode: -

Min.: $\quad 0$
Max.: 2
Default: 2
Unit:
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0 : Fixed straight-line V/f curve
1: Fixed 30\% reactive current
2: MTPA control
Description

4.21 A4: Control Source Parameters

A4-00 Control channel

Address: 0xA400 Effective mode: -

Min.: 0
Max.: 1
Default: 0
Value Range:
0 : Control channel 1
1: Control channel 2
Description
This parameter specifies the control channel between two custom channels.

A4-01 Custom OFF1 source
Address: 0xA401 Effective mode: -
Min.: 0
Max.: 18
Default: 0
Value Range:
0 : Inactive
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector

Description

This parameter defines the source of start/stop control OFF1 for custom channel 1.

A4-02 Custom OFF2 source 1

Address: 0xA402
Min.: 0
Max.: 18
Default: 1

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0 : Active
1: Inactive
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector

Description

This parameter defines source 1 of coast to stop command OFF2 for custom channel 1. The coast to stop command OFF2 is valid if any of the three sources is active low.

A4-03 Custom OFF3 source 1

Address: 0xA403 Effective mode: -
Min.: 0
Max.: 18
Default: 1
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
Same as A4-02
Description
This parameter defines source 1 of emergency stop command OFF3 for custom channel 1. The emergency stop command OFF3 is valid if any of the three sources is active low.

A4-04 Custom running permission source
Address: 0xA404
Min.: 0
Max.: 18
Default: 1
Value Range:
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

0: Not permitted
1: Permitted
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector

Description

This parameter defines the running permission source for custom channel 1.

A4-05 Custom fault reset source 1

Address:	$0 x A 405$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 : Inactive
1: Active
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector

A4-07 Custom JOG2 source
Address: 0xA407
Min.: 0
Max.: $\quad 18$
Default: 0
Value Range:
Same as A4-01

Description

This parameter defines the source of the JOG2 command for custom channel 1.

A4-08 Custom speed negation source
Address: 0xA408 Effective mode: -
Min.: 0 Unit: -
Max.: 18 Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
Same as A4-05
Description
This parameter defines the source of the negation command for custom channel 1.

A4-10 OFF2 source 2

Address:	$0 \times A 40 A$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

Value Range:

0 : Active
1: Inactive
2: Terminal function input
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
This parameter defines source 2 of coast to stop command OFF2 for custom channel 1 . The coast to stop command OFF2 is valid if any of the three sources is active low.

A4-11 OFF2 source 3

Address:	$0 x A 40 B$	Effective mode:	
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

Value Range:

Same as A4-02

Description

This parameter defines source 3 of coast to stop command OFF2 for custom channel 1 . The coast to stop command OFF2 is valid if any of the three sources is active low.

A4-12 OFF3 source 2

Address:	$0 x A 40 C$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

Value Range:

Same as A4-10

Description

This parameter defines source 2 of emergency stop command OFF3 for custom channel 1 . The emergency stop command OFF3 is valid if any of the three sources is active low.

A4-13

OFF3 source 3
Address: 0xA40D Effective mode: -
Min.: 0
Unit:

Max.:	18	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

Value Range:
Same as A4-02

Description

This parameter defines source 3 of emergency stop command OFF3 for custom channel 1. The emergency stop command OFF3 is valid if any of the three sources is active low.

A4-14 Fault reset source 2

Address: 0xA40E Effective mode: -
Min.: 0
Max.: 18
Default: 0
Unit: -

Data type: Ulnt16
Change: Changeable at any time

Value Range:
Same as A4-10

Description

This parameter defines source 2 of the fault reset command for custom channel 1 . The fault reset command is valid if any of the three sources is active high.

A4-15 Fault reset source 3

Address:	$0 x A 40 F$	Effective mode:	
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 : Inactive
1: Active
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector

Description

This parameter defines source 3 of the fault reset command for custom channel 1 . The fault reset command is valid if any of the three sources is active high.

A4-16 RFG prohibition source

Address: 0xA410 Effective mode:
Min.: 0
Max.: 18
Default: 1
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
Same as A4-02
Description
This parameter defines the RFG prohibition source for custom channel 1 . When it is active low, the RFG output is set to 0 .

A4-17 RFG pause source

Address: 0xA411
Min.: 0
Max.: 18
Default: 1

Value Range:

Same as A4-10

Description

This parameter defines the RFG pause source for custom channel 1 . When it is active low, the RFG calculation is suspended and the current output is maintained.

A4-18 Source of setting RFG reference to 0

Address: 0xA412 Effective mode: -
Min.: 0 Unit: -
Max.: $18 \quad$ Data type: Ulnt16
Default: 1 Change: Changeable at any time

Value Range:

Same as A4-10

Description

This parameter defines the source of setting RFG input to 0 for custom channel 1 . When it is active low, the RFG input is set to 0 .

A4-21 Custom OFF1 source

Address: 0xA415 Effective mode: -
Min.: $0 \quad$ Unit:
Max.: 18 Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
Same as A4-01

Description

This parameter defines the source of start/stop control OFF1 for custom channel 2.

A4-22 Custom OFF2 source 1

Address:	$0 x A 416$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

Value Range:

Same as A4-02

Description

This parameter defines source 1 of coast to stop command OFF2 for custom channel 2. The coast to stop command OFF2 is valid if any of the three sources is active low.

A4

Custom OFF3 source 1
Address: 0xA417 Effective mode: -
Min.: 0 Unit: -
Max.: 18 Data type: Ulnt16
Default: 1 Change: Changeable at any time
Value Range:
Same as A4-02

Description

This parameter defines source 1 of emergency stop command OFF3 for custom channel 2. The emergency stop command OFF3 is valid if any of the three sources is active low.

Custom running permission source
Address: 0xA418 Effective mode:
Min.: 0
Unit:
Max.: 18 Data type: Ulnt16
Default: 1
Change: Changeable at any time
Value Range:
A4-04
Description
This parameter defines the running permission source for custom channel 2.

A4-25 Custom fault reset source 1
Address: 0xA419 Effective mode: -
Min.: 0
Max.: 18 Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
Same as A4-01
Description
This parameter defines source 1 of the fault reset command for custom channel 2 . The fault reset command is valid if any of the three sources is active high.

Custom JOG1 source
Address: 0xA41A Effective mode: -
Min.: $0 \quad$ Unit: -

Max.: 18 Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
Same as A4-01

Description

This parameter defines the source of the JOG1 command for custom channel 2.

JOG2 source
Address: 0xA41B
Min.: 0
Max.: 18
Default: 0

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

Same as A4-01

Description

This parameter defines the source of the JOG2 command for custom channel 2.

Custom speed negation source
Address: 0xA41C Effective mode: -
Min.: 0 Unit:
Max.: 18 Data type: Ulnt16
Default: 0
Change: Changeable at any time
Value Range:
0 : Inactive
1: Active
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector

Description

This parameter defines the source of the negation command for custom channel 2.

A4-30 OFF2 source 2

Address:	$0 x A 41 E$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

Value Range:
Same as A4-10
Description
This parameter defines source 2 of coast to stop command OFF2 for custom channel 2. The coast to stop command OFF2 is valid if any of the three sources is active low.

Address:	$0 x A 41 F$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

Value Range:

Same as A4-02

Description

This parameter defines source 3 of coast to stop command OFF2 for custom channel 2. The coast to stop command OFF2 is valid if any of the three sources is active low.

A4-35 Fault reset source 3
Address: 0xA423
Min.: 0
Max.: 18
Default: 0
Value Range:
A4-15

Description

This parameter defines source 3 of the fault reset command for custom channel 2 . The fault reset command is valid if any of the three sources is active high.

A4-36

RFG prohibition source
Address: 0xA424 Effective mode: -
Min.: 0
Max.: 18
Default: 1
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
Same as A4-02
Description
This parameter defines the RFG prohibition source for custom channel 2 . When it is active low, the RFG output is set to 0 .
se source
Address: 0xA425
Min.: 0
Max.: 18
Default: 1

Value Range:

Same as A4-10

Description

This parameter defines the RFG pause source for custom channel 2 . When it is active low, the RFG calculation is suspended and the current output is maintained.

A4-38 Source of setting RFG reference to 0
Address: 0xA426 Effective mode: -
Min.: 0 Unit: -
Max.: $18 \quad$ Data type: Ulnt16
Default: 1 Change: Changeable at any time

Value Range:

Same as A4-10

Description

This parameter defines the source of setting RFG input to 0 for custom channel 2 . When it is active low, the RFG input is set to 0 .

Terminal start/stop module A/B

Address:	$0 \times A 429$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0: Module A
1: Module B
Description

Input 1 of terminal start/stop module A

Address:	$0 x A 42 B$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	2	Change:	Changeable at any time

Value Range:

0 : Active
2: Terminal function input
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

A4-44 Input 2 of terminal start/stop command A

Address:	0xA42C	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default: 2	Change:	Changeable at any time	
Value Range:			
A4-43			
Description			

A4-45 Input 3 of terminal start/stop command A
Address: 0xA42D Effective mode: -
Min.: $0 \quad$ Unit: -

Max.: 18
Default: 2
Value Range:
A4-43
Description
tive mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

A4-46 Running permission source of terminal start/stop module A

Address: 0xA42E
Min.: 0
Max.: 18
Default: 1
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```
    0: Inactive
    1: Active
    2: Terminal function input
    3: DI1
    4: DI2
    5: DI3
    6: DI4
    7: DI5
    8: DI6
    9: DI7
    10: DI8
    11: DI9
    12: DI10
    13: DI11
    14: DI12
    15: DI13
    16: DI14
    17: DI15
    18: DI16
    Others: B connector
    Description
A4-47 Fault reset source of terminal start/stop module A
```

Address: 0xA42F
Min.: 0
Max.: 18
Default: 0
Value Range:
A4-46
Description

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

```
-
A4-48 JOG1 source of terminal start/stop module A
Address: 0xA430
Effective mode: -
Min.: 0
Max.: 18
Default: 2
Value Range:
A4-43
Description
A4-49 JOG2 source of terminal start/stop module A
Address: 0xA431
Min.: 0
Max.: \(\quad 18\)
Default: 2
Value Range:
```


A4-43
 Description

A4-50 Control mode of terminal start/stop module B
Address: 0xA432
Effective mode:
Min.: 0
Max.: 3
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0: Two-wire mode 1
1: Two-wire mode 2
2: Three-wire mode 1
3: Three-wire mode 2
Description

A4-51 Input 1 of terminal start/stop module B

Address:	$0 \times$ x433	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default: 2	Change:	Changeable at any time	
Value Range:			
A4-43			
Description			

A4-52 Input 2 of terminal start/stop command B

Address:	$0 x A 434$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	2	Change:	Changeable at any time

Value Range:
A4-43
Description

A4-53 Input 3 of terminal start/stop command B

Address:	$0 \times A 435$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default: 2	Change:	Changeable at any time	
Value Range:			
A4-43			
Description			

A4-54 Running permission source of terminal start/stop module B
Address: 0xA436
Effective mode:
Min.: 0
Max.: 18
Unit:
Data type: Ulnt16
Default: 1
Change: Changeable at any time
Value Range:
A4-46
Description

A4-55 Fault reset source of terminal start/stop module B
Address: 0xA437 Effective mode:
Min.: 0 Unit:
Max.: 18 Data type: Ulnt16
Default: 2
Change: Changeable at any time
Value Range:
A4-46
Description

A4-56 JOG1 source of terminal start/stop module B
Address: 0xA438 Effective mode:
Min.: 0 Unit: -
Max.: 18 Data type: Ulnt16

Default: 2 Change: Changeable at any time
Value Range:
A4-43
Description

A4-57 JOG2 source of terminal start/stop module B

Address: 0xA439
Min.: 0
Max.: 18
Default: 2
Value Range:
A4-43
Description

A4-58 Reserved

Address:	0xA43A	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 to 65535
Description

A4-59 Reserved

Address:	0xA43B	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0 to 65535

Description

Reserved

Address:	0xA43C	Effective mode:-	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
0 to 65535			
Description			

Source of supplementary speed in speed control
Address: 0xA43D
Min.: 0
Max.: 8
Default: 0
Value Range:
0: 0
1: AI1
2: AI2
3: Al3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

Description

eed source
Address: 0xA43E

Min.: 0
Max.: 8
Default: 0

Value Range:

0 : Digital setting
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

Description

A4-67 Proportion of starting arc in acceleration

Address:	$0 \times A 443$	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	30.0	Change:	Changeable only at stop

30.0

Value Range:
0.0\% to $+100.0 \%$

Description

This parameter defines the proportion of the starting arc in acceleration.

A4-68 Proportion of end arc in acceleration

Address:	0xA444	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	30.0	Change:	Changeable only at stop

Value Range:

0.0\% to +100.0\%

Description

This parameter defines the proportion of the end arc in acceleration.

A4-69 Proportion of starting arc in deceleration

Address:	0xA445	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	30.0	Change:	Changeable only at stop

Value Range:
0.0\% to $+100.0 \%$

Description

This parameter defines the proportion of the starting arc in deceleration.

A4-70 Proportion of end arc in deceleration

Address:	0xA446	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	30.0	Change:	Changeable only at stop

Value Range:
0.0\% to $+100.0 \%$

Description

This parameter defines the proportion of the end arc in deceleration.

A4-71 Ramp output forcing enable
Address: 0xA447 Effective mode:
Min.: 0
Max.: $\quad 18$
Default: 0

Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:
0: Disabled
1: Enabled
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector

Description

A4-72 Ramp output force value

Address: 0xA448

Min.: 0
Max.: 8
Default: 0
Value Range:
0: 100\%
1: AI1
2: Al2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

Description

A4-73 Ramp input ramp shift enable

Address: 0xA449
Min.: 0
Max.: 18
Default: 0

Value Range:

Same as A4-71

Description

A4-74 Ramp input update interval
Address: 0xA44A
Min.: $\quad 2$
Max.: 10000
Default: 50

Value Range:

2 ms to 10000 ms
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: ms
Data type: Ulnt16
Change: Changeable at any time

A4-75 Ramp tracking enable
Address: 0xA44B
Min.: 0
Max.: $\quad 1$
Default: 0
Value Range:
0 : Disabled
1: Enabled

Description

A4-76 Ramp tracking error

Address: 0xA44C Effective mode:
Min.: $0.0 \quad$ Unit:
Max.: $100.0 \quad$ Data type: Ulnt16

Default: 10.0
Change: Changeable at any time
Value Range:
0.0\% to +100.0\%

Description

A4-77 Frequency acceleration time in torque control

Address:	$0 \times A 44 D$	Effective mode:	s
Min.:	0.0	Unit:	S
Max.:	6500.0	Data type:	Ulnt16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
0.0s to 6500.0s			
Description			

A4-78 Frequency deceleration time in torque control

Address:	$0 \times A 44 E$	Effective mode:	S
Min.:	0.0	Unit:	S
Max.:	6500.0	Data type:	Ulnt16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
0.0s to 6500.0s			
Description			

A4-79 Forced use of the fourth set of time in torque control

Address: $0 \times 444 F$
Min.: $\quad 0$
Max.: $\quad 1$
Default: 1
Value Range:
0 to 1
Description

A4-80 Speed limited running mode

Address:	$0 \times A 450$	Effective mode: -
Min.:	0	Unit:

Max.: $1 \quad$ Data type: Ulnt16
Default: $1 \quad$ Change: Changeable at any time

Value Range:

0 : Run with a maximum speed limit
1: Run at a specified safe speed

	Description			
A4-81	Forward speed limit in restricted running mode			
	Address:	0xA451	Effective mode:	
	Min.:	0.0	Unit:	\%
	Max.:	100.0	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable at any time
	Value Range:			
	0.0\% to +100.0\%			
	Description			
	-			
A4-82	Reverse speed limit in restricted running mode			
	Address:	0xA452	Effective mode:	
	Min.:	0.0	Unit:	\%
	Max.:	100.0	Data type:	UInt16
	Default:	100.0	Change:	Changeable at any time
	Value Range:			
	0.0\% to +100.0\%			
	Description			
A4-83	Maximum motoring power in restricted running mode			
	Address:	0xA453	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	400.0	Data type:	Ulnt16
	Default:	50.0	Change:	Changeable at any time
	Value Range:			
	0.0\% to 400.0\%			
	Description			
A4-84	Maximum regenerative power in restricted running mode			
	Address:	0xA454	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	400.0	Data type:	UInt16
	Default:		Change:	Changeable at any time
	Value Range:			
	0.0\% to 400.0\%			
	Description			
A4-85	Forward torque limit in restricted running mode			
	Address:	0xA455	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	400.0	Data type:	UInt16
	Default:	50.0	Change:	Changeable at any time
	Value Range:			
	0.0\% to 400.0\%			
	Description			

A4-86 Reverse torque limit in restricted running mode
 Address: 0xA456 Effective mode:
 Min.: $0.0 \quad$ Unit:
 Max.: $400.0 \quad$ Data type: Ulnt16
 Default: 50.0
 Change: Changeable at any time
 Value Range:
 0.0\% to 400.0\%
 Description
 A4-87 Maximum allowable current in restricted running mode
 Address: 0xA457 Effective mode:
 Min.: 0.0
 Max.: 400.0
 Unit: \%
 Data type: Ulnt16
 Change: Changeable at any time
 Value Range:
 0.0\% to 400.0\%
 Description

4.22 A5: Control Optimization Parameters

A5-00 DPWM switchover frequency upper limit
Address: 0xA500 Effective mode:

Min.: $\quad 5.00$
Max.: F0-10
Default: 15.00
Unit:

Data type: Ulnt16
Change: Changeable at any time

Value Range:

5.00 Hz to F0-10

Description
The AC drive supports two PWM modes: CPWM and DPWM. When the running frequency is higher than A5-00 (switchover frequency), the DPWM mode is used. When the running frequency is lower than A5-00 (switchover frequency), the CPWM mode is used. The DPWM mode can improve the AC drive efficiency, whereas the CPWM mode can reduce the motor noise. Increasing the value of this parameter to the maximum frequency will reduce the motor noise.

A5-01 PWM modulation mode
Address: 0xA501 Effective mode:
Min.: 0
Max.: 1
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0 : Asynchronous modulation
1: Synchronous modulation

Description

Output current oscillation or high harmonics can occur if the carrier frequency divided by the running frequency is less than 10. In this case, you can use the synchronous modulation mode to reduce current harmonics.

A5-02 Deadzone compensation

Address:	$0 \times A 502$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

Value Range:
0 : Disabled
1: Enabled (compensation mode 1)

Description

A deadzone must be reserved for the switch signals of the upper and lower switch transistors on the same bridge arm of the AC drive. Deadzone compensation can improve the current waveform when the motor runs at low frequency.

A5-03 Random PWM depth

Address:	0xA503	Effective mode:	-
Min.:	0	Unit:	-
Max.:	10	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 to 10
Description
If the motor noise is strong, setting A5-03 to a non-zero value can suppress the motor noise. A larger value indicates better noise suppression effect. However, an excessively high value may affect motor control. Therefore, set this parameter to 1 at the beginning of commissioning and then increase it by 1 each time as required.

A5-04 Pulse-by-pulse current limit protection

Address:	$0 x A 504$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0: Disabled
1: Enabled
Description
This function is used to minimize the overcurrent faults, ensuring normal operation of the AC drive. You are advised to disable this function in hoist applications such as cranes.

A5-05 Voltage overmodulation coefficient

Address:	$0 x A 505$	Effective mode:	-
Min.:	100	Unit:	$\%$
Max.:	110	Data type:	Ulnt16
Default:	105	Change:	Changeable at any time

Value Range:
100\% to 110\%

Description

Increasing the voltage overmodulation coefficient can enhance the voltage output capacity and effectively improve the load capacity of the motor in the field weakening region, but will increase output current distortion at the same time.

A5-06 Undervoltage threshold

Address:	0xA506	Effective mode:	-
Min.:	140.0	Unit:	V
Max.:	420.0	Data type:	Ulnt16
Default:	350.0	Change:	Changeable at any time

Value Range:
140.0 V to 420.0 V

Description
When the bus voltage is lower than the setpoint of A5-06, the AC drive reports E09.01.

A5-08 Low speed carrier frequency upper limit
Address: 0xA508 Effective mode: -
Min.: 0.0 Unit: kHz
Max.: $8.0 \quad$ Data type: Ulnt16
Default: $0.0 \quad$ Change: Changeable at any time
Value Range:
0.0 kHz to 8.0 kHz

Description

This parameter defines the upper limit of the carrier frequency when the AC drive is running at a low speed. The limit takes effect when the setpoint is greater than 0 .

A5-09 Overvoltage threshold

Address:	0xA509	Effective mode:	-
Min.:	330.0	Unit:	V
Max.:	820.0	Data type:	Ulnt16
Default:	820.0	Change:	Changeable at any time

Value Range:
330.0 V to 820.0 V

Description
When the bus voltage is higher than the setpoint of A5-09, the AC drive reports E05.1.

A5-10 Energy conservation control
Address: 0xA50A Effective mode: -
Min.: 0 Unit: -
Max.: $1 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0: Disabled
1: Enabled
Description
This function is only valid for asynchronous motors in V/f control mode. Enabling energy conservation control can reduce energy consumption of the asynchronous motor when running with no load or light load.

4.23 A6: Al Curve Parameters

A6-00 Minimum input of AI curve 4

Address:	$0 x A 600$	Effective mode: -
Min.:	-10	Unit:

Max.: A6-02	Data type:	Int16
Default: 0.00	Change:	Changeable at any time
Value Range:		
-10 V to A6-02		
Description		

A6-01 Percentage corresponding to minimum input of AI curve 4
Address: 0xA601 Effective mode
Min.: -100 Unit:
Max.: $100.0 \quad$ Data type: Int16

Default: 0.0
Change: Changeable at any time
Value Range:
-100\% to +100.0\%
Description

A6-02 Inflection 1 input of AI curve 4

Address:	0xA602	Effective mode:	-
Min.:	A6-00	Unit:	V
Max.:	A6-04	Data type:	Int16
Default:	3.00	Change:	Changeable at any time

Value Range:
A6-00 to A6-04
Description

A6-03 Percentage corresponding to inflection 1 input of AI curve 4

Address:	0xA603	Effective mode:	-
Min.:	-100	Unit:	$\%$
Max.:	100.0	Data type:	Int16
Default:	30.0	Change:	Changeable at any time
Value Range:			
-100\% to +100.0\%			
Description			

A6-04 Inflection 2 input of AI curve 4

Address:	0xA604	Effective mode:	-
Min.:	A6-02	Unit:	V
Max.:	A6-06	Data type:	Int16
Default:	6.00	Change:	Changeable at any time

Value Range:
A6-02 to A6-06
Description

A6-05 Percentage corresponding to inflection 2 input of AI curve 4
Address: 0xA605 Effective mode:
Min.: -100 Unit: \%
Max.: 100.0 Data type: Int16
Default: $60.0 \quad$ Change: Changeable at any time

Value Range:

-100\% to +100.0\%
Description

Minimum input of AI curve 5

Address:	$0 x A 608$
Min.:	-10
Max.:	A6-10
Default:	-10

Value Range:

-10 V to A6-10
Description
Value Range:
A6-04 to 10.00 V
Description
-
Min.: -100

Max.: 100.0
Default: 100.0
Value Range:
-100\% to +100.0\%
Description

Effective mode:
Unit: V
Data type: Int16
Change: Changeable at any time

Address:	0xA606	Effective mode:	-
Min.:	A6-04	Unit:	V
Max.:	10.00	Data type:	Int16
Default:	10.00	Change:	Changeable at any time

Percentage corresponding to maximum input of AI curve 4
Address: 0xA607 Effective mode:
Unit: $\%$

Data type: Int16
Change: Changeable at any time

-

A6-09 Percentage corresponding to minimum input of AI curve 5

Address:	0xA609	Effective mode: -	
Min.:	-100	Unit:	$\%$
Max.:	100.0	Data type:	Int16
Default:	-100	Change:	Changeable at any time

Value Range:
-100\% to +100.0\%
Description

A6-10 Inflection 1 input of AI curve 5

Address:	0xA60A	Effective mode:	-
Min.:	A6-08	Unit:	V
Max.:	A6-12	Data type:	Int16
Default:	-3	Change:	Changeable at any time

Value Range:
A6-08 to A6-12

Description

A6-11 Percentage corresponding to inflection 1 input of AI curve 5
Address: 0xA60B Effective mode:
Min.: -100 Unit: \%

Max.: $\quad 100.0$
Default: -30
Data type: Int16
Change: Changeable at any time
Value Range:
-100\% to +100.0\%
Description

A6-12 Inflection 2 input of AI curve 5

Address:	0xA60C	Effective mode:	-
Min.:	A6-10	Unit:	V
Max.:	A6-14	Data type:	Int16
Default:	3.00	Change:	Changeable at any time

Value Range:

A6-10 to A6-14

Description

A6-13 Percentage corresponding to inflection 2 input of AI curve 5

Address:	0xA60D	Effective mode:	-
Min.:	-100	Unit:	$\%$
Max.:	100.0	Data type:	Int16
Default:	30.0	Change:	Changeable at any time
Value Range:			
-100\% to +100.0\%			
Description			

A6-14 Maximum input of AI curve 5

Address:	$0 \times A 60 E$	Effective mode:	V
Min.:	A6-12	Unit:	V
Max.:	10.00	Data type:	Int16
Default:	10.00	Change:	Changeable at any time

Value Range:
A6-12 to 10.00 V
Description

A6-15 Percentage corresponding to maximum input of AI curve 5
Address: 0xA60F
Min.: $\quad-100$
Max.: $\quad 100.0$
Default: 100.0
Effective mode: -
Unit: \%
Data type: Int16

Value Range:
-100% to $+100.0 \%$
Description

Al1 skip point

Address:	$0 x A 618$
Min.:	-100
Max.:	100.0
Default:	0.0

Value Range:
-100\% to +100.0\%
Description

-

Al1 skip amplitude
Address: 0xA619

Min.: 0.0
Max.: $\quad 100.0$
Default: 0.1
Value Range:
0.0\% to +100.0\%

Description

-

Al2 skip point
Address: 0xA61A

Min.: -100
Max.: $\quad 100.0$
Default: 0.0
Value Range:
-100\% to +100.0\%
Description

Al2 skip amplitude
Address: 0xA61B
Min.: 0.0
Max.: $\quad 100.0$
Default: 0.1
Value Range:
0.0\% to +100.0\%

Description

Address:	$0 \times A 61 \mathrm{C}$
Min.:	-100
Max.:	100.0
Default:	0.0

Value Range:

-100\% to +100.0\%

Description

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit: \%
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit: \%
Data type: Int16
Change: Changeable at any time

Effective mode:

Min.:	0.0	Unit:	\%
Max.:	100.0	Data type:	Ulnt16
Default: 0.1	Change:	Changeable at any time	
Value Range:			
0.0% to $+100.0 \%$			
Description			

AI automatic curve calibration
Address: 0xA61E Effective mode: -

Min.: 0
Max.: 4134
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
Ones: Point selection (for setting)
0: Disabled
1: Point 1
2: Point 2
3: Point 3
4: Point 4
Tens: Al channel selection (for setting)
0: Disabled
1: AI1
2: AI2
3: AI3
Hundreds: Enable control (for setting)
0: Disabled
1: Enabled
Thousands: X-point curve (for display)
0 : The function is disabled or the channel is not selected.
2: 2-point curve
4: 4-point curve
Ten thousands: Reserved

Description

A6-31 Al1 input enable

Address:	0xA61F	Effective mode:	-
Min.:	0	Unit:	-
Max.: 1	Data type:	Ulnt16	
Default: 1	Change:	Changeable at any time	
Value Range:			
0: Disabled			
1: Enabled			
Others: B connector			
Description			

A6-32

A6-33

A6-34

A6-35

Al2 input enable
Address: 0xA620

Min.: 0
Max.: 1
Default: 1
Value Range:
0: Disabled
1: Enabled
Others: B connector
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Al3 input enable
Address: 0xA621
Min.: $\quad 0$
Max.: $\quad 1$
Default: 1
Value Range:
0: Disabled
1: Enabled
Others: B connector
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Al polarity
Address: 0xA622
Min.: 0
Max.: 333
Default: 0
Value Range:
Ones: Al1
0 : Normal
1: Absolute value
2: Negated value
3: Negated absolute value
Tens: AI2
0 : Normal
1: Absolute value
2: Negated value
3: Negated absolute value
Hundreds: Al3
0: Normal
1: Absolute value
2: Negated value
3: Negated absolute value Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

$$
-
$$

Al hardware source
Address: 0xA623
Effective mode: -

Min.: $\quad 0$	Unit:	-
Max.: $\quad 111$	Data type:	Ulnt16
Default: 0	Change:	Changeable only at stop
Value Range:		
Ones: Al1 source		
1: Hardware sampling		
1: Force setpoint		
Tens: Al2 source		
1: Hardware sampling		
1: Force setpoint		
Hundreds: Al3 source		
1: Hardware sampling		
1: Force setpoint		

A6-36 Al1 force setpoint

Address: 0xA624
Min.: -10
Max.: $\quad 10.00$
Default: 0.00
Value Range:
-10 V to +10.00 V
Description

A6-37 Al2 force setpoint
Address: 0xA625
Min.: $\quad-10$
Max.: $\quad 10.00$
Default: 0.00
Value Range:
-10 V to +10.00 V
Description

A6-38 AI3 force setpoint
Address: 0xA626
Min.: $\quad-10$
Max.: $\quad 10.00$
Default: 0.00

Value Range:

-10 V to +10.00 V
Description

A6-39 High level for AI used as DI
Address: 0xA627
Min.: 5.5
Max.: $\quad 9.0$
Default: 7.0

Effective mode:	-
Unit:	V
Data type:	Int16
Change:	Changeable at any time

Effective mode:
Unit: V
Data type: Int16
Change: Changeable at any time

Value Range:

5.5 V to 9.0 V

Description

A6-40 Low level for AI used as DI
Address: 0xA628
Min.: 1.0
Max.: 4.5
Default: 3.0
Value Range:
1.0 V to 4.5 V

Description

A6-41 Al1 gain

Address:	$0 x A 629$
Min.:	-10
Max.:	10.00
Default:	1.00

Value Range:
-10 to +10.00
Description

A6-42 Al1 offset

Address:	$0 x A 62 \mathrm{~A}$
Min.:	-10
Max.:	10.00
Default:	0.00

Effective mode:
Unit: V
Data type: Int16

Value Range:
-10 V to +10.00 V
Description

A6-43 Al1 denoising threshold

Address: 0xA62B

Min.: 0.0
Max.: $\quad 100.0$
Default: 0.5
Value Range:
0.0\% to +100.0\%

Description

A6-44 Al1 deadzone width
Address: 0xA62C
Min.: 0.0
Max.: $\quad 100.0$
Default: 0.5
Value Range:
0.0% to $+100.0 \%$

Effective mode:
Unit:
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Changeable at any time

Description

A6-45 \quad Al1 input upper limit
Address: 0xA62D
Min.: A6-46
Max.: $\quad 10.00$
Default: 8.00
Value Range:
A6-46 to 10.00 V
Description

A6-46 Al1 input lower limit
Address: 0xA62E
Min.: $\quad 0.00$
Max.: A6-45
Default: 2.00
Value Range:
0.00 V to A6-45

Description

A6-47 Al2 gain

Address:	$0 x A 62 F$
Min.:	-10
Max.:	10.00
Default:	1.00

Value Range:

-10 to +10.00
Description

A6-48 Al2 offset

Address: 0xA630
Min.: $\quad-10$
Max.: $\quad 10.00$
Default: 0.00

Value Range:

-10 V to +10.00 V

Description

A6-49 Al2 denoising threshold
Address: 0xA631
Min.: 0.0
Max.: $\quad 100.0$
Default: 0.5

Value Range:

0.0\% to $+100.0 \%$

Description

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: V
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Changeable at any time

A6-50 Al2 deadzone width

Address:	0xA632	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default: 0.5	Change:	Changeable at any time	
Value Range:			
0.0\% to +100.0\%			
Description			

A6-51 \quad Al2 input upper limit

Address: 0xA633
Min.: A6-52
Max.: 10.00
Default: 8.00
Value Range:
A6-52 to 10.00 V
Description

A6-52 Al2 input lower limit
Address: 0xA634
Min.: $\quad 0.00$
Max.: A6-51
Default: 2.00
Value Range:
0.00 V to A6-51

Description

A6-53 Al3 gain

Address:	$0 x A 635$
Min.:	-10
Max.:	10.00
Default:	1.00

Value Range:

-10 to +10.00
Description

A6-54 Al3 offset

Address:	$0 x A 636$
Min.:	-10
Max.:	10.00
Default:	0.00

Value Range:

-10 V to +10.00 V
Description

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: V
Data type: Int16
Change: Changeable at any time

A6-55 Al3 denoising threshold
Address: 0xA637
Effective mode:

Min.:	0.0	Unit:	\%
Max.:	100.0	Data type:	Ulnt16
Default: 0.5	Change:	Changeable at any time	
Value Range:			
0.0% to $+100.0 \%$			
Description			

A6-56 Al3 deadzone width
Address: 0xA638

Min.: 0.0
Max.: $\quad 100.0$
Default: 0.5
Value Range:
0.0\% to +100.0\%

Description

A6-57 Al3 input upper limit
Address: 0xA639
Min.: A6-58
Max.: $\quad 10.00$
Default: 8.00
Value Range:
A6-58 to 10.00 V
Description

A6-58 AI3 input lower limit
Address: 0xA63A
Min.: $\quad 0.00$
Max.: A6-57
Default: 2.00
Value Range:
0.00 V to A6-57

Description

A6-59 Al input protection time

Address:	$0 \times A 63 B$
Min.:	0.00
Max.:	1.00
Default:	0.01

Value Range:

0.00 s to 1.00 s

Description

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

```
4.24 A8: Point-to-Point Communication Parameters
A8-00 Master/Slave control function
Address: 0xA800 Effective mode: -
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Disabled
1: Enabled
Description
A8-01 Master/Slave selection
Address: 0xA801 Effective mode: -
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Master
1: Slave
Description
A8-02 Slave following master's command
Address: 0xA802 Effective mode:
Min.: 0 Unit
Max.: 111 Data type: Ulnt16
Default: 11
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

A8-02 Slave following master's command
Address: 0xA802
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

```
Value Range:
Ones: Whether the slave follows the operation command of the master
0 : No
1: Yes
Tens: Whether the slave fault information is transmitted
0 : No
1: Yes
Hundreds: Whether the master reports a fault (ERR-16) upon disconnection of the slave
0 : No
1: Yes
Description
A8-03 Function of slave RX data
Address: 0xA803 Effective mode: -
Min.: 0
Max.: 1
Default: 0
Value Range:
0 : Running frequency
1: Target frequency
```

	Description			
A8-04	RX data zero offset			
	Address:	0xA804	Effective mode:	
	Min.:	-100	Unit:	\%
	Max.:	100.00	Data type:	Int16
	Default:	0.00	Change:	Changeable at any time
	Value Range:			
	-100\% to +100.00\%			
	Description			
	-			
A8-05	RX data gain			
	Address:	0xA805	Effective mode:	-
	Min.:	-10	Unit:	\%
	Max.:	100.00	Data type:	Int16
	Default:	1.00	Change:	Changeable at any time
	Value Range:			
	-10\% to +100.00\%			
	Description			
A8-06	Master-slave communication heartbeat time			
	Address:	0xA806	Effective mode:	-
	Min.:	0.0	Unit:	s
	Max.:	10.0	Data type:	Ulnt16
	Default:	1.0	Change:	Changeable at any time
	Value Range:			
	0.0 s to 10.0 s			
	Description			
A8-07	Master data TX cycle in point-to-point communication			
	Address:	0xA807	Effective mode:	-
	Min.:	0.001	Unit:	s
	Max.:	10.000	Data type:	Ulnt16
	Default:	0.001	Change:	Changeable at any time
	Value Range:			
	0.001 s to 10.000 s			
	Description			
	-			
A8-08	Zero offset of RX frequency data			
	Address:	0xA808	Effective mode:	-
	Min.:	-10000	Unit:	-
	Max.:	10000	Data type:	Int16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	-10000 to +10000			
	Description			

A8-09 Gain of RX frequency data

Address:	OxA809	Effective mode:	-
Min.:	-1000	Unit:	-
Max.:	1000	Data type:	Int16
Default: 100	Change:	Changeable at any time	
Value Range:			
-1000 to +1000			
Description			

A8-10 Maximum forward deviation of slave frequency

Address:	0xA80A	Effective mode:	-
Min.:	0	Unit:	-
Max.:	10000	Data type:	Ulnt16
Default:	1000	Change:	Changeable at any time

Value Range:
0 to 10000
Description

A8-11 Maximum reverse deviation of slave frequency

Address:	0xA80B	Effective mode:	-
Min.:	0.20	Unit:	Hz
Max.:	10.00	Data type:	Ulnt16
Default:	0.50	Change:	Changeable at any time

Value Range:
0.20 Hz to 10.00 Hz

Description

4.25 A9: Motor Parameters 1

A9-00 Number of parallel motors

Address:	0xA900	Effective mode:	-
Min.:	1	Unit:	-
Max.:	200	Data type:	Ulnt16
Default: 1	Change:	Changeable only at stop	
Value Range:			
1 to 200			
Description			

A9-01 Motor information command word

Address:	$0 \times A 901$	Effective mode:	-
Min.:	0×0	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	0×3	Change:	Changeable only at stop

Value Range:

Bit00: Mutual inductance curve
0: Disabled
1: Enabled
Bit01: D- and Q-axis inductance curve
0 : Disabled
1: Enabled
Bit02: Rotor resistance online auto-tuning
0 : Disabled
1: Enabled
Bit03: Rotor resistance online auto-tuning method
0 : Amplitude
1: Phase
Bit04: Motor thermal model
0 : Disabled
1: Enabled
Bit05: Temperature source of motor thermal model
0 : Estimated temperature
1: Temperature detected by sensor
Bit06: Torque coefficient calculation of asynchronous motor
0 : Torque formula
1: Current distribution
Bit07: Torque coefficient calculation of synchronous motor
0 : Torque formula
1: Torque matching the rated torque
Bit08: Zero speed friction torque calculation
0 : Torque linearly decreasing to zero
1: Torque to maintain minimum speed
Bit09: Calculation of model parameters based on nameplate parameters
0 : Disabled
1: Enabled
Bit10: Confirmation of calculating model parameters based on nameplate parameters
0: Default
1: Confirm
Description

A9-02 Number of motor pole pairs

Address:	$0 \times A 902$	Effective mode:	
Min.:	0	Unit:	-
Max.:	64	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:

0 to 64
Description

A9-03 Motor power factor

Address:	0xA903	Effective mode:	
Min.:	0.600	Unit:	-
Max.:	1.000	Data type:	Ulnt16
Default:	0.860	Change:	Changeable only at stop

Value Range:
0.600 to 1.000

Description

A9-05 Expansion card

Address:	0xA905	Effective mode:	-
Min.:	1	Unit:	-
Max.:	2	Data type:	Ulnt16
Default: 1	Change:	Changeable only at stop	
Value Range:			
1: Expansion card 1			
2: Expansion card 2			
Description			

A9-06 ABZ encoder speed measurement mode at low speed

Address:	$0 x A 906$	Effective mode:
Min.:	0	Unit:

Max.: $2 \quad$ Data type: Ulnt16
Default: 2 Change: Changeable only at stop

Value Range:

0 : Maintain
1: Attenuate
2: Optimized solution
Description
When the AC drive runs at a low speed with no pulse, the following three speed measurement modes are available:
0: Maintain
The current speed is maintained when there is no pulse, and the speed is considered 0 when the situation continues for more than 4 ms .
1: Attenuate
The speed is attenuated exponentially by $1 / 2$, and the speed is considered 0 when the situation continues for more than 4 ms .
2: Optimized solution
The speed is maintained for a certain number of beats and then attenuated. When the number of beats with no pulse reaches the threshold, the speed is considered 0 .

A9-07 Encoder speed measurement filter time constant
Address: 0xA907 Effective mode: -
Min.: 0.000
Max.: 10.000
Default: 0.004
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0.000 s to 10.000 s

Description

Adjusting the encoder speed measurement filter time constant can change the encoder signal filtering effect. Longer filter time indicates smoother encoder feedback speed but longer feedback delay. Shorter filter time indicates shorter feedback delay but larger encoder feedback speed fluctuations. In FVC control mode, the filter time constant needs to be adjusted based on the actual working conditions and encoder signal quality. It cannot be too small if the signal quality of the resolver and other encoders is poor.

A9-08 Encoder wire breakage software detection coefficient

Address:	$0 \times A 908$
Min.:	0.000
Max.:	8.000
Default:	1.000

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Changeable at any time

Value Range:
0.000 to 8.000

Description

This parameter defines the speed glitch amplitude for determining speed exceptions. The default value is 100% and does not need not be modified in normal cases.

A9-09 Encoder control word

Address: 0xA909 Effective mode: -
Min.: 0
Max.: 65535 Data type: Ulnt16
Default: $0 \quad$ Change: Changeable only at stop

Value Range:

Bit00: Speed measurement
0: Disabled
1: Enabled
Bit01: Software detection of wire breakage
0: Disabled
1: Enabled
Bit02: Glitch removal
0 : Disabled
1: Enabled
Bit03: ABZ encoder speed measurement mode
0 : Quadruplicated frequency
1: Single pulse

Description

Bit00: Speed measurement
When the FVC control mode is selected, speed measurement is enabled automatically. When another control mode is selected, you can enable or disable the speed measurement function of the encoder as required.
Bit01: Software detection of wire breakage
This function is used to detect encoder wire breakage during running based on speed measurement results of the encoder. It is unavailable in stop state. When this function is enabled, the glitch removal function is enabled automatically. The system reports the encoder wire breakage fault when the number of detected speed measurement exceptions exceeds the value of A9-10 (speed measurement exception count threshold).
Bit02: Glitch removal

This function is used to remove occasional speed measurement glitches. The glitch amplitude is defined by A9-08.
Bit03: ABZ encoder speed measurement mode
0 : The quadruplicated frequency speed measurement mode is used.
1: The quadruplicated frequency speed measurement mode is used at low speed, and the single pulse speed measurement mode is used at high speed.

A9-10 Speed measurement exception count threshold

Address: 0xA90A
Min.: 1
Max.: $\quad 100$
Default: 10
Value Range:
1 to 100
Description
After software detection of encoder wire breakage is enabled, the encoder wire breakage fault is reported when the number of detected speed measurement exceptions exceeds the threshold defined by A9-10.

A9-11 Motor gear ratio (numerator)

Address:	0xA90B	Effective mode:	-
Min.:	1	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop

Value Range:
1 to 65535
Description

A9-12 Motor gear ratio (denominator)

Address: 0xA90C
Min.: 1
Max.: 65535
Default: 1
Value Range:
1 to 65535
Description

A9-13 External input source of encoder

Address:	0xA90D	Effective mode:	
Min.:	0	Unit:	-
Max.:	8	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

0: 0
1: AI1
2: Al2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

A9-15 Stator leakage inductance

Address:	$0 x A 90 F$
Min.:	0.000
Max.:	65.535
Default:	6.540

Value Range:

0.000 mH to 65.535 mH

Description

A9-16 Electromechanical time constant
Address: 0xA910

Min.: $\quad 1$
Max.: 65535
Default: 100
Value Range:
1 ms to 65535 ms
Description

Effective mode: -
Unit: mH
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: ms
Data type: Ulnt16
Change: Unchangeable

A9-17 Inertia ratio
Address: 0xA911
Min.: 0.0
Max.: 6553.5
Default: 120.0
Value Range:
0.0\% to 6553.5\%

Description

A9-18 Friction torque
Address: 0xA912
Min.: 0.0
Max.: 6553.5
Default: 2.0
Value Range:
0.0\% to 6553.5\%

Description

A9-19

A9-20
Excitation current coefficient 2 of mutual inductance curve (rated)

Address:	$0 x A 914$
Min.:	5.0
Max.:	100.0
Default:	75.0

Value Range:
5.0\% to 100.0\%

Description

Excitation current coefficient 1 of mutual inductance curve (rated)
Address: 0xA913 Effective mode: -
Min.: $5.0 \quad$ Unit:
Max.: $100.0 \quad$ Data type: Ulnt16
Default: 50.0
Value Range:
5.0\% to 100.0\%

Description

Description

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop

Change: Changeable only at stop

A9-21 Excitation current coefficient 3 of mutual inductance curve

Address:	0xA915	Effective mode: -	
Min.:	100.0	Unit:	$\%$
Max.:	800.0	Data type:	Ulnt16
Default:	150.0	Change:	Changeable only at stop

Value Range:
100.0\% to 800.0\%

Description

Excitation current coefficient 4 of mutual inductance curve

Address:	0xA916	Effective mode:	
Min.:	100.0	Unit:	$\%$
Max.:	800.0	Data type:	Ulnt16
Default:	210.0	Change:	Changeable only at stop
Value Range:			
100.0\% to 800.0\%			
Description			

Flux coefficient 1 of mutual inductance curve (rated)

Address: 0xA917
Min.: $\quad 10.0$
Max.: $\quad 100.0$
Default: 50.0
Value Range:
10.0\% to 100.0\%

Description

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop
-

```
A9-24
```

A9-25 Flux coefficient 3 of mutual inductance curve
Address: 0xA919
Effective mode:
Unit: \%
Min.: 100.0
Max.: $\quad 300.0$
Data type: Ulnt16
Default: 115.0
Change: Changeable only at stop
Value Range:
100.0\% to 300.0\%
Description
A9-26 Flux coefficient 4 of mutual inductance curve
Address: 0xA91A
Min.: 100.0
Max.: 300.0
mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop
Default: 125.0
Value Range:
100.0\% to 300.0\%
Description
A9-27 Speed point 1 of friction curve

Address:	0xA91B	Effective mode:	
Min.:	0	Unit:	RPM
Max.:	30000	Data type:	Ulnt16
Default:	15	Change:	Changeable only at stop

Value Range:
0 RPM to 30000 RPM
Description
A9-28 Speed point 2 of friction curve
Address: 0xA91C Effective mode:
Min.: 0 Unit: RPM
Max.: $30000 \quad$ Data type: Ulnt16
Default: 30
Change: Changeable only at stop
Value Range:
0 RPM to 30000 RPM
Description
A9-29 Speed point 3 of friction curve
Address: 0xA91D Effective mode:

Min.:	0
Max.:	30000
Default:	60

Value Range:
0 RPM to 30000 RPM
Description

Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

A9-30 Speed point 4 of friction curve
Address: 0xA91E

Min.: 0
Max.: 30000
Default: 120
Value Range:
0 RPM to 30000 RPM
Description

```
Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop
```

A9-31 Speed point 5 of friction curve
Address: 0xA91F
Min.: 0
Max.: 30000
Default: 150
Value Range:
0 RPM to 30000 RPM
Description

```
Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop
```

Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Value Range:

0 RPM to 30000 RPM

Description

A9-33 Speed point 7 of friction curve

Address:	$0 x A 921$
Min.:	0
Max.:	30000
Default:	600

Value Range:

0 RPM to 30000 RPM

Description

A9-34 Speed point 8 of friction curve
Address: 0xA922
Min.: 0
Max.: 30000

Effective mode:	-
Unit:	RPM
Data type:	Ulnt16

Default: 1200
Value Range:
0 RPM to 30000 RPM
Description

A9-35 Speed point 9 of friction curve
Address: 0xA923

Min.: 0
Max.: 30000
Default: 1500
Value Range:
0 RPM to 30000 RPM
Description

A9-36 Speed point 10 of friction curve
Address: 0xA924
Min.: 0
Max.: 30000
Default: 3000
Value Range:
0 RPM to 30000 RPM
Description

A9-37 Torque point 1 of friction curve
Address: 0xA925
Min.: -320
Max.: $\quad 320.00$
Default: 0.00
Value Range:
-320 N•m to +320 N•m
Description

A9-38 Torque point 2 of friction curve
Address: 0xA926
Min.: $\quad-320$
Max.: $\quad 320.00$
Default: 0.00

Value Range:

$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$
Description

A9-39 Torque point 3 of friction curve

Address:	$0 \times A 927$
Min.:	-320
Max.:	320.00
Default:	0.00

Value Range:

Change: Changeable only at stop

Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$
 Description

A9-40 Torque point 4 of friction curve

Address:	$0 x A 928$
Min.:	-320
Max.:	320.00
Default:	0.00

Value Range:
-320 N•m to +320 N•m
Description

A9-41 Torque point 5 of friction curve
Address: 0xA929
Min.: -320
Max.: 320.00
Default: 0.00
Value Range:
-320 N•m to +320 N•m
Description

A9-42 Torque point 6 of friction curve
Address: 0xA92A
Min.: $\quad-320$
Max.: $\quad 320.00$
Default: 0.00
Value Range:
$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$
Description

A9-43 Torque point 7 of friction curve
Address: 0xA92B

Min.: $\quad-320$
Max.: $\quad 320.00$
Default: 0.00
Value Range:
-320 N•m to +320 N•m
Description

A9-44 Torque point 8 of friction curve
Address: 0xA92C
Min.: $\quad-320$
Max.: $\quad 320.00$
Default: 0.00
Value Range:
$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Description

A9-45 Torque point 9 of friction curve

Address:	0xA92D	Effective mode:	-
Min.:	-320	Unit:	$\mathrm{N} \cdot \mathrm{m}$
Max.:	320.00	Data type:	Int16
Default:	0.00	Change:	Changeable only at stop

Value Range:
-320 N•m to $+320 \mathrm{~N} \cdot \mathrm{~m}$
Description

A9-46 Torque point 10 of friction curve

Address:	0xA92E	Effective mode:	-
Min.:	-320	Unit:	$\mathrm{N} \cdot \mathrm{m}$
Max.:	320.00	Data type:	Int16
Default:	0.00	Change:	Changeable only at stop

Value Range:

-320 N•m to $+320 \mathrm{~N} \cdot \mathrm{~m}$
Description

A9-47	Current coefficient starting point of D- and Q-axis inductance curve			
	Address:	0xA92F	Effective m	-
	Min.:	-800	Unit:	\%
	Max.:	800.0	Data type:	Int16
	Default:	-200	Change:	Changeable only at stop
	Value Range:			
	-800\% to +800.0\%			
	Description			

A9-48 Current coefficient end point of D - and Q-axis inductance curve

Address: 0xA930
Min.: -800
Max.: 800.0
Default: 200.0

Value Range:

-800\% to +800.0\%
Description

A9-49 D axis inductance 1 of D - and Q-axis inductance curve
Address: 0xA931
Min.: 0.0
Max.: 6553.5
Default: 100.0
Effective mode:
Unit: \%
Data type: Int16
Change: Changeable only at stop
-

Value Range:

0.0\% to 6553.5\%

Description

```
A9-50 D axis inductance 2 of D- and Q-axis inductance curve
Address: 0xA932 Effective mode: -
Min.: 0.0 Unit: %
Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0% to 6553.5%
Description
A9-51 D axis inductance 3 of D-and Q-axis inductance curve
Address: 0xA933 Effective mode:
Min.: \(0.0 \quad\) Unit: \(\%\)
Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0% to 6553.5%
Description
A9-52 D axis inductance 4 of D- and Q-axis inductance curve
Address: 0xA934 Effective mode:
Min.: 0.0 Unit: %
Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0% to 6553.5%
Description
A9-53 D axis inductance 5 of D- and Q-axis inductance curve
Address: 0xA935 Effective mode:
Min.: 0.0 Unit: %
Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Value Range:
0.0% to 6553.5%
Description
A9-54 D axis inductance 6 of D- and Q-axis inductance curve
Address: 0xA936 Effective mode:
Min.: \(0.0 \quad\) Unit:
Max.: 6553.5 Data type: Ulnt16
Default: 100.0
```


Value Range:

```
0.0\% to 6553.5\%
```


Description

```
A9-55 D axis inductance 7 of \(D\) - and \(Q\)-axis inductance curve
Address: 0xA937 Effective mode:
```

Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Ulnt16
Default:	100.0	Change:	Changeable only at stop

Value Range:
0.0\% to 6553.5\%

Description

A9-56 D axis inductance 8 of D - and Q-axis inductance curve
Address: 0xA938 Effective mode: -
Min.: $0.0 \quad$ Unit: $\%$

Max.: $6553.5 \quad$ Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop

Value Range:

0.0\% to 6553.5\%

Description

A9-57 D axis inductance 9 of D - and Q-axis inductance curve
Address: 0xA939 Effective mode: -
Min.: 0.0 Unit: \%

Max.: $6553.5 \quad$ Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

Description

A9-58 D axis inductance 10 of D - and Q-axis inductance curve
Address: 0xA93A Effective mode:
Min.: $0.0 \quad$ Unit: $\%$

Max.: $6553.5 \quad$ Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop

Value Range:

0.0\% to 6553.5\%

Description

A9-59 D axis inductance 11 of D - and Q-axis inductance curve

Address:	$0 x A 93 B$
Min.:	0.0
Max.:	6553.5
Default:	100.0

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop

Value Range:

0.0\% to 6553.5\%

Description

A9-60 D axis inductance 12 of D - and Q-axis inductance curve

Address:	0xA93C	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Ulnt16

Default: 100.0
Value Range:
0.0\% to 6553.5\%

Description

A9-61 $\quad \mathrm{Q}$ axis inductance 1 of D - and Q -axis inductance curve
Address: 0xA93D Effective mode:
Min.: $0.0 \quad$ Unit:

Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

Description

A9-62 $\quad Q$ axis inductance 2 of D - and Q-axis inductance curve
Address: 0xA93E Effective mode:
Min.: $0.0 \quad$ Unit:

Max.: 6553.5
Default: 100.0
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

Description

A9-63 Q axis inductance 3 of D - and Q-axis inductance curve
Address: 0xA93F Effective mode:
Min.: $0.0 \quad$ Unit:

Max.: 6553.5
Default: 100.0
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

Description

A9-64 Q axis inductance 4 of D - and Q-axis inductance curve

Address:	$0 x A 940$
Min.:	0.0
Max.:	6553.5
Default:	100.0

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

Description

A9-65 $\quad Q$ axis inductance 5 of D - and Q-axis inductance curve
Address: 0xA941
Min.: 0.0
Max.: 6553.5
Default: 100.0
Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Changeable only at stop
Value Range:

	0.0\% to 6553.5\%			
	Description			
	-			
A9-66	Q axis inductance 6 of D - and Q -axis inductance curve			
	Address:	0xA942	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	-			
A9-67	Q axis inductance 7 of D - and Q -axis inductance curve			
	Address:	0xA943	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	-			
A9-68	Q axis inductance 8 of D - and Q -axis inductance curve			
	Address:	0xA944	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	-			
A9-69	Q axis inductance 9 of D - and Q -axis inductance curve			
	Address:	0xA945	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	-			
A9-70	Q axis inductance 10 of D - and Q -axis inductance curve			
	Address:	0xA946	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			

Description

A9-71 Q axis inductance 11 of D - and Q-axis inductance curve
Address: 0xA947 Effective mode: -
Min.: $0.0 \quad$ Unit: $\%$

Max.: $6553.5 \quad$ Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

Description

A9-72 Q axis inductance 12 of D - and Q-axis inductance curve
Address: 0xA948 Effective mode:

Min.: 0.0
Max.: 6553.5
Default: 100.0
Unit: $\quad \%$
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

Description

4.26 AA: Reserved

AA-00 Parameter auto-tuning upon startup
Address: 0xAA00 Effective mode: -
Min.: 0
Max.: 65535 Data type: Ulnt16
Default: 1 Change: Changeable only at stop
Value Range:

Bit00: Synchronous motor pole position auto-tuning upon startup
0: Disabled
1: Enabled
Bit01: Quick stator resistance auto-tuning upon startup
0 : Disabled
1: Enabled
Bit02-Bit03: HFI pole position auto-tuning
0: Disabled
1: Enabled
2: Adaptive
Bit04: IGBT shoot-through self-check upon startup
0: Disabled
1: Enabled
Bit05: Short-to-ground self-check upon startup (reserved)
0 : Disabled
1: Enabled
Bit06: Phase loss self-check upon startup (reserved)
0 : Disabled
1: Enabled
Description

AA-01 Auto-tuning direction

Address:	$0 \times A A 01$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop

Value Range:
0 to 1
Description

AA-02 Oscillation suppression gain of synchronous motor back EMF auto-tuning

Address: 0xAA02
Min.: 0.0
Max.: 30.0
Default: 3.2
Value Range:
0.0 to 30.0

Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

> -

AA-03 Target speed of rotation auto-tuning
Address: 0xAA03 Effective mode: -
Min.: $\quad 30.0$
Max.: $\quad 100.0$
Default: 70.0

Value Range:

30.0\% to 100.0\%

Description

AA-04 Target speed 1 of inertia auto-tuning

Address:	0xAA04	Effective mode:	-
Min.:	10.0	Unit:	$\%$
Max.:	AA-05	Data type:	Ulnt16
Default:	40.0	Change:	Changeable only at stop
Value Range:			
10.0\% to AA-05			
Description			

AA-05 Target speed 2 of inertia auto-tuning

Address:	0xAA05	Effective mode:	
Min.:	AA-04	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	60.0	Change:	Changeable only at stop

Value Range:
AA-04 to 100.0\%

Description

AA-06 Overcurrent prevention of mutual inductance saturation curve

Address: 0xAA06
Min.: $\quad 0$
Max.: $\quad 1$
Default: 1
Value Range:
0 to 1
Description

AA-07 Auto-tuning items
Address: $0 x A A 07$
Min.: 0
Max.: 65535
Default: 117
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop
-

Value Range:

Bit00: Speed loop parameter adaptation
0 : Disabled
1: Enabled
Bit01: Current loop parameter adaptation
0 : Disabled
1: Enabled
Bit02: Drive nonlinear auto-tuning
0 : Disabled
1: Enabled
Bit03: Inter-phase deviation coefficient auto-tuning
0 : Disabled
1: Enabled
Bit04: Auto-tuning of initial pole position of synchronous motor
0 : Disabled
1: Enabled
Bit05: Auto-tuning of D - and Q -axis inductance model of synchronous motor
0: Disabled
1: Enabled
Bit06: System inertia auto-tuning
0: Disabled
1: Enabled
Bit07: HFI pole position auto-tuning
0: Disabled
1: Enabled
Description

AA-08 OFF3 stop mode
Address: 0xAA08 Effective mode: -
Min.: 0
Max.: 1
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0: Quick stop
1: Stop at maximum capability

Description

AA-09 Stop mode during running
Address: 0xAA09 Effective mode: -
Min.: 0
Max.: 2
Default: 1

Unit:
Data type: Ulnt16
Change: Changeable only at stop

Value Range:

0: OFF1 stop mode
1: OFF2 stop mode
2: OFF3 stop mode

Description

AA-10 Stop mode for torque control

Address:	0xAAOA	Effective mode:	
Min.:	0	Unit:	-
Max.:	2	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop

Value Range:
0 : Coast to stop forcibly
1: Switch to speed control mode and then stop
2: Maintain torque control mode until zero speed and then block

Description

AA-12 Proportional gain adjustment coefficient

Address:	OxAAOC	Effective mode:	-
Min.:	0.1	Unit:	-
Max.:	2.0	Data type:	Ulnt16
Default:	1.0	Change:	Changeable at any time
Value Range:			
0.1 to 2.0			
Description			

AA-13 Integral gain adjustment coefficient

Address: 0xAAOD Effective mode:
Min.: 0.1
Max.: $\quad 2.0$
Default: 1.0
Value Range:
0.1 to 2.0

Description

AA-14 Zero-speed threshold

Address: 0xAAOE
Min.: $\quad 0.1$
Max.: 200.0
Default: 2.0
Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.1\% to 200.0\%

Description

AA-15 Zero-speed stop delay
Address: 0xAA0F
Min.: $\quad 0.00$
Max.: $\quad 10.00$
Default: 0.10
Value Range:

0.00 s to 10.00 s

Description

AA-16 Reference source execution interval
Address: 0xAA10 Effective mode: -
Min.: 0
Max.: 20
Unit:
Data type: Ulnt16
Default: 4
Change: Changeable only at stop
Value Range:
0 to 20
Description

AA-17 Trial current for speed tracking of synchronous motor
Address: 0xAA11
Min.: $5.0 \quad$ Unit:
Max.: $50.0 \quad$ Data type: Ulnt16
Default: $10.0 \quad$ Change: Changeable only at stop
Value Range:
5.0\% to 50.0\%

Description

AA-18 Minimum frequency for speed tracking of synchronous motor

Address:	0xAA12	Effective mode:	-
Min.:	0.0	Unit:	Hz
Max.:	100.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable only at stop

Value Range:
0.0 Hz to 100.0 Hz

Description

AA-19 Angle compensation for speed tracking of synchronous motor
Address: 0xAA13 Effective mode: -
Min.: 0 Unit: -

Max.: 360 Data type: Ulnt16
Default: $0 \quad$ Change: Changeable only at stop
Value Range:
0 to 360
Description

AA-20 Parameter auto-tuning of synchronous motor upon startup
Address: 0xAA14 Effective mode:
Min.: 0 Unit: -
Max.: $1 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0 to 1

Description

AA-21 Current motor angle

Address:	0xAA15	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

AA-22 Forward torque limit 1

Address:	$0 x A A 16$
Min.:	0.0
Max.:	400.0
Default:	150.0

Value Range:

0.0 to 400.0

Description

AA-23 Reverse torque limit 1

Address:	$0 \times A A 17$
Min.:	0.0
Max.:	400.0
Default:	150.0

Value Range:

0.0 to 400.0

Description

AA-24 Source of forward torque limit 2
Address: 0xAA18
Min.: $\quad 0$
Max.: 0
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0: 400\%
Others: F connector

Description

AA-25 Source of reverse torque limit 2
Address: 0xAA19
Min.: $\quad 0$
Max.: 0
Default: 0

Value Range:

0: -400\%
Others: F connector

Description

Ramp (FRG) selection bit0
Address: 0xAA1A
Min.: 0
Max.: 18
Default: 0
Value Range:
0: 0
1: 1
2: Terminal function input
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DII3
16: DI14
17: DI15
18: DI16
Others: B connector
Description

AA-27 Ramp (FRG) selection bit1
Address: 0xAA1B
Min.: 0
Max.: 18
Default: 0
Value Range:
Same as A4-26
Description
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Bit00: Motor overload determination (reserved)
Bit01: Motor overheat detection (reserved)
Bit02: PG fault detection (reserved)
Bit03: Current control error detection
Bit04: Motor stall error detection
Bit05: Locked-rotor detection
Bit06: Synchronous motor demagnetization protection
Bit07: Protection against locked-rotor in SVC speed open-loop control
Bit08: Reserved
Bit09: Parameter setting error

Description

AA-31 Locked-rotor time

Address: 0xAA1F Effective mode: -
Min.: $\quad 0.0$
Max.: $\quad 65.0$
Default: 2.0
Unit: s
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0s to 65.0s

Description

AA-32 Locked-rotor frequency
Address: 0xAA20
Effective mode: -
Min.: 0.0
Max.: $\quad 600.0$
Default: 6.0
Value Range:
0.0\% to 600.0\%

Description

AA-33 Motor stall detection time
Address: 0xAA21
Effective mode:
Min.: 0.0
Max.: $\quad 10.0$
Default: 0.5
Value Range:
0.0 s to 10.0 s

Description

AA-34 Stall detection threshold
Address: 0xAA22
Effective mode: -
Min.: 0.0
Unit: \%
Max.: $\quad 100.0$
Data type: Ulnt16
Default: 30.0
Value Range:
0.0% to $+100.0 \%$

Description

AA-35 Current control exception detection time
Address: 0xAA23 Effective mode: -
Min.: $0.00 \quad$ Unit:

Max.: $1.00 \quad$ Data type: Ulnt16
Default: 0.05
Change: Changeable at any time
Value Range:
0.00 s to 1.00 s

Description

AA-36 Current control exception detection threshold
Address: 0xAA24 Effective mode:
Min.: $0.0 \quad$ Unit: $\%$

Max.: $200.0 \quad$ Data type: Ulnt16
Default: 25.0
Change: Changeable at any time
Value Range:
0.0\% to 200.0\%

Description

AA-37 Synchronous motor overcurrent threshold

Address:	$0 x A A 25$
Min.:	0.0
Max.:	500.0
Default:	300.0

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0.0\% to 500.0\%

Description

AA-39 Speed deviation detection

Address:	0xAA27	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

Value Range:

0 to 1
Description

AA-40 Asynchronous motor FVC model switchover frequency

Address: 0xAA28
Min.: 0
Max.: 1000
Effective mode:
Unit: \%

Default: 20
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0\% to 1000\%
Description

AA-41	Asynchronous motor FVC model switchover hysteresis frequency			
	Address:	0xAA29	Effective m	-
	Min.:	10	Unit:	\%
	Max.:	50	Data type:	Ulnt16
	Default:	20	Change:	Changeable only at stop
	Value Range:			
	10\% to 50\%			
	Description			

AA-42 Asynchronous motor FVC observer filter time

Address: 0xAA2A Effective mode: -
Min.: 5 Unit: ms
Max.: 100 Data type: Ulnt16
Default: 15 Change: Changeable only at stop

Value Range:
5 ms to 100 ms
Description

AA-43 Asynchronous motor FVC current model mode

Address:	$0 \times A A 2 B$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0 to 1
Description

AA-44 Asynchronous motor FVC pre-excitation output observation angle mode
Address: 0xAA2C Effective mode:
Min.: 0 Unit: -
Max.: $1 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable only at stop

Value Range:
0 to 1
Description

AA-45 Asynchronous motor SVC model switchover frequency
Address: 0xAA2D Effective mode:
Min.: $10 \quad$ Unit:
Max.: 20 Data type: Ulnt16
Default: 15 Change: Changeable only at stop

Value Range:
10\% to 20\%
Description

AA-46 Asynchronous motor SVC observer filter time
Address: 0xAA2E Effective mode:

Min.:	5	Unit:	ms
Max.:	50	Data type:	Ulnt16
Default: 10	Change:	Changeable at any time	
Value Range:			
5 ms to 50 ms			
Description			

AA-47 Asynchronous motor SVC observer gain 1

Address:	$0 \times A A 2 F$	Effective mode:	-
Min.:	10	Unit:	$\%$
Max.:	500	Data type:	Ulnt16
Default:	100	Change:	Changeable at any time

Value Range:
10\% to 500\%
Description

AA-48 Asynchronous motor SVC observer gain 2

Address:	0xAA30	Effective mode:	
Min.:	10	Unit:	$\%$
Max.:	100	Data type:	Ulnt16
Default:	20	Change:	Changeable at any time

Value Range:
10\% to 100\%
Description

AA-49 Asynchronous motor SVC observer mode
Address: 0xAA31 Effective mode:

Min.: $0 \quad$ Unit:
Max.: 3
Default: 0

Data type: Ulnt16
Change: Changeable only at stop

Value Range:

0 to 3
Description

AA-50 Asynchronous motor SVC pre-excitation mode

Address:	$0 x A A 32$	Effective mode:
Min.:	0	Unit:
Max.:	1	Data type:
Default:	0	Change:

Ulnt16
Changeable only at stop

Value Range:
0 to 1
Description

AA-51 Asynchronous motor SVC speed tracking mode

Address:	$0 x A A 33$	Effective mode:
Min.:	0	Unit:
Max.:	1	Data type:

Default: 0
Value Range:
0 to 1
Description

AA-54 Synchronous motor 1 model control
Address: 0xAA36
Min.: 0
Max.: 65535
Default: 5
Value Range:
Bit00: Low speed processing
Bit01: Low speed processing 1
Bit02: Online auto-tuning of resistance
Bit03: Online auto-tuning of back EMF
Bit04: KS
Description

AA-55 Synchronous motor model K1
Address: 0xAA37
Min.: 10
Max.: 3000
Default: 200
Value Range:
10 to 3000
Description

AA-56 Synchronous motor model K1Max
Address: 0xAA38
Min.: 100
Max.: 6000
Default: 3000
Value Range:
100 to 6000
Description

AA-57 Synchronous motor model KsMin
Address: 0xAA39
Min.: 0.0
Max.: $\quad 4.0$
Default: 0.3
Value Range:
0.0 to 4.0

Description

Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```
AA-58 Synchronous motor model Kspeed
            Address: 0xAA3A Effective mode:
            Min.: 50
            Max.: 2000
            Default: 400
            Value Range:
            50 to 2000
            Description
AA-59 Synchronous motor frequency filter time constant
            Address: 0xAA3B Effective mode: -
            Min.: 2 Unit: ms
            Max.: 100 Data type: Ulnt16
            Default: }1
                            Change: Changeable at any time
            Value Range:
            2 ms to 100 ms
            Description
AA-60 Frequency upper limit of synchronous motor Rs online auto-tuning
Address: 0xAA3C Effective mode:
Min.: \(1.0 \quad\) Unit: \(\%\)
            Max.: 20.0
                Default: 3.5
                            Data type: Ulnt16
                            Change: Changeable at any time
                    Value Range:
                    1.0% to 20.0%
                    Description
AA-61 Synchronous motor model Kr
Address: 0xAA3D Effective mode:
Min.: 0 Unit:
Max.: 50 Data type: Ulnt16
Default: }1
Change: Changeable at any time
Value Range:
0 to 50
Description
AA-62 Synchronous motor model Kr1
\begin{tabular}{llll} 
Address: & 0xAA3E & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 50 & Data type: & Ulnt16 \\
Default: & 5 & Change: & Changeable at any time
\end{tabular}
```


Value Range:

```
0 to 50
Description
AA-63 Synchronous motor low-speed D axis injection current
Address: 0xAA3F
Effective mode:
```

	Min.:	0	Unit:	\%
	Max.:	100	Data type:	Ulnt16
	Default:	20	Change:	Changeable at any time
	Value Ra			
	0\% to 10			
	Descript			
	-			
AA-64	Synchro	us motor		
	Address:	0xAA40	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	500	Data type:	Ulnt16
	Default:	50	Change:	Changeable at any time
	Value Ra			
	0 to 500			
	Descript			
	-			
AA-67	Frequen	lower lim	to-tuning	
	Address:	0xAA43	Effective mode:	-
	Min.:	10	Unit:	\%
	Max.:	100	Data type:	Ulnt16
	Default:	25	Change:	Changeable at any time
	Value Ra			
	10\% to 1			
	Descript			
	-			
AA-68	Synchro	us motor		
	Address:	0xAA44	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	2.0	Data type:	Ulnt16
	Default:	0.3	Change:	Changeable at any time
	Value Ra			
	0.0\% to			
	Descript			
	-			
AA-69	Synchro	us motor		
	Address:	0xAA45	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	100	Data type:	Ulnt16
	Default:	10	Change:	Changeable at any time
	Value Ra			
	0 to 100			
	Descript			
	-			
AA-70	Percent	e of pole		
	Address:	0xAA46	Effective mode:	-
	Min.:	50	Unit:	\%
	Max.:	200	Data type:	Ulnt16

	Default: 100		Change:	Changeable at any time
	Value Range:			
	50\% to 200\%			
	Description			
	-			
AA-71	Percentage of high frequency response current			
	Address:	0xAA47	Effective mode:	-
	Min.:	0	Unit:	\%
	Max.:	100	Data type:	Ulnt16
	Default:	25	Change:	Changeable at any time
	Value Range:			
	0\% to 100\%			
	Description			
	-			
AA-72	Percentage of HFI and SVC switching frequency			
	Address:	0xAA48	Effective mode:	-
	Min.:	0	Unit:	\%
	Max.:	30	Data type:	Ulnt16
	Default:	10	Change:	Changeable at any time
	Value Range:			
	0\% to 30\%			
	Description			
	-			
AA-73	Observer parameter			
	Address:	0xAA49	Effective mode:	-
	Min.:	10	Unit:	-
	Max.:	200	Data type:	Ulnt16
	Default:	100	Change:	Changeable at any time
	Value Range:			
	10 to 200			
	Description			
AA-74	Speed filter cut-off frequency			
	Address:	0xAA4A	Effective mode:	-
	Min.:	1	Unit:	Hz
	Max.:	200	Data type:	Ulnt16
	Default:	10	Change:	Changeable at any time
	Value Range:			
	1 Hz to 200 Hz			
	Description			
AA-75	Carrier frequency during NS auto-tuning			
	Address:	0xAA4B	Effective mode:	-
	Min.:	2.00	Unit:	Hz
	Max.:	16.00	Data type:	Ulnt16
	Default:	8.00	Change:	Changeable at any time
	Value Range:			

2.00 Hz to 16.00 Hz

Description

AA-76 Automatic calculation of NS auto-tuning voltage

Address:	0xAA4C	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time
Value Range:			
0 to 1			
Description			

AA-77 Percentage of NS auto-tuning voltage set manually
Address: 0xAA4D

Effective mode: -
Min.: $0 \quad$ Unit:

Max.: 100
Default: 10
Value Range:
0\% to 100\%
Description

AA-78 Duration of HFI stage 1
Address: 0xAA4E
Min.: 50
Max.: 500
Default: 150
Value Range:
50 ms to 500 ms
Description

AA-80 Speed loop command word
Address: 0xAA50 Effective mode: -
Min.: $0 \quad$ Unit:
Max.: 65535
Default: 11
Value Range:
Description

Effective mode:
Unit: ms
Data type: Ulnt16
Change: Changeable at any time

Bit00: Speed loop
0 : Disabled
1: Enabled
Bit01: Integration mode
0 : Conventional integration
1: Position integration
Bit02: Acceleration torque
0 : Disabled
1: Enabled
Bit03-Bit04: Acceleration source
0 : Function transfer torque
1: Automatic calculation
2: Function transfer acceleration
Bit05: Anti-load disturbance
0: Disabled
1: Enabled
Description

AA-81 Locked-rotor fast integral cancel coefficient

Address: 0xAA51
Min.: 0.0
Max.: 100.0
Default: 0.0
Value Range:
0.0\% to +100.0\%

Description

AA-82 Integral torque

Address: 0xAA52
Min.: -100
Max.: $\quad 100.0$
Default: 0.0
Value Range:
-100\% to +100.0\%
Description

AA-83 Speed controller frequency window size

Address:	0xAA53	Effective mode:	
Min.:	0.00	Unit:	Hz
Max.:	10.00	Data type:	UInt16
Default:	0.00	Change:	Changeable only at stop

Value Range:
0.00 Hz to 10.00 Hz

Description

AA-84 Current filter time for torque reference

Address:	0xAA54	Effective mode:	
Min.:	0.0	Unit:	ms
Max.:	100.0	Data type:	Ulnt16
Default: 0.0	Change:	Changeable only at stop	
Value Range:			
0.0 ms to 100.0 ms			
Description			

AA-85 Acceleration torque

Address:	0xAA55	Effective mode:	-
Min.:	0	Unit:	-
Max.:	8	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 : Inactive
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

AA-87 Reference model bandwidth

Address:	$0 \times$ AA57
Min.:	0.00
Max.:	300.00
Default:	0.00

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0.00 Hz to 300.00 Hz

Description

AA-88 Torque feedforward coefficient

Address:	$0 x A A 58$
Min.:	0.0
Max.:	1000.0
Default:	100.0

Value Range:

0.0\% to 1000.0\%

Description

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

AA-89 Vector control reference frequency filter time

> Address: 0xAA59

Effective mode:

Min.:	0.0	Unit:	ms
Max.:	100.0	Data type:	Ulnt16
Default: 0.0	Change:	Changeable only at stop	
Value Range:			
0.0 ms to 100.0 ms			
Description			

AA-90 Vector control feedback frequency filter time

Address: 0xAA5A

Min.: 0.0
Max.: $\quad 100.0$
Default: 0.0
Value Range:
0.0 ms to 100.0 ms

Description

AA-91 Load observation bandwidth

Address:	0xAA5B	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	300.00	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:
0.00 Hz to 300.00 Hz

Description

AA-92 Load observation coefficient

Address:	0xAA5C	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	1000.0	Data type:	Ulnt16
Default:	100.0	Change:	Changeable at any time

Value Range:
0.0\% to 1000.0\%

Description

AA-93 Pseudo integral coefficient

Address:	$0 x A A 5 D$
Min.:	0.000
Max.:	10.000
Default:	1.000

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0.000 to 10.000

Description

AA-94 Torque coefficient enable

Address:	$0 x A A 5 E$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16

Default: 0
Change:
Changeable at any time

Value Range:
0: Disabled
1: Enabled
Description

AA-96 Center frequency of notch filter 1

Address:	$0 x A A 60$	Effective mode:	-
Min.:	0.0	Unit:	-
Max.:	4000.0	Data type:	Ulnt16
Default:	4000.0	Change:	Changeable at any time

Value Range:

0.0 to 4000.0

Description

AA-97 Center frequency of notch filter 2

Address:	$0 x A A 61$
Min.:	0.0
Max.:	4000.0
Default:	4000.0

Value Range:

0.0 to 4000.0

Description

AA-98 Integral setting control word

Address: 0xAA62
Min.: $\quad 0$
Max.: 1
Default: 0
Value Range:
0 : Disabled
1: Enabled
Others: B connector
Description

AA-99 Integral reference source
Address: 0xAA63
Effective mode:
Min.: 0
Max.: 8
Default: 0
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Unit:
Data type: Ulnt16
Change: Changeable at any time

0: Digital setting
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

4.27 AB: Motor Control Parameters 1

AB-00 Externally transferred acceleration
Address: $0 \times A B 00$
Min.: $\quad 0$
Max.: 8
Default: 0
Value Range:
0 : Inactive
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

AB-03 Overturning torque limiting coefficient
Address: 0xAB03
Min.: 0.0
Max.: $\quad 400.0$
Default: 100.0
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:
0.0\% to 400.0\%

Description

AB-04 Motoring power limiting coefficient
Address: 0xAB04
Min.: 0.0
Max.: 400.0

Effective mode: -
Unit: \%
Data type: Ulnt16

Default: 400.0
Value Range:
0.0\% to 400.0\%

Description

AB-05 Generating power limiting coefficient
Address: 0xAB05
Min.: $\quad 0.0$
Max.: 400.0
Default: 400.0
Value Range:
0.0\% to 400.0\%

Description

AB-06 Overspeed limiting enable
Address: 0xAB06

Min.: 0
Max.: $\quad 1$
Default: 1
Value Range:
0 to 1
Description

AB-07 Sine wave frequency of bandwidth test
Address: 0xAB07
Min.: 0
Max.: 1000
Default: 0
Value Range:
0 Hz to 1000 Hz
Description

AB-08 Sine wave amplitude of bandwidth test
Address: 0xAB08
Min.: 0
Max.: 100
Default: 0
Value Range:
0\% to 100\%
Description

Change: Changeable at any time

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Changeable at any time

AB-09 Bandwidth test enable
Address: 0xAB09
Min.: 0
Max.: 4
Default: 0
Value Range:

```
0 to 4
Description
```

AB-11 Speed loop parameter calculation mode

Address:	$0 \times A B 0 B$	Effective mode:	-
Min.:	0	Unit:	-
Max.: 1	Data type:	Ulnt16	
Default: 1	Change:	Changeable only at stop	
Value Range:			
0: New solution			
1: Compatible solution			
Description			

AB-12 Speed loop proportional gain in FVC mode

Address: $0 \times A B O C$
Min.: $\quad 0.00$
Max.: $\quad 100.00$
Default: 8.00
Value Range:
0.00 Hz to 100.00 Hz

Description

AB-13 Speed loop integral time in FVC mode
Address: 0xAB0D
Min.: 0.000
Max.: $\quad 20.000$
Default: 0.080
Value Range:
0.000 s to 20.000 s

Description

AB-14 Speed loop proportional gain in SVC mode
Address: $0 x A B 0 E$
Min.: $\quad 0.00$
Max.: $\quad 100.00$
Default: 5.00
Value Range:
0.00 Hz to 100.00 Hz

Description

AB-15 Speed loop integral time in SVC mode

Address:	$0 \times A B 0 F$
Min.:	0.000
Max.:	20.000
Default:	0.127

Value Range:

Effective mode: -
Unit: $\quad \mathrm{Hz}$

Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit: \quad s
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: s

Data type: Ulnt16
Change: Changeable at any time

0.000 s to 20.000 s

Description

AB-16 Low frequency proportional correction coefficient

Address:	$0 x A B 10$	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	1000.0	Data type:	Ulnt16
Default:	100.0	Change:	Changeable at any time

Value Range:
0.0\% to 1000.0\%

Description

AB-17 Low frequency integral correction coefficient

Address:	$0 x A B 11$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	1000.0	Data type:	Ulnt16
Default:	100.0	Change:	Changeable at any time

Value Range:
0.0\% to 1000.0\%

Description

AB-18 Speed loop adaption factor

Address:	$0 x A B 12$	Effective mode:	-
Min.:	0.000	Unit:	-
Max.:	10.000	Data type:	Ulnt16
Default:	0.200	Change:	Changeable at any time

Value Range:

0.000 to 10.000

Description

AB-19 Speed loop adaption switchover lower limit

Address:	$0 x A B 13$	Effective mode:	-
Min.:	0.000	Unit:	-
Max.:	10.000	Data type:	Ulnt16
Default:	0.400	Change:	Changeable at any time

Value Range:
0.000 to 10.000

Description

AB-20 Speed loop adaption switchover upper limit
Address: 0xAB14 Effective mode: -
Min.: $0.000 \quad$ Unit

Max.: $\quad 10.000$
Default: 1.000
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.000 to 10.000

Description

AB-21 Speed loop adaption correction upper limit
Address: 0xAB15 Effective mode: -
Min.: $0.0 \quad$ Unit: $\%$

Max.: $1000.0 \quad$ Data type: Ulnt16
Default: 100.0
Change: Changeable at any time
Value Range:
0.0\% to 1000.0\%

Description

AB-22 Speed loop adaption correction lower limit
Address: 0xAB16 Effective mode: -

Min.: $\quad 0.0$
Max.: 1000.0
Default: 100.0
Unit: $\%$

Data type: Ulnt16
Change: Changeable at any time

Value Range:

0.0\% to 1000.0\%

Description

AB-23 Flux adaptation enable
Address: 0xAB17
Min.: 0
Max.: $\quad 1$
Default: 0

Value Range:

0 to 1
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

AB-24 Overspeed controller correction coefficient
Address: 0xAB18

Min.: 0.0
Max.: $\quad 1000.0$
Default: 100.0

Value Range:

0.0\% to 1000.0\%

Description

AB-25 VDC control command word

Address:	0xAB19	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Bit00: VdcMin
0: Disabled
1: Enabled
Bit01: VdcMax
0: Disabled
1: Enabled
Bit02: Automatic calculation of VDC trigger voltage
0 : Disabled
1: Enabled
Bit03: VDC control integral action
0: Disabled
1: Enabled
Description

AB-26 Bus capacitance ratio

Address:	0xAB1A	Effective mode:	-
Min.:	50.0	Unit:	$\%$
Max.:	1000.0	Data type:	Ulnt16
Default:	100.0	Change:	Changeable at any time

Value Range:
50.0\% to 1000.0\%

Description

AB-27 Undervoltage suppression exit hysteresis frequency
Address: 0xAB1B
Min.: $\quad 0.00$
Max.: $\quad 10.00$
Default: 3.00
Value Range:
0.00 Hz to 10.00 Hz

Description

AB-28 Minimum VDC failure speed threshold

Address:	0xAB1C	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	20.00	Data type:	Ulnt16
Default:	2.00	Change:	Changeable at any time

Value Range:
0.00 Hz to 20.00 Hz

Description

AB-29 Dynamic adjustment coefficient

Address:	0xAB1D	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	1000.0	Data type:	Ulnt16
Default:	100.0	Change:	Changeable at any time

Value Range:

0.0\% to 1000.0\%

Description

AB-30 Minimum VDC activation voltage
Address: 0xAB1E
Min.: 320.0
Max.: $\quad 540.0$
Default: 430.0
Value Range:
320.0 V to 540.0 V

Description

AB-31 Maximum VDC activation voltage
Address: 0xAB1F
Min.: 650.0
Max.: 800.0
Default: 770.0
Value Range:
650.0 V to 800.0 V

Description

AB-32 Flux linkage control command word
Address: 0xAB20
Min.: 0
Max.: 65535
Default: 2357
Value Range:

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Bit00: Output voltage limit calculation filtering mode
0 : Symmetric filtering
1: Asymmetric filtering
Bit01: Asynchronous motor inverse proportion curve calculation
0 : The inverse proportional synchronization frequency decreases.
1: The inverse proportional speed decreases.
Bit02: Flux linkage feedforward calculation by using inverse proportional speed
0: Disabled
1: Enabled
Bit03: Reserved
Bit04: Reserved
Bit05: Field weakening adjustment
0: Disabled
1: Enabled
Bit06: Flux linkage derivative feedforward
0: Disabled
1: Enabled
Bit07: Energy conservation control
0 : Disabled
1: Enabled
Bit08: Asynchronous motor flux closed loop
0: Disabled
1: Enabled
Bit09: Reserved
Bit10: Reserved
Bit11: Asynchronous motor pre-excitation mode
0 : Pre-excitation based on time
1: Pre-excitation based on current
Bit12: Asynchronous motor pre-excitation current
0: Reference current
1: Maximum current allowed by the drive

Description

Bit00: Output voltage limit calculation filtering mode
0 indicates the usual first-order filtering, and 1 indicates filtering when the bus voltage rises and no filtering when it falls, so as to avoid overmodulation.

Bit01: Asynchronous motor inverse proportion curve calculation
You can select 1 to deliberately lower the break frequency to avoid saturation in the field-weakening range. The setting is valid only when Bit02 is set to 1 .
Bit02: Flux linkage feedforward calculation by using inverse proportional speed
If it is set to 1 , the inverse proportional speed of flux linkage reference decreases when the output
frequency exceeds the break frequency, which can improve dynamic response during acceleration.
Bit05: Field weakening adjustment
When it is set to 1 , voltage outer loop adjustment is valid.
Bit07: Energy conservation control
This function is valid for asynchronous motors. It can reduce copper loss at light load in vector control mode.
Bit11: Asynchronous motor pre-excitation mode

0 : Pre-excitation is implemented according to the set time. The time will be shorter than the set time if remanence exists.
1: Fixed current is output during the pre-excitation process, and the motor exits the pre-excitation mode when it detects that the flux linkage reaches the setpoint.
Bit12: Asynchronous motor pre-excitation current
0 : Pre-excitation is implemented based on the current defined by AB-51.
1: Pre-excitation is implemented based on the maximum current allowed by the drive, which can shorten the pre-excitation time.

AB-33 Output voltage upper limit margin for field weakening adjustment

Address: 0xAB21
Min.: 1
Max.: 50
Default: 5
Value Range:
1\% to 50\%
Description
Decreasing the setpoint can improve voltage utilization. The current is smaller under the same load in the field weakening region. However, an excessively small setpoint will affect dynamic performance.

AB-34 Output voltage upper limit margin for auto adjustment of field weakening
Address: 0xAB22
Min.: $\quad 1$
Max.: $\quad 20$
Default: 3
Value Range:
1\% to 20\%
Description
When F2-18 is set to 2 (calculation+auto adjustment), the value of this parameter affects the voltage margin, and the effect is similar to that of AB-33.

AB-35 Filter time for calculating maximum output voltage

Address:	$0 x A B 23$	Effective mode:	-
Min.:	0	Unit:	ms
Max.:	3000	Data type:	Ulnt16
Default:	30	Change:	Changeable at any time

Defaut. 30
Value Range:
0 ms to 3000 ms

Description

Increasing the filter time allows the maximum output voltage to change slowly but affects voltage utilization.

AB-36 Rated flux adjustment coefficient for calculation

Address:	$0 \times A B 24$	Effective mode:	
Min.:	0.5	Unit:	-
Max.:	2.0	Data type:	Ulnt16
Default:	1.0	Change:	Changeable at any time

Value Range:
0.5 to 2.0

Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Description

You can decrease the value of this parameter if underexcitation is required, or increase it if overexcitation is required.

AB-37 Field weakening frequency adjustment coefficient for calculation
Address: 0xAB25
Min.: 0.8
Max.: $1.2 \quad$ Data type: Ulnt16
Default: $1.0 \quad$ Change: Changeable at any time
Value Range:
0.8 to 1.2

Description
This parameter is used to adjust the break frequency calculated automatically by the AC drive. After flux linkage feedforward calculation by using inverse proportional speed is enabled, deceasing the value of this parameter enables the motor to enter the field weakening state in advance, which is applicable to occasions with short acceleration time and high dynamic response requirements.

AB-38 Slip filter time for calculating field weakening frequency

Address: 0xAB26
Min.: $0 \quad$ Unit: ms
Max.: 3000 Data type: Ulnt16
Default: 62 Change: Changeable at any time
Value Range:
0 ms to 3000 ms

Description

When flux linkage feedforward calculation by using inverse proportional speed is enabled, increasing the value of this parameter can reduce the fluctuation range of the calculated reference flux linkage.

AB-39 Feedback speed filtering

Address: 0xAB27 Effective mode: -
Min.: 0 Unit: ms
Max.: 8000 Data type: Ulnt16
Default: 50
Value Range:
0 ms to 8000 ms
Description
When flux linkage feedforward calculation by using inverse proportional speed is enabled, increasing the value of this parameter can reduce the disturbance to the calculated flux linkage feedforward introduced by speed test.

AB-40 Flux linkage rising filter time
Address: 0xAB28 Effective mode: -
Min.: $0 \quad$ Unit: ms
Max.: 8000 Data type: Ulnt16
Default: 20 Change: Changeable at any time
Value Range:
0 ms to 8000 ms
Description
When flux linkage feedforward calculation by using inverse proportional speed is enabled, this parameter defines the filter time of the asymmetric filter that takes effect only when the reference flux linkage increases.

AB-45 Flux linkage derivative feedforward coefficient
Address: 0xAB2D
Effective mode: -
Min.: $\quad 0.0$
Max.: $\quad 1.5$
Default: 1.0
Value Range:
0.0 to 1.5

Description

When flux linkage derivative feedforward of an asynchronous motor is enabled, this parameter can adjust the ratio of effective feedforward. A smaller value indicates smaller feedforward effect.

AB-46 Flux linkage derivative feedforward filter time
Address: 0xAB2E Effective mode: -
Min.: $0 \quad$ Unit: ms
Max.: $3000 \quad$ Data type: Ulnt16
Default: 6 Change: Changeable at any time
Value Range:

0 ms to 3000 ms

Description

Increasing the filter time can reduce the fluctuation of the calculated feedforward value.

AB-47 Torque current rising filter time under energy conservation control

Address: 0xAB2F Effective mode:
Min.: 0 Unit: ms

Max.: 3000
Data type: Ulnt16
Default: 50
Change: Changeable at any time
Value Range:
0 ms to 3000 ms

Description

When energy conservation control of an asynchronous motor is enabled, decreasing the value of this parameter can improve dynamic response and avoid a large drop in speed when a sudden load is applied. You need to increase this value when the output current fluctuates greatly.

AB-48 Torque current falling filter time under energy conservation control
Address: 0xAB30
Min.: 0
Max.: 3000
Default: 100
Value Range:
0 ms to 3000 ms
Description
When energy conservation control of an asynchronous motor is enabled, decreasing the value of this parameter can make the output current decrease rapidly after the load is reduced. You need to increase this value when the output current fluctuates greatly.

AB-49 Flux linkage lower limit coefficient under energy conservation control

Address: 0xAB31
Min.: $\quad 0.00$
Max.: $\quad 0.50$
Default: 0.10

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:
0.00 to 0.50

Description
This parameter defines the minimum flux linkage allowed under energy conservation control. A smaller value indicates more significant energy conservation effect when no load is applied, but it will affect dynamic response after the load is added.

AB-51 Pre-excitation current
Address: 0xAB33 Effective mode: -
Min.: $1 \quad$ Unit:
Max.: 200 Data type: Ulnt16
Default: $100 \quad$ Change: Changeable at any time
Value Range:
1\% to 200\%
Description
When pre-excitation of an asynchronous motor is implemented based on current, this parameter defines the reference excitation current as a percentage of the rated current.

AB-52

AB-53 Flux linkage closed-loop bandwidth frequency
Address: 0xAB35 Effective mode: -
Min.: 0.0 Unit: Hz
Max.: $100.0 \quad$ Data type: Ulnt16

Default: 2.0

Value Range:

0.0 Hz to 100.0 Hz

Description

When flux closed loop is enabled, increasing the setpoint can reduce the deviation of the flux linkage from the rated value during dynamic processes such as sudden load or acceleration and deceleration of the asynchronous motor.

AB-54 Feedback flux linkage filter time coefficient

Address: 0xAB36 Effective mode: -
Min.: $0 \quad$ Unit: -
Max.: 200 Data type: Ulnt16
Default: 4 Change: Changeable at any time
Value Range:
0 to 200
Description
When flux closed loop is enabled, increasing the setpoint can reduce fluctuation of the reference flux linkage. It is a percentage relative to the rotor time constant.

AB-55 Static output flux linkage filter time

Address:	$0 x A B 37$	Effective mode:	ms
Min.:	0	Unit:	ms
Max.:	5000	Data type:	Ulnt16
Default:	10	Change:	Changeable at any time

Value Range:
0 ms to 5000 ms
Description
Increasing the setpoint can reduce fluctuation of the reference flux linkage.

AB-56 Current loop mode
Address: 0xAB38 Effective mode: -
Min.: $0 \quad$ Unit: -
Max.: 3 Data type: Ulnt16
Default: 1 Change: Changeable only at stop
Value Range:
0: ImCsr2 mode
1: Complex vector mode
2: 880 mode
3: No field weakening
Description
Decreasing the value of this parameter can enhance current loop following but also increase theovershoot and harmonics of the output current.
AB-57 PI regulator proportional gain adaptation with load

Address:	$0 \times A B 39$	Effective mode:	
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0: Disabled
1: Enabled
Description
AB-58 Current loop damping
Address: 0xAB3A Effective mode:
Min.: 0.2 Unit: -
Max.: $5.0 \quad$ Data type: Ulnt16
Default: $0.8 \quad$ Change: Changeable at any time
Value Range:
0.2 to 5.0
Description
Decreasing the value of this parameter can enhance current loop following but also increase theovershoot and harmonics of the output current.
AB-59 Low-speed current loop Kp adjustment

Address:	$0 \times A B 3 B$	Effective mode:	-
Min.:	0.1	Unit:	-
Max.:	10.0	Data type:	Ulnt16
Default:	1.0	Change:	Changeable at any time

Value Range:
0.1 to 10.0
DescriptionThe AC drive automatically calculates the current loop gain based on motor parameters. You candecrease the value of this parameter as appropriate when low-speed current oscillation or torquefluctuation is large.
AB-60 High-speed current loop Kp adjustment
Address: 0xAB3C Effective mode: -
Min.: $0.1 \quad$ Unit: -
Max.: $10.0 \quad$ Data type: Ulnt16
Default: $1.0 \quad$ Change: Changeable at any time
Value Range:
0.1 to 10.0

Description

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.

AB-61 Low-speed current loop Ki adjustment
Address: 0xAB3D Effective mode:
Min.: $\quad 0.1$
Max.: $\quad 10.0$
Default: 1.0

Unit:	-
Data type:	Ulnt16
Change:	Changeable at any time

Value Range:
0.1 to 10.0

Description

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.

AB-62 High-speed current loop Ki adjustment
Address: 0xAB3E Effective mode: -
Min.: 0.1 Unit: -

Max.: 10.0 Data type: Ulnt16
Default: $2.0 \quad$ Change: Changeable at any time

Value Range:

0.1 to 10.0

Description

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.

AB-63 D-axis current loop complex vector adjustment

Address: 0xAB3F
Min.: 0.1
Max.: $\quad 10.0$
Default: 1.0
Value Range:
0.1 to 10.0

Description

AB-64 $\quad \mathrm{Q}$-axis current loop complex vector adjustment
Address: 0xAB40

Min.: 0.1
Max.: $\quad 10.0$
Default: 1.0

Value Range:

0.1 to 10.0

Description

AB-65 Complex vector hysteresis frequency lower limit as a percentage of rated frequency
Address: 0xAB41
Effective mode:

Min.:	0	Unit:	$\%$
Max.:	AB-66	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
0\% to $A B-66$			
Description			

AB-66 Complex vector hysteresis frequency upper limit as a percentage of rated frequency
Address: 0xAB42 Effective mode: -
Min.: AB-65 Unit: \%
Max.: $150 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time

Value Range:
AB-65 to 150\%
Description

AB-67 ImCsr2 hysteresis switchover voltage upper limit as a percentage of saturation voltage
Address: 0xAB43 Effective mode: -

Min.: AB-68 Unit: \%
Max.: 95 Data type: Ulnt16
Default: 89 Change: Changeable at any time
Value Range:
AB-68 to 95\%
Description

AB-68 ImCsr2 hysteresis switchover voltage lower limit as a percentage of saturation voltage
Address: 0xAB44 Effective mode: -
Min.: $60 \quad$ Unit:
Max.: AB-67 Data type: Ulnt16
Default: 79 Change: Changeable at any time
Value Range:
60\% to AB-67
Description

AB-69 ImCsr2 hysteresis switchover frequency hysteresis range as a percentage of rated frequency
Address: 0xAB45 Effective mode:
Min.: 1 Unit:
Max.: $30 \quad$ Data type: Ulnt16
Default: 10 Change: Changeable at any time
Value Range:
1\% to 30\%
Description

AB-70 ImCsr2 hysteresis switchover frequency lower limit (below which the hysteresis condition does not take effect) as a percentage of the rated frequency
Address: 0xAB46
Effective mode:

Min.:	40	Unit:	\%
Max.:	80	Data type:	Ulnt16
Default:	60	Change:	Changeable at any time
Value Range:			
40\% to 80%			
Description			

AB-71 ImCsr2 current loop Kss adjustment
Address: 0xAB47 Effective mode: -
Min.: 0.1
Max.: 10.0
Default: 1.0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.1 to 10.0

Description

AB-72 Proportional gain adjustment coefficient corresponding to the maximum torque when proportional gain is adjusted with load

Address:	$0 \times A B 48$	Effective mode:	-
Min.:	0.1	Unit:	-
Max.:	1.0	Data type:	Ulnt16
Default:	0.5	Change:	Changeable at any time

Value Range:
0.1 to 1.0

Description

AB-73 Torque upper limit setpoint as a percentage of rated torque when proportional gain is adjusted with load
Address: 0xAB49 Effective mode: -
Min.: AB-74 Unit: \%
Max.: $300 \quad$ Data type: Ulnt16
Default: 200 Change: Changeable at any time
Value Range:
AB-74 to 300\%
Description

AB-74 Torque lower limit setpoint as a percentage of rated torque when proportional gain is adjusted with load
Address: $0 x A B 4 A \quad$ Effective mode: -
Min.: 10 Unit:
Max.: AB-73 Data type: Ulnt16
Default: $100 \quad$ Change: Changeable at any time
Value Range:
10\% to AB-73
Description

AB-75 Derivative feedforward adjustment

Address:	$0 x A B 4 B$	Effective mode:	-
Min.:	0.0	Unit:	-
Max.:	1.0	Data type:	Ulnt16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
0.0 to 1.0			
Description			

AB-76 Decoupling control start frequency as a percentage of rated frequency
Address: 0xAB4C
Min.: 20
Max.: 150
Effective mode: -
Unit: \%

Default: 40
Data type: Ulnt16
Change: Changeable at any time
Value Range:
20\% to 150\%
Description

AB-77 Decoupling control filter time adjustment coefficient
Address: 0xAB4D

Max.: $3.0 \quad$ Data type: Ulnt16
Default: $1.0 \quad$ Change: Changeable at any time
Value Range:
0.1 to 3.0

Description

AB-78 Decoupling control output adjustment coefficient
Address: 0xAB4E
Min.: 0.0
Max.: $\quad 1.0$
Default: 1.0
Effective mode:
Unit:
Data type: Ulnt16

Value Range:
0.0 to 1.0

Description

AB-79 CPC feedforward enable
Address: 0xAB4F
Min.: $\quad 0$
Max.: $\quad 1$
Default: 0
Change: Changeable at any time

Value Range:

0: Disabled
1: Enabled
Description

AB-80 Current loop auxiliary command word

Address:	0xAB50	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
Bit00: Complex vector angle limiting
0 : Disabled
1: Enabled
Bit01: Voltage angle limiting
0: Program internal limiting
1: Parameter setting
Bit02: 0 by default
0 : No lower limit on the excitation current is imposed during the dynamic process.
1: A lower limit on the excitation current is imposed during the dynamic process in ImCsr2 mode.
Bit03-Bit15: Reserved (0 by default)
Description

AB-81 Voltage angle upper limit

Address: 0xAB51
Min.: 90
Max.: 180
Default: 150
Value Range:
90° to 180°
Description

AB-82 Voltage angle lower limit
Address: 0xAB52
Min.: 0
Max.: 90
Default: 30
Value Range:
0° to 90°

Description

AB-83 Asynchronous motor D axis integral limit

Address:	0xAB53	Effective mode:	-
Min.:	0.500	Unit:	-
Max.:	1.000	Data type:	Ulnt16
Default:	0.707	Change:	Changeable at any time

Value Range:
0.500 to 1.000

Description

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

AB-84 Current loop carrier frequency upper limit

Address: 0xAB54
Min.: 5.0
Max.: 16.0
Default: 8.0
Value Range:
5.0 to 16.0

Description

AB-85 Droop enable
Address: 0xAB55
Min.: 0
Max.: 1
Default: 0
Value Range:
0 to 1
Description

AB-86 Droop source

Address: 0xAB56
Min.: 0
Max.: 3
Default: 1
Value Range:
0: Line current
1: Torque reference
2: Speed adjustment output
3: Speed adjustment integral component
Description

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

AB-87 Frequency reference droop coefficient
Address: 0xAB57
Min.: 0.0
Max.: 50.0
Default: 0.0
Value Range:
0.0\% to 50.0\%

Description

AB-88 FVC-SVC switchover mode
Address: 0xAB58 Effective mode:
Min.: 0
Max.: 3
Default: 0
Value Range:

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Unit:
Data type: Ulnt16
Change: Changeable only at stop

0: No switchover
1: Active switchover
2: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during stop and does not switch back to FVC mode when the encoder recovers during running.)
3: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during running or stop.)

Description

AB-89 FVC-SVC switchover frequency

Address:	0xAB59	Effective mode:	
Min.:	10	Unit:	$\%$
Max.:	500	Data type:	Ulnt16
Default:	50	Change:	Changeable only at stop

Value Range:

10\% to 500\%

Description

AB-90 FVC-SVC switchover hysteresis

Address:	0xAB5A	Effective mode:	
Min.:	10	Unit:	$\%$
Max.:	100	Data type:	Ulnt16
Default: 10	Change:	Changeable only at stop	
Value Range:			
10\% to 100\%			
Description			

4.28 AC: AI/AO Correction Parameters

AC-00 Al1 measured voltage 1

Address:	0xAC00	Effective mode:	-
Min.:	-10	Unit:	V
Max.:	10.000	Data type:	Int16
Default:	2.000	Change:	Changeable only at stop

Value Range:
-10 V to +10.000 V
Description

AC-01 Al1 displayed voltage 1

Address:	0xAC01	Effective mode:	V
Min.:	-10	Unit:	V
Max.:	10.000	Data type:	Int16
Default:	2.000	Change:	Changeable only at stop

Value Range:

-10 V to +10.000 V

Description

AC-02 Al1 measured voltage 2

Address:	$0 x A C 02$
Min.:	-10
Max.:	10.000
Default:	8.000

Value Range: -10 V to +10.000 V

Description

AC-03 Al1 displayed voltage 2

Address:	$0 x A C 03$
Min.:	-10
Max.:	10.000
Default:	8.000

Value Range:

-10 V to +10.000 V

Description

AC-04 Al2 measured voltage 1

Address: 0xAC04

Min.: $\quad-10$
Max.: $\quad 10.000$
Default: 2.000
Value Range:
-10 V to +10.000 V
Description

AC-05 AI2 displayed voltage 1
Address: 0xAC05
Min.: $\quad-10$
Max.: $\quad 10.000$
Default: 2.000
Value Range:
-10 V to +10.000 V
Description

AC-06 AI2 measured voltage 2
Address: 0xAC06
Min.: $\quad-10$
Max.: $\quad 10.000$
Default: 8.000
Value Range:
-10 V to +10.000 V
Description

Effective mode:
Unit: V
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: V
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: V
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: V
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: V
Data type: Int16
Change: Changeable only at stop

AC-07 Al2 displayed voltage 2

Address:	0xAC07	Effective mode:	
Min.:	-10	Unit:	V
Max.:	10.000	Data type:	Int16
Default: 8.000	Change:	Changeable only at stop	
Value Range:			
-10 V to +10.000 V			
Description			

AC-08 Al3 measured voltage 1

Address:	$0 x A C 08$
Min.:	-10
Max.:	10.000
Default:	2.000

Value Range:

-10 V to +10.000 V
Description

AC-09 Al3 displayed voltage 1

Address: 0xAC09
Min.: $\quad-10$
Max.: $\quad 10.000$
Default: 2.000
Value Range:
-10 V to +10.000 V
Description

AC-10 Al3 measured voltage 2

Address: 0xACOA
Min.: $\quad-10$
Max.: $\quad 10.000$
Default: 8.000
Value Range:
-10 V to +10.000 V
Description

AC-11 Al3 displayed voltage 2

Address:	$0 x A C O B$
Min.:	-10
Max.:	10.000
Default:	8.000

Value Range:
-10 V to +10.000 V
Description

AC-12 AO1 target voltage 1
Address: 0xACOC

Effective mode:
Unit: V
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: V
Data type: Int16
Change: Changeable only at stop

Effective mode:

Min.:	-10
Max.:	10.000
Default:	2.000

Value Range: -10 V to +10.000 V
Description

-

AC-13 AO1 measured voltage 1

Address:	$0 x A C 0 D$
Min.:	-10
Max.:	10.000
Default:	2.000

Value Range: -10 V to +10.000 V
Description

AC-14 AO1 target voltage 2
Address: 0xAC0E
Min.: $\quad-10$
Max.: $\quad 10.000$
Default: 8.000
Value Range:
-10 V to +10.000 V
Description

AC-15 AO1 measured voltage 2

Address:	$0 x A C 0 F$
Min.:	-10
Max.:	10.000
Default:	8.000

Value Range:
-10 V to +10.000 V
Description

AC-16 AO2 target voltage 1

Address: 0xAC10
Min.: $\quad-10$
Max.: $\quad 10.000$
Default: 2.000
Value Range:
-10 V to +10.000 V
Description

AC-17 AO2 measured voltage 1

Address:	$0 x A C 11$
Min.:	-10
Max.:	10.000

Unit:	V
Data type:	Int16
Change:	Changeable only at stop

```
Effective mode:
Unit: V
Data type: Int16
Change: Changeable only at stop
```

Effective mode:
Unit: V
Data type: Int16
Change:
Changeable only at stop

Effective mode:
Unit: V
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: V
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: V
Data type: Int16

Default: 2.000

Value Range: -10 V to +10.000 V
Description

AC-18 AO2 target voltage 2

Address:	$0 x A C 12$
Min.:	-10
Max.:	10.000
Default:	8.000

Value Range:
-10 V to +10.000 V
Description

AC-19 AO2 measured voltage 2

Address:	$0 x A C 13$
Min.:	-10
Max.:	10.000
Default:	8.000

Value Range:
-10 V to +10.000 V
Description

Change: Changeable only at stop

Effective mode:
Unit: V
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: V
Data type: Int16
Change: Changeable only at stop

4.29 AF: Process Data Address Mapping Parameters

AF-00 RPDO1-SubIndex0-H

Address: 0xAF00
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-01 RPDO1-SubIndex0-L
Address: 0xAF01
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Address:	$0 \times A F 01$
Min.:	0×0
Max.:	$0 \times F F F F$
Default:	0×0

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

AF-02 RPDO1-SubIndex1-H
Address: 0xAF02 Effective mode:

	Min.:	0×0	Unit:	
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value Ra			
	0×0 to 0x			
	Descript			
	des			
AF-03	RPD01-S	Index1-L		
	Address:	0xAF03	Effective mode:	-
	Min.:	0×0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value Ra			
	0×0 to 0x			
	Descript			
	-			
AF-04	RPDO1-S	Index2-H		
	Address:	0xAF04	Effective mode:	-
	Min.:	0×0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value Ra			
	0x0 to 0x			
	Descript			
AF-05	RPD01-S	Index2-L		
	Address:	0xAF05	Effective mode:	-
	Min.:	0×0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value Ra			
	0x0 to 0x			
	Descript			
	-			
AF-06	RPDO1-S	Index3-H		
	Address:	0xAF06	Effective mode:	-
	Min.:		Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value Ra			
	0×0 to 0x			
	Descript			
AF-07	RPD01-S	Index3-L		
	Address:	0xAF07	Effective mode:	-
	Min.:	0×0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16

	Default: 0×0		Change:	Changeable at any time	
	Value Range:				
	0x0 to 0xFFFF				
	Description				
	-				
AF-08	RPDO2-SubIndex0-H				
	Address:	0xAF08		Effective mode:	
	Min.:	0x0		Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16	
	Default:	0x0	Change:	Changeable at any time	
	Value Range:				
	0x0 to 0xFFFF				
	Description				
	-				
AF-09	RPDO2-SubIndex0-L				
	Address:	0xAF09	Effective mode:	-	
	Min.:	0x0	Unit:	-	
	Max.:	0xFFFF	Data type:	Ulnt16	
	Default:	0x0	Change:	Changeable at any time	
	Value Range:				
	0x0 to 0xFFFF				
	Description				
AF-10	RPDO2-SubIndex1-H				
	Address:	0xAF0A	Effective mode:	-	
	Min.:	0x0	Unit:	-	
	Max.:	0xFFFF	Data type:	Ulnt16	
	Default:	0x0	Change:	Changeable at any time	
	Value Range:				
	0x0 to 0xFFFF				
	Description				
AF-11	RPDO2-SubIndex1-L				
	Address:	0xAF0B	Effective mode:	-	
	Min.:	0x0	Unit:	-	
	Max.:	0xFFFF	Data type:	Ulnt16	
	Default:	0x0	Change:	Changeable at any time	
	Value Range:				
	0x0 to 0xFFFF				
	Description				
	-				
AF-12	RPDO2-SubIndex2-H				
	Address:	OxAFOC	Effective mode:	-	
	Min.:	0x0	Unit:	-	
	Max.:	0xFFFF	Data type:	Ulnt16	
	Default:	0x0	Change:	Changeable at any time	

Value Range:

0x0 to 0xFFFF

Description

AF-13 RPDO2-SubIndex2-L
Address: 0xAFOD
Min.: $\quad 0 \times 0$
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-14 RPDO2-SubIndex3-H
Address: 0xAF0E
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-15 RPDO2-SubIndex3-L
Address: 0xAF0F
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-16 RPDO3-SubIndex0-H

Address: 0xAF10
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0×0 to 0xFFFF
Description

AF-17 RPDO3-SubIndex0-L

Address: 0xAF11
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

	Description		
AF-18	RPDO3-SubIndex1-H		
	Address: 0xAF12	Effective mode:	-
	Min.: 0×0	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: 0x0	Change:	Changeable at any time
	Value Range:		
	0x0 to 0xFFFF		
	Description		
AF-19	RPDO3-SubIndex1-L		
	Address: 0xAF13	Effective mode:	-
	Min.: 0×0	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: 0x0	Change:	Changeable at any time
	Value Range:		
	0x0 to 0xFFFF		
	Description		
AF-20	RPDO3-SubIndex2-H		
	Address: 0xAF14	Effective mode:	-
	Min.: 0×0	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: 0x0	Change:	Changeable at any time
	Value Range:		
	0x0 to 0xFFFF		
	Description		
AF-21	RPDO3-SubIndex2-L		
	Address: 0xAF15	Effective mode:	-
	Min.: 0×0	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: 0×0	Change:	Changeable at any time
	Value Range:		
	0x0 to 0xFFFF		
	Description		
AF-22	RPDO3-SubIndex3-H		
	Address: 0xAF16	Effective mode:	-
	Min.: 0×0	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: 0×0	Change:	Changeable at any time
	Value Range:		
	0x0 to 0xFFFF		
	Description		

AF-23

RPDO3-SubIndex3-L
Address: 0xAF17
Min.: 0×0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-24 RPDO4-SubIndex0-H
Address: 0xAF18
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Address: 0xAF19
Min.: 0x0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Address: 0xAF1A
Min.: 0x0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Address: 0xAF1B
Min.: 0x0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Sublndex2-H
Address: 0xAF1C
Effective mode:

	Min.:	0×0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value R			
	0×0 to 0x			
	Descrip			
	-			
AF-29	RPDO4-SubIndex2-L			
	Address:	0xAF1D	Effective mode:	-
	Min.:	0×0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value R			
	0×0 to 0x			
	Descrip			
AF-30	RPDO4-SubIndex3-H			
	Address:	0xAF1E	Effective mode:	-
	Min.:	0x0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value R			
	0×0 to 0x			
	Descrip			
	-			
AF-31	RPDO4-SubIndex3-L			
	Address:	0xAF1F	Effective mode:	-
	Min.:	0x0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0×0	Change:	Changeable at any time
	Value R			
	0×0 to 0x			
	Descript			
AF-32	TPDO1-SubIndexO-H			
	Address:	0xAF20	Effective mode:	-
	Min.:	0×0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value R			
	0×0 to 0x			
	Descript			
AF-33	TPDO1-SubIndexO-L			
	Address:	0xAF21	Effective mode:	-
	Min.:	0x0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16

Default: $0 \times 0 \quad$ Change: Changeable at any time
Value Range:
0x0 to 0xFFFF
Description

AF-34 TPDO1-SubIndex1-H

Address:	$0 \times A F 22$
Min.:	0×0
Max.:	$0 \times$ FFFF
Default:	0×0

Value Range:
0x0 to 0xFFFF
Description

AF-35 TPDO1-SubIndex1-L
Address: 0xAF23
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-36 TPDO1-SubIndex2-H
Address: 0xAF24
Min.: 0x0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description

AF-37 TPDO1-SubIndex2-L
Address: 0xAF25
Min.: 0×0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description

AF-38 TPDO1-SubIndex3-H
Address: 0xAF26
Min.: 0×0
Max.: 0xFFFF
Default: 0×0
Value Range:
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Changeable at any time

0x0 to 0xFFFF

Description

AF-39 TPDO1-SubIndex3-L

Address: 0xAF27

Min.: 0x0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description

AF-40 TPDO2-SubIndex0-H
Address: 0xAF28
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-41 TPDO2-SubIndex0-L

Address:	$0 \times A F 29$
Min.:	0×0
Max.:	$0 \times F F F F$
Default:	0×0

Value Range:
0x0 to 0xFFFF
Description

AF-42 TPDO2-SubIndex1-H
Address: 0xAF2A
Min.: $0 x 0$
Max.: 0xFFFF
Default: 0×0
Value Range:
0×0 to 0xFFFF
Description

AF-43 TPDO2-SubIndex1-L
Address: 0xAF2B
Min.: $0 x 0$
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF

```
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Description

AF-44	TPDO2-SubIndex2-H			
	Address:	0xAF2C	Effective mode:	-
	Min.:	0×0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value Range:			
	0x0 to 0xFFFF			
	Description			
	-			
AF-45	TPDO2-SubIndex2-L			
	Address:	0xAF2D	Effective mode:	-
	Min.:	0×0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value Range:			
	0x0 to 0xFFFF			
	Description			
	-			
AF-46	TPDO2-SubIndex3-H			
	Address:	0xAF2E	Effective mode:	-
	Min.:	0×0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value Range:			
	0x0 to 0xFFFF			
	Description			
	-			
AF-47	TPDO2-SubIndex3-L			
	Address:	0xAF2F	Effective mode:	-
	Min.:	0×0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value Ra			
	0x0 to 0x			
	Descript			
	-			
AF-48	TPDO3-SubIndex0-H			
	Address:	0xAF30	Effective mode:	-
	Min.:	0×0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value Range:			
	0x0 to 0xFFFF			
	Description			

AF-49 TPDO3-SubIndex0-L

Address:	0xAF31	Effective mode: -	
Min.:	0×0	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default: 0×0	Change:	Changeable at any time	
Value Range:			
0x0 to 0xFFFF			
Description			

AF-50 TPDO3-SubIndex1-H
Address: 0xAF32
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-51 TPDO3-SubIndex1-L
Address: 0xAF33
Min.: 0x0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description

AF-52 TPDO3-SubIndex2-H
Address: 0xAF34
Min.: 0x0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description

AF-53 TPDO3-SubIndex2-L
Address: 0xAF35
Min.: 0x0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description

AF-54 TPDO3-SubIndex3-H
Address: 0xAF36
Effective mode:

Min.:	$0 x 0$
Max.:	$0 x F F F F$
Default:	0×0

Value Range:
0x0 to 0xFFFF
Description

AF-55 TPDO3-SubIndex3-L
Address: 0xAF37
Min.: 0×0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description

AF-56 TPDO4-SubIndex0-H
Address: 0xAF38
Min.: 0×0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-57 TPDO4-SubIndex0-L
Address: 0xAF39
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-58 TPDO4-SubIndex1-H
Address: 0xAF3A
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-59 TPDO4-SubIndex1-L
Address: 0xAF3B
Min.: 0×0
Max.: 0xFFFF

```
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Effective mode: -
Unit:
Data type: Ulnt16

Default: 0x0 Change: Changeable at any time
Value Range:
0x0 to 0xFFFF
Description

AF-60 TPDO4-SubIndex2-H
Address: 0xAF3C
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-61 TPDO4-SubIndex2-L
Address: 0xAF3D
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-62 TPDO4-SubIndex3-H
Address: 0xAF3E
Min.: 0×0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

AF-63 TPDO4-SubIndex3-L
Address: 0xAF3F Effective mode:
Min.: 0×0
Max.: 0xFFFF
Default: 0×0
Value Range:
0x0 to 0xFFFF
Description

AF-66 Number of valid RPDOs

Address:	$0 \times A F 42$	Effective mode: -	
Min.:	0×0	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	0×0	Change:	Unchangeable

x0 to 0xFFFF

Description

AF-67 Number of valid TPDOs

Address:	$0 \times A F 43$	Effective mode: -	
Min.:	0×0	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	0×0	Change:	Unchangeable

Value Range:
0x0 to 0xFFFF
Description

4.30 B6: Motor 2 Startup Control and Protection Parameters

B6-00 Startup mode

Address: 0xB600
Effective mode:
Min.: 0
Max.: 3
Default: 0
Value Range:
0: Direct start
1: Flying start
2: Pre-excitation start (AC asynchronous motor)
3: SVC quick start
Description
Flying start is recommended if you need to start a motor that is rotating at a high speed. Pre-excitation start and SVC quick start apply only to AC asynchronous motors.

B6-01 Speed tracking mode
Address: 0xB601 Effective mode:
Min.: 0
Max.: 4
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 : From the stop frequency
1: From the power frequency
2: From the maximum frequency
3: Reserved
4: Magnetic field directional speed tracking (MD290)
Description

B6-02 Speed of speed tracking

Address: 0xB602
Min.: 1
Max.: 100
Default: 20

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

1 to 100
Description

Startup frequency

Address:	$0 \times B 603$	Effective mode:	
Min.:	0.00	Unit:	Hz
Max.:	10.00	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:
0.00 Hz to 10.00 Hz

Description
This parameter defines the startup frequency for direct start of the AC drive. When the frequency reference is lower than the startup frequency, the AC drive will not start but stay standby.

Startup frequency hold time

Address:	$0 \times B 604$	Effective mode: -	
Min.:	0.0	Unit:	S
Max.:	100.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable only at stop

Value Range:

0.0 s to 100.0 s

Description

This parameter defines the hold time during which the output frequency remains at the startup frequency. After this hold time elapses, the AC drive will accelerate/decelerate to the reference frequency.

DC braking current at startup

Address:	$0 \times B 605$	Effective mode:	
Min.:	0	Unit:	$\%$
Max.:	100	Data type:	Ulnt16
Default:	50	Change:	Changeable only at stop

Value Range:
0\% to 100\%

Description

A larger DC braking current indicates stronger braking force. 100\% corresponds to the rated motor current (the current upper limit is 80% of the rated current of the AC drive).

DC braking time at startup
Address: 0xB606 Effective mode: -
Min.: 0.0 Unit: S
Max.: $100.0 \quad$ Data type: Ulnt16
Default: $0.0 \quad$ Change: Changeable only at stop
Value Range:
0.0 s to 100.0 s

Description

This parameter defines the time for DC braking at startup, which is valid only when the startup mode is direct start.

Stop mode
Address: 0xB607
Min.: 0
Max.: 2
Default: 0
Value Range:
0: Decelerate to stop
1: Coast to stop
2: Stop at maximum capability

Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
-

Start frequency of DC braking at stop

Address:	$0 x B 608$	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:
0.00 Hz to $\mathrm{FO}-10$

Description

The AC drive starts DC braking when the running frequency decreases to the value of this parameter during deceleration to stop.

Address: 0xB609 Effective mode:
Min.: 0.0
Max.: $\quad 100.0$
Unit: s

Default: 0.0
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0 s to 100.0 s

Description
When the running frequency decreases to the start frequency of DC braking at stop, the AC drive stops output and starts DC braking after this waiting time.

DC braking current at stop
Address: 0xB60A Effective mode: -
Min.: $0 \quad$ Unit:
Max.: 100 Data type: Ulnt16
Default: 50 Change: Changeable at any time
Value Range:
0\% to 100\%

Description

A larger DC braking current indicates stronger braking force. 100% corresponds to the rated motor current (the current upper limit is 80% of the rated current of the AC drive).

DC braking time at stop
Address: 0xB60B Effective mode:
Min.: 0.0
Max.: $\quad 100.0$
Default: 0.0
Value Range:

0.0 s to 100.0s

Description

If this parameter is set to $0, D C$ braking is disabled.

B6-12 Speed tracking sweep current limit closed loop Kp

Address:	$0 x B 60 C$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1000	Data type:	Ulnt16
Default:	500	Change:	Changeable at any time

Value Range:
0 to 1000
Description

B6-13 Speed tracking sweep current limit closed loop Ki

Address:	$0 x B 60 D$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1000	Data type:	Ulnt16
Default:	800	Change:	Changeable at any time

Value Range:
0 to 1000
Description

B6-14 Speed tracking current
Address: 0xB60E
Effective mode:
Min.: 30
Max.: 200
Unit: \%

Default: 80
Data type: Ulnt16

Value Range:
30\% to 200\%
Description

B6-15 Current loop multiple
Address: $0 \times B 60 \mathrm{~F}$
Min.: 10
Max.: 600
Default: 100
Change: Changeable only at stop

Value Range:
10\% to 600\%
Description

B6-16 Demagnetization time (valid for asynchronous motors)

Address:	$0 \times B 610$	Effective mode:	-
Min.:	0.00	Unit:	S
Max.:	5.00	Data type:	Ulnt16
Default:	0.50	Change:	Changeable at any time

Value Range:
0.00 s to 5.00 s

Description

This parameter defines the minimum waiting time for restart after shutdown.

B6-17

B6-18 Overexcitation suppression current
Address: 0xB612 Effective mode:
Min.: 0
Max.: $\quad 150$
Default: 100
Value Range:
0\% to 150\%

Description

This parameter defines the target current after overexcitation takes effect and is a percentage relative to the rated motor current.

B6-19 Overexcitation gain
Address: $0 \times B 613$
Min.: $\quad 0.01$
Max.: $\quad 2.50$
Default: 1.25
Value Range:
0.01 to 2.50

Description

B6-25 Skip frequency 1
Address: 0xB619 Effective mode: -
Min.: $\quad 0.00$
Max.: \quad F0-10
Default: 0.00
Value Range:
0.00 Hz to $\mathrm{FO}-10$

B6-26 Skip frequency 2
Address: 0xB61A Effective mode: -
Min.: 0.00

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time
Unit: \%

Data type: Ulnt16
Change: Changeable at any time

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Value Range:
0: Disabled
2: Enabled during deceleration
3: Enabled always

Description

This parameter defines the active mode of overexcitation in vector control mode for asynchronous motors. When it is set to 2 , overexcitation takes effect during acceleration, operation at constant speed, and deceleration.

-25 Skip

Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

Description

```
Effective mode: -
Unit: Hz
```

Max.: \quad F0-10

Default: 0.00
Value Range:
0.00 Hz to F0-10

Description

B6-27 Skip frequency 3
Address: 0xB61B
Min.: $\quad 0.00$
Max.: \quad F0-10
Default: 0.00
Value Range:
0.00 Hz to F0-10

Description

B6-28 Skip frequency 4
Address: 0xB61C
Min.: $\quad 0.00$
Max.: \quad F0-10
Default: 0.00

Value Range:

0.00 Hz to $\mathrm{FO}-10$

Description

B6-29 Skip frequency band

Address:	$0 x B 61 \mathrm{D}$
Min.:	0.00
Max.:	F0-10
Default:	0.00

Value Range:

0.00 Hz to F0-10

Description

B6-30 Source of frequency upper limit
Address: 0xB61E
Min.: 0
Max.: 5
Default: 0
Value Range:
0: F0-12
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
Others: F connector

Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: Hz

Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Description

B6-31 Frequency upper limit

Address: 0xB61F

Min.: B6-33
Max.: F0-10
Default: 50.00
Value Range:
B6-33 to F0-10
Description

B6-32 Frequency upper limit offset

Address: 0xB620
Min.: $\quad 0.00$
Max.: F0-10
Default: 0.00

Value Range:

0.00 Hz to $\mathrm{FO}-10$ (maximum frequency)

Description

Effective mode: -
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

B6-33 Frequency lower limit

Address: 0xB621

Min.: $\quad 0.00$
Max.: B6-31
Default: 0.00
Value Range:
0.00 Hz to B6-31

Description

B6-34 Speed/Torque control mode
Address: 0xB622
Min.: 0
Max.: 1
Default: 0

Value Range:

0 : Speed control
1: Torque control

Description

B6-35 Motor overload protection
Address: 0xB623
Effective mode:
Min.: 0
Max.: 1
Default: 1
Value Range:
0: Disabled
1: Enabled

	Description			
B6-36	Motor overload protection gain			
	Address:	0xB624	Effective mode:	
	Min.:	0.20	Unit:	
	Max.:	10.00	Data type:	Ulnt16
	Default:	1.00	Change:	Changeable at any time
	Value Range:			
	0.20 to 10.00			
	Description			
	-			
B6-37	Motor overload pre-warning coefficient			
	Address:	0xB625	Effective mode:	
	Min.:	50	Unit:	\%
	Max.:	100	Data type:	Ulnt16
	Default:	80	Change:	Changeable at any time
	Value Range:			
	50\% to 100\%			
	Description			
	-			
B6-38	Overvoltage stall suppression gain			
	Address:	0xB626	Effective mode:	-
	Min.:	1	Unit:	-
	Max.:	100	Data type:	Ulnt16
	Default:	30	Change:	Changeable at any time
	Value Range:			
	1 to 100			
	Description			
B6-39	Overvoltage stall protection voltage			
	Address:	0xB627	Effective mode:	-
	Min.:	330.0	Unit:	V
	Max.:	800.0	Data type:	UInt16
	Default:	770.0	Change:	Changeable at any time
	Value Range:			
	330.0 V to 800.0 V			
	Description			
B6-40	Input phase loss/Contactor pickup protection			
	Address:	0xB628	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	13	Data type:	Ulnt16
	Default:	11	Change:	Changeable at any time
	Value Range:			

Ones: Input phase loss protection
0 : Disabled
1: Protection enabled when both software and hardware input phase loss conditions are met
2: Protection enabled when software input phase loss conditions are met
3: Protection enabled when hardware input phase loss conditions are met
Tens: Contactor pickup protection
0 : Disabled
1: Enabled
Description

B6-41 Output phase loss protection

Address:	$0 x B 629$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	11	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

Value Range:
Ones: Output phase loss protection upon power-on
0: Disabled
1: Enabled
Tens: Output phase loss protection before running
0: Disabled
1: Enabled
Description

B6-42 Power dip ride-through

Address: 0xB62A Effective mode:
Min.: 0
Max.: 3
Unit:
Max.:
Data type: Ulnt16
Default: 0
Change: Changeable only at stop
Value Range:
0: Disabled
1: Decelerate
2: Decelerate to stop
3: Suppress voltage dip
Description

B6-43 Voltage threshold for disabling power dip ride-through

Address:	0xB62B	Effective mode:	-
Min.:	80	Unit:	$\%$
Max.:	100	Data type:	Ulnt16
Default: 85	Change:	Changeable only at stop	
Value Range:			
80\% to 100\%			
Description			

B6-44	Delay of voltage recovery from power dip			
	Address: $0 \times B 62 \mathrm{C}$	Effective mode:	-	
Min.: $\quad 0.0$	Unit:	S		
	Max.: $\quad 100.0$	Data type:	Ulnt16	
	Default: 0.5	Change:	Changeable only at stop	
Value Range:				
	0.0s to 100.0s			
	Description			

B6-45 Voltage threshold for enabling power dip ride-through

Address: 0xB62D
Min.: 60
Max.: $\quad 100$
Default: 80
Value Range:
60\% to 100\%
Description

B6-46 Protection upon load loss

Address:	$0 \times B 62 E$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0 : Disabled
1: Enabled
Description

B6-47 Load loss detection level

Address:	$0 \times B 62 F$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default:	10.0	Change:	Changeable at any time

B6-48 Load loss detection time

Address:	$0 \times B 630$	Effective mode:	
Min.:	0.0	Unit:	S
Max.:	60.0	Data type:	Ulnt16
Default:	1.0	Change:	Changeable at any time

Value Range:
0.0s to 60.0s

Description

B6-49 Overspeed detection level
Address: 0xB631 Effective mode:
Min.: 0.0
Max.: 50.0
Default: 20.0
Value Range:
0.0\% to 50.0\%

Description

B6-50 Overspeed detection time
Address: 0xB632 Effective mode:
Min.: 0.0
Max.: 60.0
Default: 1.0
Value Range:
0.0s to 60.0s

Description

B6-51 Detection level of excessive speed deviation
Address: 0xB633 Effective mode: -
Min.: $0.0 \quad$ Unit:

Max.: 50.0
Default: 20.0
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0\% to 50.0\%

Description

B6-52 Detection time of excessive speed deviation

Address:	$0 x B 634$
Min.:	0.0
Max.:	60.0
Default:	5.0

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0.0s to 60.0s

Description

B6-53 Power dip ride-through gain Kp

Address:	$0 \times B 635$	Effective mode:	-
Min.:	1	Unit:	-
Max.:	100	Data type:	Ulnt16
Default: 40	Change:	Changeable at any time	
Value Range:			
1 to 100 Description			

B6-54 Power dip ride-through integral coefficient Ki
Address: 0xB636 Effective mode:

Min.:	1	Unit:	-
Max.:	100	Data type:	Ulnt16
Default: 30	Change:	Changeable at any time	
Value Range:			
1 to 100			
Description			

B6-55 Deceleration time of power dip ride-through
Address: 0xB637 Effective mode: -
Min.: $0.0 \quad$ Unit: S

Max.: $\quad 300.0$
Data type: Ulnt16
Change: Changeable at any time
Default: 20.0
Value Range:
0.0s to 300.0s

Description

B6-56 Voltage dip suppression time

Address:	$0 \times B 638$	Effective mode:	
Min.:	0.1	Unit:	S
Max.:	600.0	Data type:	Ulnt16
Default:	0.5	Change:	Changeable at any time

Value Range:
0.1 s to 600.0 s

Description

4.31 B7: Motor 2 Nameplate and Learning Parameters 2

B7-00 Number of parallel motors

Address:	$0 \times B 700$	Effective mode:	
Min.:	1	Unit:	-
Max.:	200	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop

B7-01 Motor information command word

Address:	$0 \times B 701$	Effective mode: -	
Min.:	0×0	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	0×3	Change:	Changeable only at stop

Value Range:

Bit00: Mutual inductance curve
0 : Disabled
1: Enabled
Bit01: D- and Q-axis inductance curve
0: Disabled
1: Enabled
Bit02: Rotor resistance online auto-tuning
0 : Disabled
1: Enabled
Bit03: Rotor resistance online auto-tuning method
0 : Amplitude
1: Phase
Bit04: Motor thermal model
0 : Disabled
1: Enabled
Bit05: Temperature source of motor thermal model
0 : Estimated temperature
1: Temperature detected by sensor
Bit06: Torque coefficient calculation of asynchronous motor
0 : Torque formula
1: Current distribution
Bit07: Torque coefficient calculation of synchronous motor
0 : Torque formula
1: Torque matching the rated torque
Bit08: Zero speed friction torque calculation
0 : Torque linearly decreasing to zero
1: Torque to maintain minimum speed
Bit09: Calculation of model parameters based on nameplate parameters
0 : Disabled
1: Enabled
Bit10: Confirmation of calculating model parameters based on nameplate parameters
0: Default
1: Confirm
Description

B7-02 Number of motor pole pairs

Address:	$0 \times B 702$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	64	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:

0 to 64
Description

B7-03 Motor power factor

Address:	$0 \times B 703$	Effective mode: -	
Min.:	0.600	Unit:	-
Max.:	1.000	Data type:	Ulnt16
Default:	0.860	Change:	Changeable only at stop

Value Range:

0.600 to 1.000

Description

B7-05 Expansion card

Address:	$0 \times B 705$	Effective mode:	-
Min.:	1	Unit:	-
Max.:	2	Data type:	Ulnt16
Default: 1	Change:	Changeable only at stop	
Value Range:			
1: Expansion card 1			
2: Expansion card 2			
Description			

B7-06 ABZ encoder speed measurement mode at low speed

Address:	$0 x B 706$	Effective mode: -
Min.:	0	Unit:

Max.: $2 \quad$ Data type: Ulnt16

Default: 2 Change: Changeable only at stop
Value Range:
0 : Maintain
1: Attenuate
2: Optimized solution
Description

B7-07 Encoder speed measurement filter time constant
Address: 0xB707 Effective mode: -
Min.: $0.000 \quad$ Unit:
Max.: $10.000 \quad$ Data type: Ulnt16

Default: 0.004
Change: Changeable at any time
Value Range:
0.000s to 10.000 s

Description

B7-08 Encoder wire breakage software detection coefficient

Address:	$0 x B 708$	Effective mode:	-
Min.:	0.000	Unit:	-
Max.:	8.000	Data type:	Ulnt16
Default:	1.000	Change:	Changeable at any time

Value Range:
0.000 to 8.000

Description

B7-09 Encoder control word
Address: 0xB709 Effective mode: -
Min.: 0 Unit
Max.: 65535 Data type: Ulnt16
Default: 0
Change: Changeable only at stop
Value Range:
Bit00: Speed measurement
0: Disabled
1: Enabled
Bit01: Software detection of wire breakage
0: Disabled
1: Enabled
Bit02: Glitch removal
0: Disabled
1: Enabled
Bit03: ABZ encoder speed measurement mode
0 : Quadruplicated frequency
1: Single pulse
Description
B7-10 Speed measurement exception count threshold

Address: $0 \times B 70 A$
Min.: $\quad 1$
Max.: $\quad 100$
Default: 10
Value Range:
1 to 100
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

-

B7-11 Motor gear ratio (numerator)

Address:	$0 \times B 70 B$	Effective mode:	
Min.:	1	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop

Value Range:
1 to 65535
Description
B7-12 Motor gear ratio (denominator)

Address:	$0 \times B 70 C$	Effective mode:	
Min.:	1	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop

Value Range:

```
1 to 65535
Description
```

B7-13 External input source of encoder
Address: 0xB70D Effective mode: -
Min.: 0
Max.: 8
Default: 0
Value Range:
0: 0
1: AI1
2: Al2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

B7-15 Stator leakage inductance

Address:	$0 x B 70 F$
Min.:	0.000
Max.:	65.535
Default:	6.540

Value Range:

0.000 mH to 65.535 mH

Description

B7-16 Electromechanical time constant
Address: $0 \times B 710$
Min.: $\quad 1$
Max.: 65535
Default: 100
Value Range:
1 ms to 65535 ms
Description

B7-17 Inertia ratio
Address: 0xB711
Min.: 0.0
Max.: 6553.5
Default: 120.0
Value Range:
0.0\% to 6553.5\%

Effective mode: -
Unit: $\quad \mathrm{mH}$
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: ms
Data type: Ulnt16
Change: Unchangeable

Description

B7-18
 Friction torque

Address:	$0 x B 712$
Min.:	0.0
Max.:	6553.5
Default:	2.0

```
Effective mode:
Unit: %
Data type: Ulnt16
Change: Changeable only at stop
```

Value Range:
0.0\% to 6553.5\%

Description
$\begin{array}{ll}\text { Address: } & 0 x B 713 \\ \text { Min.: } & 5.0\end{array}$
Max.: $\quad 100.0$
Default: 50.0
Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
5.0\% to 100.0\%

Description

B7-20 Excitation current coefficient 2 of mutual inductance curve (rated)

Address:	$0 \times B 714$	Effective mode:	
Min.:	5.0	Unit:	$\%$
Max.:	100.0	Data type:	Ulnt16
Default: 75.0	Change:	Changeable only at stop	
Value Range:			
5.0\% to 100.0\%			
Description			

B7-21 Excitation current coefficient 3 of mutual inductance curve

Address:	$0 \times B 715$	Effective mode:	-
Min.:	100.0	Unit:	$\%$
Max.:	800.0	Data type:	Ulnt16
Default:	150.0	Change:	Changeable only at stop
Value Range:			
100.0\% to 800.0\%			
Description			

B7-22 Excitation current coefficient 4 of mutual inductance curve

Address:	$0 \times B 716$	Effective mode:	
Min.:	100.0	Unit:	$\%$
Max.:	800.0	Data type:	Ulnt16
Default:	210.0	Change:	Changeable only at stop
Value Range:			
100.0\% to 800.0\%			
Description			

```
B7-23 Flux coefficient 1 of mutual inductance curve (rated)
Address: 0xB717 Effective mode: -
Min.: \(10.0 \quad\) Unit:
Max.: 100.0 Data type: Ulnt16
Default: 50.0
Change: Changeable only at stop
Value Range:
10.0% to 100.0%
Description
```

B7-24 Flux coefficient 2 of mutual inductance curve (rated)
Address: 0xB718 Effective mode: -
Min.: $10.0 \quad$ Unit:
Max.: $100.0 \quad$ Data type: Ulnt16
Default: 85.0
Change: Changeable only at stop
Value Range:
10.0\% to 100.0\%
Description

B7-25 Flux coefficient 3 of mutual inductance curve
Address: 0xB719 Effective mode: -
Min.: $100.0 \quad$ Unit:
Max.: $300.0 \quad$ Data type: Ulnt16
Default: 115.0
Change: Changeable only at stop
Value Range:
100.0\% to 300.0\%
Description

B7-26 Flux coefficient 4 of mutual inductance curve
Address: 0xB71A Effective mode: -
Min.: $100.0 \quad$ Unit:
Max.: $300.0 \quad$ Data type: Ulnt16

Default: 125.0
Change: Changeable only at stop
Value Range:
100.0\% to 300.0\%

Description

B7-27 Speed point 1 of friction curve

Address:	$0 \times B 71 B$	Effective mode:	
Min.:	0	Unit:	RPM
Max.:	30000	Data type:	Ulnt16
Default:	15	Change:	Changeable only at stop

Value Range:
0 RPM to 30000 RPM
Description

B7-28 Speed point 2 of friction curve
Address: 0xB71C Effective mode:

Min.:	0
Max.:	30000
Default:	30

Value Range:
0 RPM to 30000 RPM
Description

Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

B7-29 Speed point 3 of friction curve

Address: 0xB71D
Min.: 0
Max.: 30000
Default: 60
Value Range:
0 RPM to 30000 RPM
Description

```
Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop
```

```
Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop
```

Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Value Range:

0 RPM to 30000 RPM

Description

B7-32 Speed point 6 of friction curve

Address:	$0 x B 720$
Min.:	0
Max.:	30000
Default:	300

Value Range:

0 RPM to 30000 RPM

Description

B7-33 Speed point 7 of friction curve

Address:	$0 \times B 721$
Min.:	0
Max.:	30000

Effective mode: -
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Address:	$0 x B 71 F$
Min.:	0
Max.:	30000
Default:	150

Default: 600
Value Range:
0 RPM to 30000 RPM
Description

B7-34 Speed point 8 of friction curve
Address: 0xB722
Min.: 0
Max.: 30000
Default: 1200
Value Range:
0 RPM to 30000 RPM
Description

B7-35 Speed point 9 of friction curve
Address: 0xB723
Min.: 0
Max.: 30000
Default: 1500
Value Range:
0 RPM to 30000 RPM
Description

B7-36 Speed point 10 of friction curve
Address: 0xB724
Min.: 0
Max.: 30000
Default: 3000

Value Range:

0 RPM to 30000 RPM

Description

B7-37 Torque point 1 of friction curve
Address: $0 \times B 725$
Min.: $\quad-320$
Max.: $\quad 320.00$
Default: 0.00

Value Range:

$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$
Description

B7-38 Torque point 2 of friction curve

Address:	$0 x B 726$
Min.:	-320
Max.:	320.00
Default:	0.00

Value Range:

Change:
Changeable only at stop

Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$

Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$

Data type: Int16
Change: Changeable only at stop

$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$
 Description

B7-39 Torque point 3 of friction curve
Address: 0xB727
Min.: -320
Max.: 320.00
Default: 0.00
Value Range:
-320 N•m to +320 N•m
Description

B7-40 Torque point 4 of friction curve
Address: 0xB728
Min.: -320
Max.: 320.00
Default: 0.00
Value Range:
-320 N•m to +320 N•m
Description

B7-41 Torque point 5 of friction curve
Address: 0xB729
Min.: $\quad-320$
Max.: $\quad 320.00$
Default: 0.00
Value Range:
-320 N•m to $+320 \mathrm{~N} \cdot \mathrm{~m}$
Description

B7-42 Torque point 6 of friction curve
Address: 0xB72A
Min.: $\quad-320$
Max.: $\quad 320.00$
Default: 0.00
Value Range:
$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$
Description

B7-43 Torque point 7 of friction curve
Address: 0xB72B
Min.: $\quad-320$
Max.: $\quad 320.00$
Default: 0.00
Value Range:
$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$

Effective mode: -
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Description

B7-44 Torque point 8 of friction curve

Address:	$0 \times B 72 C$	Effective mode:	-
Min.:	-320	Unit:	$\mathrm{N} \cdot \mathrm{m}$
Max.:	320.00	Data type:	Int16
Default:	0.00	Change:	Changeable only at stop

Value Range:
-320 N•m to +320 N•m
Description

B7-45 Torque point 9 of friction curve
Address: 0xB72D
Min.: $\quad-320$
Max.: $\quad 320.00$
Default: 0.00

Effective mode:	-
Unit:	$\mathrm{N} \cdot \mathrm{m}$
Data type:	Int16
Change:	Changeable only at stop

Value Range:
$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$
Description

B7-46 Torque point 10 of friction curve

Address:	$0 x B 72 E$
Min.:	-320
Max.:	320.00
Default:	0.00

Effective mode:	-
Unit:	$\mathrm{N} \cdot \mathrm{m}$
Data type:	Int16
Change:	Changeable only at stop

Value Range:
-320 N•m to $+320 \mathrm{~N} \cdot \mathrm{~m}$

Description

B7-47 Current coefficient starting point of D - and Q-axis inductance curve
Address: $0 \times B 72 F$
Min.: -800
Max.: $\quad 800.0$
Default: -200
Effective mode: -
Unit: \%
Data type: Int16

Value Range:
-800\% to +800.0\%
Description

B7-48 Current coefficient end point of D-and Q-axis inductance curve
Address: 0xB730
Min.: $\quad-800$
Max.: 800.0
Default: 200.0
Value Range:
-800\% to +800.0\%
Description

```
B7-49 D axis inductance 1 of D- and Q-axis inductance curve
Address: 0xB731 Effective mode: -
Min.: 0.0 Unit: %
Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0% to 6553.5%
Description
B7-50 D axis inductance 2 of D- and Q-axis inductance curve
Address: 0xB732 Effective mode:
Min.: 0.0 Unit: %
Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0% to 6553.5%
Description
B7-51 D axis inductance 3 of D- and Q-axis inductance curve
Address: 0xB733 Effective mode:
Min.: 0.0 Unit: %
Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0% to 6553.5%
Description
B7-52 D axis inductance 4 of D- and Q-axis inductance curve
Address: 0xB734 Effective mode:
Min.: 0.0 Unit: %
Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0% to 6553.5%
Description
B7-53 D axis inductance 5 of D- and Q-axis inductance curve
Address: 0xB735 Effective mode:
Min.: 0.0 Unit: %
Max.: 6553.5
Default: 100.0
Data type: Ulnt16
Change: Changeable only at stop
```


Value Range:

```
0.0\% to 6553.5\%
```


Description

D axis inductance 6 of D - and Q -axis inductance curve
Address: 0xB736
Effective mode:

```
\begin{tabular}{llll} 
Min.: & 0.0 & Unit: & \% \\
Max.: & 6553.5 & Data type: & Ulnt16 \\
Default: & 100.0 & Change: & Changeable only at stop
\end{tabular}

Value Range:
0.0\% to 6553.5\%

Description

B7-55 D axis inductance 7 of \(D\) - and \(Q\)-axis inductance curve
Address: 0xB737
Effective mode:
Min.: 0.0
Max.: \(\quad 6553.5\)
Default: 100.0
Data type: Ulnt16
Change: Changeable only at stop

\section*{Value Range:}
0.0\% to 6553.5\%

Description

B7-56 \(\quad \mathrm{D}\) axis inductance 8 of D - and Q -axis inductance curve
Address: 0xB738 Effective mode:
Min.: \(0.0 \quad\) Unit:

Max.: \(6553.5 \quad\) Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

\section*{Description}

B7-57 D axis inductance 9 of \(D\) - and \(Q\)-axis inductance curve
Address: 0xB739 Effective mode:
Min.: \(0.0 \quad\) Unit:

Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop

\section*{Value Range:}
0.0\% to 6553.5\%

\section*{Description}

B7-58 D axis inductance 10 of \(D\) - and \(Q\)-axis inductance curve
\begin{tabular}{llll} 
Address: & \(0 \times B 73 A\) & Effective mode: & \\
Min.: & 0.0 & Unit: & \(\%\) \\
Max.: & 6553.5 & Data type: & Ulnt16 \\
Default: & 100.0 & Change: & Changeable only at stop
\end{tabular}

\section*{Value Range:}
0.0\% to 6553.5\%

\section*{Description}

B7-59 D axis inductance 11 of \(D\) - and \(Q\)-axis inductance curve
\begin{tabular}{llll} 
Address: & 0xB73B & Effective mode: \\
Min.: & 0.0 & Unit: & \(\%\) \\
Max.: & 6553.5 & Data type: & Ulnt16
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Default: 100.0} & Change: & \multirow[t]{3}{*}{Changeable only at stop} \\
\hline & \multicolumn{3}{|l|}{Value Range:} & \\
\hline & \multicolumn{3}{|l|}{0.0\% to 6553.5\%} & \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{B7-60} & \multicolumn{4}{|l|}{D axis inductance 12 of D - and Q -axis inductance curve} \\
\hline & Address: & 0xB73C & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 6553.5 & Data type: & Ulnt16 \\
\hline & Default: & 100.0 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0\% to 6553.5\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{B7-61} & \multicolumn{4}{|l|}{\(Q\) axis inductance 1 of \(D\) - and \(Q\)-axis inductance curve} \\
\hline & Address: & 0xB73D & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 6553.5 & Data type: & Ulnt16 \\
\hline & Default: & 100.0 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0\% to 6553.5\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{B7-62} & \multicolumn{4}{|l|}{Q axis inductance 2 of D - and Q -axis inductance curve} \\
\hline & Address: & 0xB73E & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 6553.5 & Data type: & Ulnt16 \\
\hline & Default: & 100.0 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0\% to 6553.5\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{B7-63} & \multicolumn{4}{|l|}{\(Q\) axis inductance 3 of \(D\) - and \(Q\)-axis inductance curve} \\
\hline & Address: & 0xB73F & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 6553.5 & Data type: & Ulnt16 \\
\hline & Default: & 100.0 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0\% to 6553.5\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & - & & & \\
\hline \multirow[t]{5}{*}{B7-64} & \multicolumn{4}{|l|}{Q axis inductance 4 of D - and Q -axis inductance curve} \\
\hline & Address: & 0xB740 & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 6553.5 & Data type: & Ulnt16 \\
\hline & Default: & 100.0 & Change: & Changeable only at stop \\
\hline
\end{tabular}
Value Range:

\section*{0.0\% to 6553.5\%}

\section*{Description}

B7-65 \(\quad Q\) axis inductance 5 of \(D\) - and \(Q\)-axis inductance curve
Address: 0xB741 Effective mode: -
Min.: \(0.0 \quad\) Unit: \(\%\)
Max.: \(6553.5 \quad\) Data type: Ulnt16
Default: \(100.0 \quad\) Change: Changeable only at stop

\section*{Value Range:}
0.0\% to 6553.5\%

\section*{Description}

B7-66 \(\quad \mathrm{Q}\) axis inductance 6 of D - and Q -axis inductance curve
Address: 0xB742 Effective mode: -
Min.: \(0.0 \quad\) Unit: \(\%\)
Max.: 6553.5 Data type: Ulnt16

Default: 100.0
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

\section*{Description}

B7-67 \(\quad\) Q axis inductance 7 of D - and Q -axis inductance curve
Address: 0xB743 Effective mode:
Min.: \(0.0 \quad\) Unit:

Max.: \(6553.5 \quad\) Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop

\section*{Value Range:}
0.0\% to 6553.5\%

\section*{Description}

B7-68 \(\quad\) Q axis inductance 8 of D - and Q -axis inductance curve
Address: 0xB744
Min.: 0.0
Max.: 6553.5
Default: 100.0
Effective mode:
Unit: \(\%\)
Data type: Ulnt16

Value Range:
0.0\% to 6553.5\%

\section*{Description}

B7-69 \(\quad\) Q axis inductance 9 of \(D\) - and \(Q\)-axis inductance curve
Address: 0xB745

Min.: 0.0
Max.: 6553.5
Default: 100.0
Effective mode:
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable only at stop

\section*{Value Range:}
0.0\% to 6553.5\%
```

Description
B7-70
Q axis inductance 10 of D- and Q-axis inductance curve
Address: 0xB746 Effective mode:
Min.: 0.0 Unit: %
Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0% to 6553.5%
Description
B7-71 Q axis inductance 11 of D- and Q-axis inductance curve
Address: 0xB747 Effective mode:
Min.: $0.0 \quad$ Unit:
Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0% to 6553.5%
Description
B7-72 Q axis inductance 12 of D- and Q-axis inductance curve
Address: 0xB748 Effective mode:
Min.: $0.0 \quad$ Unit:
Max.: 6553.5
Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0% to 6553.5%
Description

```

\subsection*{4.32 B8: Motor 2 Control, Protection, and Vector Parameters 1}

B8-00 Parameter auto-tuning upon startup
\begin{tabular}{llll} 
Address: & \(0 \times B 800\) & Effective mode: \\
Min.: & 0 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: & 1 & Change: & Changeable only at stop \\
Value Range: & &
\end{tabular}

Bit00: Synchronous motor pole position auto-tuning upon startup
0 : Disabled
1: Enabled
Bit01: Quick stator resistance auto-tuning upon startup
0 : Disabled
1: Enabled
Bit02-Bit03: HFI pole position auto-tuning
0: Disabled
1: Enabled
2: Adaptive
Bit04: IGBT shoot-through self-check upon startup
0: Disabled
1: Enabled
Bit05: Short-to-ground self-check upon startup (reserved)
0 : Disabled
1: Enabled
Bit06: Phase loss self-check upon startup (reserved)
0 : Disabled
1: Enabled
Description

B8-01 Auto-tuning direction
\begin{tabular}{llll} 
Address: & \(0 \times B 801\) & Effective mode: \\
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16 \\
Default: & 1 & Change: & Changeable only at stop
\end{tabular}

Value Range:
0 to 1
Description

B8-02 Oscillation suppression gain of synchronous motor back EMF auto-tuning

Address: 0xB802
Min.: 0.0
Max.: 30.0
Default: 3.2
Value Range:
0.0 to 30.0

Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop
\(\qquad\)

B8-03 Target speed of rotation auto-tuning
Address: 0xB803 Effective mode: -
Min.: \(\quad 30.0\)
Max.: \(\quad 100.0\)
Default: 70.0

\section*{Value Range:}
30.0\% to 100.0\%

\section*{Description}

B8-04 Target speed 1 of inertia auto-tuning
\begin{tabular}{llll} 
Address: & \(0 \times B 804\) & Effective mode: \\
Min.: & 10.0 & Unit: & \(\%\) \\
Max.: & B8-05 & Data type: & Ulnt16 \\
Default: & 40.0 & Change: & Changeable only at stop
\end{tabular}

Value Range:
10.0\% to B8-05

Description

B8-05 Target speed 2 of inertia auto-tuning
\begin{tabular}{llll} 
Address: & 0xB805 & Effective mode: \\
Min.: & B8-04 & Unit: & \(\%\) \\
Max.: & 100.0 & Data type: & Ulnt16 \\
Default: & 60.0 & Change: & Changeable only at stop
\end{tabular}

Value Range:
B8-04 to 100.0\%
Description

B8-06 Overcurrent prevention of mutual inductance saturation curve

Address: 0xB806
Min.: \(\quad 0\)
Max.: 1
Default: 1

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0 to 1
Description

B8-07 Auto-tuning items
Address: 0xB807
Min.: 0
Max.: 65535
Default: 117
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Bit00: Speed loop parameter adaptation
0 : Disabled
1: Enabled
Bit01: Current loop parameter adaptation
0 : Disabled
1: Enabled
Bit02: Drive nonlinear auto-tuning
0 : Disabled
1: Enabled
Bit03: Inter-phase deviation coefficient auto-tuning
0 : Disabled
1: Enabled
Bit04: Auto-tuning of initial pole position of synchronous motor
0 : Disabled
1: Enabled
Bit05: Auto-tuning of D - and Q -axis inductance model of synchronous motor
0: Disabled
1: Enabled
Bit06: System inertia auto-tuning
0: Disabled
1: Enabled
Bit07: HFI pole position auto-tuning
0: Disabled
1: Enabled
Description

\section*{B8-08 OFF3 stop mode}

Address: 0xB808 Effective mode: -
Min.: 0
Max.: \(\quad 1\)
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0: Quick stop
1: Stop at maximum capability

\section*{Description}

B8-09 Stop mode during running
Address: 0xB809 Effective mode: -
Min.: \(\quad 0\)
Max.: 2
Default: 1

Unit:
Data type: Ulnt16
Change: Changeable only at stop

\section*{Value Range:}

0: OFF1 stop mode
1: OFF2 stop mode
2: OFF3 stop mode

\section*{Description}

B8-10 Stop mode for torque control
\begin{tabular}{llll} 
Address: & \(0 \times B 80 A\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 2 & Data type: & Ulnt16 \\
Default: & 1 & Change: & Changeable only at stop
\end{tabular}

Value Range:
0 : Coast to stop forcibly
1: Switch to speed control mode and then stop
2: Maintain torque control mode until zero speed and then block

\section*{Description}

\section*{B8-12 Proportional gain adjustment coefficient}
\begin{tabular}{llll} 
Address: & \(0 x B 80 C\) & Effective mode: & - \\
Min.: & 0.1 & Unit: & - \\
Max.: & 2.0 & Data type: & Ulnt16 \\
Default: & 1.0 & Change: & Changeable at any time \\
Value Range: & & \\
0.1 to 2.0 & & \\
Description & & &
\end{tabular}

\section*{B8-13 Integral gain adjustment coefficient}

Address: 0xB80D Effective mode:
Min.: 0.1
Max.: \(\quad 2.0\)
Default: 1.0
Value Range:
0.1 to 2.0

Description

B8-14 Zero-speed threshold
Address: 0xB80E
Min.: \(\quad 0.1\)
Max.: 200.0
Default: 2.0
Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.1\% to 200.0\%

Description

B8-15 Zero-speed stop delay
Address: 0xB80F
Min.: \(\quad 0.00\)
Max.: \(\quad 10.00\)
Default: 0.10
Value Range:

\subsection*{0.00 s to 10.00 s}

\section*{Description}

B8-16 Reference source execution interval
Address: 0xB810 Effective mode: -

Min.: 0
Max.: 20
Unit:
Data type: Ulnt16
Default: 4
Change: Changeable only at stop
Value Range:
0 to 20
Description

B8-17 Trial current for speed tracking of synchronous motor
Address: \(0 \times B 811\)
Effective mode:
Unit: \%

Min.: \(\quad 5.0\)
Max.: 50.0
Data type: Ulnt16
Default: 10.0
Change: Changeable only at stop

\section*{Value Range:}
5.0\% to 50.0\%

Description

B8-18 Minimum frequency for speed tracking of synchronous motor
Address: 0xB812 Effective mode: -

Min.: \(0.0 \quad\) Unit: Hz
Max.: \(100.0 \quad\) Data type: Ulnt16
Default: 0.0
Change: Changeable only at stop

\section*{Value Range:}
0.0 Hz to 100.0 Hz

\section*{Description}

B8-19 Angle compensation for speed tracking of synchronous motor
Address: 0xB813 Effective mode: -
Min.: 0 Unit: -

Max.: 360 Data type: Ulnt16
Default: \(0 \quad\) Change: Changeable only at stop
Value Range:
0 to 360
Description

B8-20 Parameter auto-tuning of synchronous motor upon startup
Address: 0xB814 Effective mode:
Min.: \(0 \quad\) Unit: -
Max.: \(1 \quad\) Data type: Ulnt16
Default: \(0 \quad\) Change: Changeable at any time
Value Range:
0 to 1

\section*{Description}

B8-21 Current motor angle
Address: 0xB815
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

B8-22 Forward torque limit 1
\begin{tabular}{ll} 
Address: & \(0 x B 816\) \\
Min.: & 0.0 \\
Max.: & 400.0 \\
Default: & 150.0
\end{tabular}

\section*{Value Range:}
0.0 to 400.0

Description

\section*{B8-23 Reverse torque limit 1}

Address: 0xB817
Min.: 0.0
Max.: 400.0
Default: 150.0

\section*{Value Range:}
0.0 to 400.0

\section*{Description}

B8-24 Source of forward torque limit 2
Address: 0xB818
Min.: \(\quad 0\)
Max.: 0
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

\section*{Value Range:}

0: 400\%
Others: F connector

\section*{Description}

B8-25 Source of reverse torque limit 2
Address: 0xB819
Min.: \(\quad 0\)
Max.: 0
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

\section*{Value Range:}

0: -400\%
Others: F connector

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

\section*{Description}

B8-27 Ramp (FRG) selection bit1
Address: 0xB81B
Min.: 0
Max.: 18
Default: 0
Value Range:
Same as B8-26
Description
Value Range:
0: 0
1: 1
2: Terminal function input
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
-

\section*{B8-30}

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Motor protection
Address: 0xB81E
Min.: 0
Max.: 65535
Default: 537
Value Range:

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Bit00: Motor overload determination (reserved)
Bit01: Motor overheat detection (reserved)
Bit02: PG fault detection (reserved)
Bit03: Current control error detection
Bit04: Motor stall error detection
Bit05: Locked-rotor detection
Bit06: Synchronous motor demagnetization protection
Bit07: Protection against locked-rotor in SVC speed open-loop control
Bit08: Reserved
Bit09: Parameter setting error

\section*{Description}

B8-31 Locked-rotor time
Address: 0xB81F Effective mode: -
Min.: 0.0
Max.: 65.0
Default: 2.0
Unit: s
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0 s to 65.0s

Description

B8-32 Locked-rotor frequency
Address: 0xB820
Min.: 0.0
Max.: \(\quad 600.0\)
Default: 6.0
Value Range:
0.0\% to 600.0\%

\section*{Description}

B8-33 Motor stall detection time
Address: 0xB821
Effective mode:
Min.: 0.0
Max.: \(\quad 10.0\)
Default: 0.5
Value Range:
0.0 s to 10.0 s

Description

B8-34 Stall detection threshold
Address: 0xB822
Effective mode: -
Min.: \(\quad 0.0\)
Max.: \(\quad 100.0\)
Default: 30.0
Value Range:
\(0.0 \%\) to \(+100.0 \%\)

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Unit: \(\quad s\)
Data type: Ulnt16
Change: Changeable at any time

Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time
\begin{tabular}{|c|c|c|c|}
\hline & Description & & \\
\hline \multirow[t]{9}{*}{B8-35} & \multicolumn{3}{|l|}{Current control exception detection time} \\
\hline & Address: 0xB823 & Effective mode: & \\
\hline & Min.: 0.00 & Unit: & \(s\) \\
\hline & Max.: \(\quad 1.00\) & Data type: & Ulnt16 \\
\hline & Default: 0.05 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0.00 s to 1.00s & & \\
\hline & Description & & \\
\hline & - & & \\
\hline \multirow[t]{9}{*}{B8-36} & \multicolumn{3}{|l|}{Current control exception detection threshold} \\
\hline & Address: 0xB824 & Effective mode: & - \\
\hline & Min.: 0.0 & Unit: & \% \\
\hline & Max.: 200.0 & Data type: & Ulnt16 \\
\hline & Default: 25.0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0.0\% to 200.0\% & & \\
\hline & Description & & \\
\hline &  & & \\
\hline \multirow[t]{9}{*}{B8-37} & \multicolumn{3}{|l|}{Synchronous motor overcurrent threshold} \\
\hline & Address: 0xB825 & Effective mode: & - \\
\hline & Min.: 0.0 & Unit: & \% \\
\hline & Max.: 500.0 & Data type: & Ulnt16 \\
\hline & Default: 300.0 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{0.0\% to 500.0\%} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{-} \\
\hline \multirow[t]{9}{*}{B8-39} & \multicolumn{3}{|l|}{Speed deviation detection} \\
\hline & Address: 0xB827 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 1 & Data type: & Ulnt16 \\
\hline & Default: 1 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{0 to 1} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{-} \\
\hline \multirow[t]{8}{*}{B8-40} & \multicolumn{3}{|l|}{Asynchronous motor FVC model switchover frequency} \\
\hline & Address: \(0 \times 8828\) & Effective mode: & - \\
\hline & Min.: 0 & Unit: & \% \\
\hline & Max.: 1000 & Data type: & Ulnt16 \\
\hline & Default: 20 & Change: & Changeable only at stop \\
\hline & Value Range: & & \\
\hline & 0\% to 1000\% & & \\
\hline & Description & & \\
\hline
\end{tabular}
B8-41
B8-42 Asynchronous motor FVC observer filter time
Address: 0xB82A Effective mode: -
Min.: 5 Unit: ms
Max.: 100 Data type: Ulnt16Change: Changeable only at stop
Default: 15Effective mode:Unit: \%Data type: Ulnt16Change: Changeable only at stopDefault: 20Value Range:10\% to 50\%
Description
Value Range:
5 ms to 100 ms
Description
B8-43 Asynchronous motor FVC current model mode
\begin{tabular}{llll} 
Address: & \(0 \times B 82 B\) & Effective mode: \\
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable only at stop
\end{tabular}
Value Range:
0 to 1
Description
B8-44 Asynchronous motor FVC pre-excitation output observation angle mode
Address: 0xB82C Effective mode:
Min.: \(0 \quad\) Unit:
Max.: 1 Data type: Ulnt16
Default: 0
Change Changeable only at stop
Value Range:
0 to 1
Description
B8-45 Asynchronous motor SVC model switchover frequency
Address: 0xB82D Effective mode:
Min.: 10Unit: \(\%\)
Max.: 20Data type: Ulnt16Default: 15
Change: Changeable only at stop
Value Range:
10\% to 20\%
Description
B8-46 Asynchronous motor SVC observer filter timeAddress: 0xB82EEffective mode:
\begin{tabular}{llll} 
Min.: & 5 & Unit: & ms \\
Max.: & 50 & Data type: & Ulnt16 \\
Default: 10 & Change: & Changeable at any time \\
Value Range: & & \\
5 ms to 50 ms & & \\
Description & &
\end{tabular}
B8-47 Asynchronous motor SVC observer gain 1
\begin{tabular}{llll} 
Address: & \(0 x B 82 F\) & Effective mode: & - \\
Min.: & 10 & Unit: & \(\%\) \\
Max.: & 500 & Data type: & Ulnt16 \\
Default: & 100 & Change: & Changeable at any time
\end{tabular}
Value Range:
10\% to 500\%
Description
B8-48 Asynchronous motor SVC observer gain 2
\begin{tabular}{llll} 
Address: & \(0 \times\) B833 & Effective mode: \\
Min.: & 10 & Unit: & \(\%\) \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: & 20 & Change: & Changeable at any time
\end{tabular}
Value Range:
10\% to 100\%
Description
B8-49 Asynchronous motor SVC observer mode
Address: 0xB831 Effective mode:
Min.: \(0 \quad\) Unit:
Max.: 3
Default: 0

Data type: Ulnt16
Change: Changeable only at stop

\section*{Value Range:}
0 to 3
Description
B8-50 Asynchronous motor SVC pre-excitation mode
\begin{tabular}{lll} 
Address: & \(0 \times\) B832 & Effective mode: \\
Min.: & 0 & Unit: \\
Max.: & 1 & Data type: \\
Default: & 0 & Change:
\end{tabular}
Ulnt16
Default: 0
Value Range:
0 to 1
Description
B8-51 Asynchronous motor SVC speed tracking mode
\begin{tabular}{lll} 
Address: & \(0 \times B 833\) & Effective mode: \\
Min.: & 0 & Unit: \\
Max.: & 1 & Data type:
\end{tabular}

Default: 0
Value Range:
0 to 1
Description

B8-54 Synchronous motor 1 model control
Address: 0xB836
Min.: 0
Max.: 65535
Default: 5
Value Range:
Bit00: Low speed processing
Bit01: Low speed processing 1
Bit02: Online auto-tuning of resistance
Bit03: Online auto-tuning of back EMF
Bit04: KS
Description

B8-55 Synchronous motor model K1
Address: 0xB837
Min.: 10
Max.: 3000
Default: 200
Value Range:
10 to 3000
Description

B8-56 Synchronous motor model K1Max
Address: 0xB838
Min.: 100
Max.: 6000
Default: 3000
Value Range:
100 to 6000
Description

B8-57 Synchronous motor model KsMin
Address: 0xB839
Min.: \(\quad 0.0\)
Max.: \(\quad 4.0\)
Default: 0.3
Value Range:
0.0 to 4.0

Description

Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```
```

B8-58 Synchronous motor model Kspeed
Address: 0xB83A Effective mode:
Min.: 50
Max.: 2000
Default: 400
Value Range:
50 to 2000
Description
B8-59 Synchronous motor frequency filter time constant
Address: 0xB83B Effective mode: -
Min.: 2 Unit: ms
Max.: 100 Data type: Ulnt16
Default: }1
Change: Changeable at any time
Value Range:
2 ms to 100 ms
Description
B8-60 Frequency upper limit of synchronous motor Rs online auto-tuning
Address: 0xB83C Effective mode:
Min.: 1.0 Unit: %
Max.: }20.
Default: 3.5
Data type: Ulnt16
Change: Changeable at any time
Value Range:
1.0% to 20.0%
Description
B8-61 Synchronous motor model Kr
Address: 0xB83D Effective mode:
Min.: 0 Unit:
Max.: 50 Data type: Ulnt16
Default: }1
Change: Changeable at any time
Value Range:
0 to 50
Description
B8-62 Synchronous motor model Kr1

Address:	$0 x B 83 E$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	50	Data type:	Ulnt16
Default:	5	Change:	Changeable at any time

```

\section*{Value Range:}
```

0 to 50
Description
B8-63 Synchronous motor low-speed D axis injection current
Address: 0xB83F
Effective mode:

```
\begin{tabular}{|c|c|c|c|c|}
\hline & Min.: & 0 & Unit: & \% \\
\hline & Max.: & 100 & Data type: & Ulnt16 \\
\hline & Default: & 20 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0\% to 100 & & & \\
\hline & Descript & & & \\
\hline & - & & & \\
\hline B8-64 & Synchro & us motor & & \\
\hline & Address: & 0xB840 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 500 & Data type: & Ulnt16 \\
\hline & Default: & 50 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0 to 500 & & & \\
\hline & Descript & & & \\
\hline & - & & & \\
\hline B8-67 & Frequen & lower lim & to-tuning & \\
\hline & Address: & 0xB843 & Effective mode: & - \\
\hline & Min.: & 10 & Unit: & \% \\
\hline & Max.: & 100 & Data type: & Ulnt16 \\
\hline & Default: & 25 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 10\% to 1 & & & \\
\hline & Descript & & & \\
\hline & & & & \\
\hline B8-68 & Synchro & us motor & & \\
\hline & Address: & 0xB844 & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 2.0 & Data type: & Ulnt16 \\
\hline & Default: & 0.3 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0.0\% to 2 & & & \\
\hline & Descript & & & \\
\hline & - & & & \\
\hline B8-69 & Synchro & us motor & & \\
\hline & Address: & 0xB845 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 100 & Data type: & Ulnt16 \\
\hline & Default: & 10 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0 to 100 & & & \\
\hline & Descript & & & \\
\hline & - & & & \\
\hline B8-70 & Percent & of pole & & \\
\hline & Address: & 0xB846 & Effective mode: & - \\
\hline & Min.: & 50 & Unit: & \% \\
\hline & Max.: & 200 & Data type: & Ulnt16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Default: 100} & Change: & \multirow[t]{2}{*}{Changeable at any time} \\
\hline & \multicolumn{3}{|l|}{Value Range:} & \\
\hline & \multicolumn{4}{|l|}{50\% to 200\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{B8-71} & \multicolumn{4}{|l|}{Percentage of high frequency response current} \\
\hline & Address: & 0xB847 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & \% \\
\hline & Max.: & 100 & Data type: & Ulnt16 \\
\hline & Default: & 25 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0\% to 100\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{B8-72} & \multicolumn{4}{|l|}{Percentage of HFI and SVC switching frequency} \\
\hline & Address: & 0xB848 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & \% \\
\hline & Max.: & 30 & Data type: & Ulnt16 \\
\hline & Default: & 10 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0\% to 30\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{B8-73} & \multicolumn{4}{|l|}{Observer parameter} \\
\hline & Address: & 0xB849 & Effective mode: & - \\
\hline & Min.: & 10 & Unit: & - \\
\hline & Max.: & 200 & Data type: & Ulnt16 \\
\hline & Default: & 100 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{10 to 200} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{B8-74} & \multicolumn{4}{|l|}{Speed filter cut-off frequency} \\
\hline & Address: & 0xB84A & Effective mode: & - \\
\hline & Min.: & 1 & Unit: & Hz \\
\hline & Max.: & 200 & Data type: & Ulnt16 \\
\hline & Default: & 10 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{1 Hz to 200 Hz} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{6}{*}{B8-75} & \multicolumn{4}{|l|}{Carrier frequency during NS auto-tuning} \\
\hline & Address: & 0xB84B & Effective mode: & - \\
\hline & Min.: & 2.00 & Unit: & Hz \\
\hline & Max.: & 16.00 & Data type: & Ulnt16 \\
\hline & Default: & 8.00 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline
\end{tabular}
2.00 Hz to 16.00 Hz

Description

B8-76 Automatic calculation of NS auto-tuning voltage
\begin{tabular}{llll} 
Address: & \(0 \times B 84 C\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16 \\
Default: & 1 & Change: & Changeable at any time \\
Value Range: & & \\
0 to 1 & & & \\
Description & & &
\end{tabular}

B8-77 Percentage of NS auto-tuning voltage set manually
Address: 0xB84D
Min.: 0 Unit
Max.: \(\quad 100\)
Default: 10
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0\% to 100\%
Description

B8-78 Duration of HFI stage 1
Address: 0xB84E
Min.: 50
Max.: 500
Default: 150
Effective mode:
Unit: ms
Data type: Ulnt16
Change: Changeable at any time
Value Range:
50 ms to 500 ms
Description

B8-80 Speed loop command word
Address: 0xB850 Effective mode: -
Min.: 0 Unit:
Max.: 65535
Default: 11
Data type: Ulnt16
Change: Changeable at any time
Value Range:

Bit00: Speed loop
0 : Disabled
1: Enabled
Bit01: Integration mode
0 : Conventional integration
1: Position integration
Bit02: Acceleration torque
0 : Disabled
1: Enabled
Bit03-Bit04: Acceleration source
0 : Function transfer torque
1: Automatic calculation
2: Function transfer acceleration
Bit05: Anti-load disturbance
0: Disabled
1: Enabled
Description

\section*{B8-81 Locked-rotor fast integral cancel coefficient}

Address: 0xB851
Min.: 0.0
Max.: 100.0
Default: 0.0
Value Range:
0.0\% to +100.0\%

Description

\section*{B8-82 Integral torque}

Address: 0xB852
Min.: \(\quad-100\)
Max.: \(\quad 100.0\)
Default: 0.0
Value Range:
-100\% to +100.0\%
Description

B8-83 Speed controller frequency window size
\begin{tabular}{llll} 
Address: & \(0 \times B 853\) & Effective mode: & - \\
Min.: & 0.00 & Unit: & Hz \\
Max.: & 10.00 & Data type: & UInt16 \\
Default: 0.00 & Change: & Changeable only at stop \\
Value Range: & & \\
0.00 Hz to 10.00 Hz & & \\
Description & &
\end{tabular}
Current filter time for torque reference
\begin{tabular}{llll} 
Address: & \(0 \times B 854\) & Effective mode: & - \\
Min.: & 0.0 & Unit: & ms \\
Max.: & 100.0 & Data type: & Ulnt16 \\
Default: 0.0 & Change: & Changeable only at stop \\
Value Range: & & \\
0.0 ms to 100.0 ms & & \\
Description & &
\end{tabular}
B8-85 Acceleration torque
Address: 0xB855 Effective mode: -

Min.: 0
Max.: 8
Default: 0
Value Range:
0 : Inactive
1: AI1
2: Al2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

Unit:
Data type: Ulnt16
Change: Changeable at any time
B8-87 Reference model bandwidth
\begin{tabular}{llll} 
Address: & 0xB857 & Effective mode: & - \\
Min.: & 0.00 & Unit: & Hz \\
Max.: & 300.00 & Data type: & Ulnt16 \\
Default: & 0.00 & Change: & Changeable at any time
\end{tabular}
B8-88 Torque feedforward coefficient
Address: 0xB858
Min.: 0.0
Max.: \(\quad 1000.0\)
Default: 100.0

\section*{Value Range:}
0.0\% to \(1000.0 \%\)

\section*{Description}
B8-89 Vector control reference frequency filter time
Address: 0xB859
Effective mode:
\begin{tabular}{llll} 
Min.: & 0.0 & Unit: & ms \\
Max.: & 100.0 & Data type: & Ulnt16 \\
Default: 0.0 & Change: & Changeable only at stop \\
Value Range: & & \\
0.0 ms to 100.0 ms & & \\
Description & &
\end{tabular}

\section*{B8-90 Vector control feedback frequency filter time}

Address: 0xB85A
Min.: 0.0
Max.: \(\quad 100.0\)
Default: 0.0
Value Range:
0.0 ms to 100.0 ms

Description

B8-91 Load observation bandwidth
\begin{tabular}{llll} 
Address: & 0xB85B & Effective mode: & - \\
Min.: & 0.00 & Unit: & Hz \\
Max.: & 300.00 & Data type: & Ulnt16 \\
Default: & 0.00 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.00 Hz to 300.00 Hz

Description

B8-92 Load observation coefficient
\begin{tabular}{llll} 
Address: & \(0 \times B 85 C\) & Effective mode: & - \\
Min.: & 0.0 & Unit: & \(\%\) \\
Max.: & 1000.0 & Data type: & Ulnt16 \\
Default: & 100.0 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}
0.0\% to 1000.0\%

\section*{Description}

B8-93 Pseudo integral coefficient
\begin{tabular}{ll} 
Address: & \(0 x B 85 D\) \\
Min.: & 0.000 \\
Max.: & 10.000 \\
Default: & 1.000
\end{tabular}

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

\section*{Value Range:}
0.000 to 10.000

\section*{Description}

B8-94 Torque coefficient enable
\begin{tabular}{llll} 
Address: & \(0 \times B 85 E\) & Effective mode: - \\
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16
\end{tabular}
Default: 0
Change:
Changeable at any time

Value Range:
0: Disabled
1: Enabled
Description

B8-96 Center frequency of notch filter 1
\begin{tabular}{llll} 
Address: & \(0 x B 860\) & Effective mode: & - \\
Min.: & 0.0 & Unit: & - \\
Max.: & 4000.0 & Data type: & Ulnt16 \\
Default: & 4000.0 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}
0.0 to 4000.0

Description

B8-97 Center frequency of notch filter 2
\begin{tabular}{ll} 
Address: & \(0 x B 861\) \\
Min.: & 0.0 \\
Max.: & 4000.0 \\
Default: & 4000.0
\end{tabular}

\section*{Value Range:}
0.0 to 4000.0

\section*{Description}

B8-98 Integral setting control word
Address: 0xB862
Min.: \(\quad 0\)
Max.: 1
Default: 0
Value Range:
0 : Disabled
1: Enabled
Others: B connector
Description

B8-99 Integral reference source
Address: 0xB863
Min.: 0
Max.: 8
Default: 0
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

0: Digital setting
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

\subsection*{4.33 B9: Motor 2 Vector Control Parameters 2}

B9-00 Externally transferred acceleration

Address: 0xB900
Min.: 0
Max.: 8
Default: 0
Value Range:
0 : Inactive
1: AI1
2: AI2
3: Al3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Overturning torque limiting coefficient
Address: 0xB903
Min.: 0.0
Max.: \(\quad 400.0\)
Default: 100.0
Value Range:
0.0\% to 400.0\%

Description

B9-04 Motoring power limiting coefficient
Address: 0xB904
Min.: 0.0
Max.: \(\quad 400.0\)

Effective mode: -
Unit: \%
Data type: Ulnt16

Default: 400.0
Value Range:
0.0\% to 400.0\%

Description

B9-05 Generating power limiting coefficient
Address: 0xB905
Min.: \(\quad 0.0\)
Max.: 400.0
Default: 400.0
Value Range:
0.0\% to 400.0\%

Description

B9-06 Overspeed limiting enable
Address: 0xB906
Min.: \(\quad 0\)
Max.: \(\quad 1\)
Default: 1
Value Range:
0 to 1
Description

B9-07 Sine wave frequency of bandwidth test
Address: 0xB907
Min.: 0
Max.: 1000
Default: 0
Value Range:
0 Hz to 1000 Hz
Description

B9-08 Sine wave amplitude of bandwidth test
Address: 0xB908
Min.: 0
Max.: 100
Default: 0
Value Range:
0\% to 100\%
Description

Change: Changeable at any time

Effective mode:
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time

B9-09 Bandwidth test enable
Address: 0xB909
Min.: \(\quad 0\)
Max.: 4
Default: 0
Value Range:
```

0 to 4
Description

```

B9-11 Speed loop parameter calculation mode
\begin{tabular}{llll} 
Address: & \(0 \times B 90 B\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: 1 & Data type: & Ulnt16 \\
Default: 1 & Change: & Changeable only at stop \\
Value Range: & & \\
0: New solution & & \\
1: Compatible solution & & \\
Description & &
\end{tabular}

B9-12 Speed loop proportional gain in FVC mode

Address: 0xB90C
Min.: \(\quad 0.00\)
Max.: \(\quad 100.00\)
Default: 8.00
Value Range:
0.00 Hz to 100.00 Hz

Description

B9-13 Speed loop integral time in FVC mode
Address: 0xB90D
Min.: 0.000
Max.: \(\quad 20.000\)
Default: 0.080
Value Range:
0.000 s to 20.000 s

\section*{Description}

B9-14 Speed loop proportional gain in SVC mode
Address: 0xB90E
Min.: \(\quad 0.00\)
Max.: \(\quad 100.00\)
Default: 5.00
Value Range:
0.00 Hz to 100.00 Hz

\section*{Description}

\section*{B9-15}

Speed loop integral time in SVC mode
\begin{tabular}{ll} 
Address: & \(0 x B 90 F\) \\
Min.: & 0.000 \\
Max.: & 20.000 \\
Default: & 0.127
\end{tabular}

Value Range:
\begin{tabular}{ll} 
Effective mode: & - \\
Unit: & Hz \\
Data type: & Ulnt16 \\
Change: & Changeable at any time
\end{tabular}

Effective mode: -
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: s

Data type: Ulnt16
Change: Changeable at any time

\subsection*{0.000 s to 20.000 s}

\section*{Description}

B9-16 Low frequency proportional correction coefficient
Address: 0xB910

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Default: 100.0
Value Range:
0.0\% to 1000.0\%

Description

B9-17 Low frequency integral correction coefficient

Address: 0xB911
Min.: 0.0
Max.: 1000.0
Default: 100.0

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Value Range:
0.0\% to 1000.0\%

\section*{Description}

B9-18 Speed loop adaption factor
\begin{tabular}{llll} 
Address: & \(0 \times B 912\) & Effective mode: & - \\
Min.: & 0.000 & Unit: & - \\
Max.: & 10.000 & Data type: & Ulnt16 \\
Default: & 0.200 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}
0.000 to 10.000

Description

B9-19 Speed loop adaption switchover lower limit
\begin{tabular}{llll} 
Address: & \(0 \times B 913\) & Effective mode: & - \\
Min.: & 0.000 & Unit: & - \\
Max.: & 10.000 & Data type: & Ulnt16 \\
Default: & 0.400 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.000 to 10.000

Description

B9-20 Speed loop adaption switchover upper limit
\begin{tabular}{llll} 
Address: & \(0 \times B 914\) & Effective mode: & - \\
Min.: & 0.000 & Unit: & - \\
Max.: & 10.000 & Data type: & Ulnt16 \\
Default: & 1.000 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.000 to 10.000

\section*{Description}

B9-21 Speed loop adaption correction upper limit
Address: 0xB915
Min.: 0.0
Max.: \(\quad 1000.0\)
Default: 100.0
Value Range:
0.0\% to 1000.0\%

\section*{Description}

B9-22 Speed loop adaption correction lower limit
Address: 0xB916
Min.: 0.0
Max.: 1000.0
Default: 100.0

\section*{Value Range:}
0.0\% to 1000.0\%

\section*{Description}

B9-23 Flux adaptation enable
\begin{tabular}{llll} 
Address: & \(0 x B 917\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

0 to 1
Description
Effective mode: -
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

B9-24 Overspeed controller correction coefficient
Address: 0xB918 Effective mode: -

Min.: 0.0
Max.: 1000.0
Default: 100.0

\section*{Value Range:}
0.0\% to 1000.0\%

\section*{Description}

B9-25 VDC control command word
\begin{tabular}{llll} 
Address: & \(0 x\) B919 & Effective mode: - \\
Min.: & 0 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

Bit00: VdcMin
0: Disabled
1: Enabled
Bit01: VdcMax
0: Disabled
1: Enabled
Bit02: Automatic calculation of VDC trigger voltage
0 : Disabled
1: Enabled
Bit03: VDC control integral action
0: Disabled
1: Enabled
Description

\section*{B9-26 Bus capacitance ratio}
\begin{tabular}{llll} 
Address: & \(0 x B 91 A\) & Effective mode: & - \\
Min.: & 50.0 & Unit: & \(\%\) \\
Max.: & 1000.0 & Data type: & Ulnt16 \\
Default: & 100.0 & Change: & Changeable at any time
\end{tabular}

Value Range:
50.0\% to 1000.0\%

\section*{Description}

B9-27 Undervoltage suppression exit hysteresis frequency
Address: 0xB91B
Min.: 0.00
Max.: \(\quad 10.00\)
Default: 3.00
Value Range:
0.00 Hz to 10.00 Hz

Description

B9-28 Minimum VDC failure speed threshold
\begin{tabular}{llll} 
Address: & 0xB91C & Effective mode: & - \\
Min.: & 0.00 & Unit: & Hz \\
Max.: & 20.00 & Data type: & Ulnt16 \\
Default: & 2.00 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.00 Hz to 20.00 Hz

Description

B9-29 Dynamic adjustment coefficient
\begin{tabular}{llll} 
Address: & 0xB91D & Effective mode: & - \\
Min.: & 0.0 & Unit: & \(\%\) \\
Max.: & 1000.0 & Data type: & Ulnt16 \\
Default: & 100.0 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}
0.0\% to 1000.0\%

Description

B9-30 Minimum VDC activation voltage
Address: 0xB91E
Min.: 320.0
Max.: \(\quad 540.0\)
Default: 430.0
Value Range:
320.0 V to 540.0 V

Description

B9-31 Maximum VDC activation voltage
Address: 0xB91F
Min.: 650.0
Max.: 800.0
Default: 770.0
Value Range:
650.0 V to 800.0 V

\section*{Description}

B9-32 Flux linkage control command word
Address: 0xB920
Min.: 0
Max.: 65535
Default: 2357
Value Range:

Effective mode: -
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Bit00: Output voltage limit calculation filtering mode
0 : Symmetric filtering
1: Asymmetric filtering
Bit01: Asynchronous motor inverse proportion curve calculation
0 : The inverse proportional synchronization frequency decreases.
1: The inverse proportional speed decreases.
Bit02: Flux linkage feedforward calculation by using inverse proportional speed
0: Disabled
1: Enabled
Bit03: Reserved
Bit04: Reserved
Bit05: Field weakening adjustment
0: Disabled
1: Enabled
Bit06: Flux linkage derivative feedforward
0: Disabled
1: Enabled
Bit07: Energy conservation control
0 : Disabled
1: Enabled
Bit08: Asynchronous motor flux closed loop
0: Disabled
1: Enabled
Bit09: Reserved
Bit10: Reserved
Bit11: Asynchronous motor pre-excitation mode
0 : Pre-excitation based on time
1: Pre-excitation based on current
Bit12: Asynchronous motor pre-excitation current
0: Reference current
1: Maximum current allowed by the drive

\section*{Description}

Bit00: Output voltage limit calculation filtering mode
0 indicates the usual first-order filtering, and 1 indicates filtering when the bus voltage rises and no filtering when it falls, so as to avoid overmodulation.

Bit01: Asynchronous motor inverse proportion curve calculation
You can select 1 to deliberately lower the break frequency to avoid saturation in the field-weakening range. The setting is valid only when Bit02 is set to 1 .
Bit02: Flux linkage feedforward calculation by using inverse proportional speed
If it is set to 1 , the inverse proportional speed of flux linkage reference decreases when the output
frequency exceeds the break frequency, which can improve dynamic response during acceleration.
Bit05: Field weakening adjustment
When it is set to 1 , voltage outer loop adjustment is valid.
Bit07: Energy conservation control
This function is valid for asynchronous motors. It can reduce copper loss at light load in vector control mode.
Bit11: Asynchronous motor pre-excitation mode

0 : Pre-excitation is implemented according to the set time. The time will be shorter than the set time if remanence exists.
1: Fixed current is output during the pre-excitation process, and the motor exits the pre-excitation mode when it detects that the flux linkage reaches the setpoint.
Bit12: Asynchronous motor pre-excitation current
0 : Pre-excitation is implemented based on the current defined by AB-51.
1: Pre-excitation is implemented based on the maximum current allowed by the drive, which can shorten the pre-excitation time.

\section*{B9-33 Output voltage upper limit margin for field weakening adjustment}

Address: 0xB921
Min.: \(\quad 1\)
Max.: 50
Default: 5
Value Range:
1\% to 50\%
Description
Decreasing the setpoint can improve voltage utilization. The current is smaller under the same load in the field weakening region. However, an excessively small setpoint will affect dynamic performance.

B9-34 Output voltage upper limit margin for auto adjustment of field weakening
Address: 0xB922
Effective mode:
Min.: \(\quad 1\)
Max.: \(\quad 20\)
Default: 3
Value Range:
1\% to 20\%
Description
When F2-18 is set to 2 (calculation+auto adjustment), the value of this parameter affects the voltage margin, and the effect is similar to that of AB-33.

B9-35 Filter time for calculating maximum output voltage
\begin{tabular}{llll} 
Address: & \(0 x\) B923 & Effective mode: & - \\
Min.: & 0 & Unit: & ms \\
Max.: & 3000 & Data type: & Ulnt16 \\
Default: & 30 & Change: & Changeable at any time
\end{tabular}

Defaut. 30
Value Range:
0 ms to 3000 ms

\section*{Description}

Increasing the filter time allows the maximum output voltage to change slowly but affects voltage utilization.

B9-36 Rated flux adjustment coefficient for calculation
\begin{tabular}{llll} 
Address: & \(0 \times B 924\) & Effective mode: & - \\
Min.: & 0.5 & Unit: & - \\
Max.: & 2.0 & Data type: & Ulnt16 \\
Default: & 1.0 & Change: & Changeable at any time \\
Value Range: & & \\
0.5 to 2.0 & &
\end{tabular}

Value Range:
0.5 to 2.0

Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

\section*{Description}

You can decrease the value of this parameter if underexcitation is required, or increase it if overexcitation is required.

B9-37 Field weakening frequency adjustment coefficient for calculation
Address: 0xB925 Effective mode: -
Min.: \(0.8 \quad\) Unit: -
Max.: 1.2 Data type: Ulnt16

Default: \(1.0 \quad\) Change: Changeable at any time
Value Range:
0.8 to 1.2

Description
This parameter is used to adjust the break frequency calculated automatically by the AC drive. After flux linkage feedforward calculation by using inverse proportional speed is enabled, deceasing the value of this parameter enables the motor to enter the field weakening state in advance, which is applicable to occasions with short acceleration time and high dynamic response requirements.

B9-38 Slip filter time for calculating field weakening frequency
Address: 0xB926 Effective mode:
Min.: \(0 \quad\) Unit: ms

Max.: \(3000 \quad\) Data type: Ulnt16
Default: 62 Change: Changeable at any time
Value Range:
0 ms to 3000 ms

\section*{Description}

When flux linkage feedforward calculation by using inverse proportional speed is enabled, increasing the value of this parameter can reduce the fluctuation range of the calculated reference flux linkage.

\section*{B9-39 Feedback speed filtering}
\begin{tabular}{llll} 
Address: & \(0 \times B 927\) & Effective mode: & - \\
Min.: & 0 & Unit: & ms \\
Max.: & 8000 & Data type: & Ulnt16 \\
Default: & 50 & Change: & Changeable at any time
\end{tabular}

Value Range:
0 ms to 8000 ms
Description
When flux linkage feedforward calculation by using inverse proportional speed is enabled, increasing the value of this parameter can reduce the disturbance to the calculated flux linkage feedforward introduced by speed test.

B9-40 Flux linkage rising filter time
Address: 0xB928 Effective mode: -
Min.: \(0 \quad\) Unit: ms
Max.: 8000 Data type: Ulnt16

Default: 20 Change: Changeable at any time
Value Range:
0 ms to 8000 ms
Description
When flux linkage feedforward calculation by using inverse proportional speed is enabled, this parameter defines the filter time of the asymmetric filter that takes effect only when the reference flux linkage increases.

B9-42 Feedback voltage filter time
Address: 0xB92A Effective mode: -
Min.: 0 Unit: ms
Max.: 3000 Data type: Ulnt16
Default: 5
Change: Changeable at any time
Value Range:
0 ms to 3000 ms
Description
When field weakening adjustment is enabled, increasing this filter time can reduce the fluctuation of the reference excitation current. To increase the field weakening gain, you need to decrease the filter time to avoid system oscillation.

B9-43 Maximum demagnetization current of synchronous motor
\begin{tabular}{llll} 
Address: & \(0 x B 92 B\) & Effective mode: & - \\
Min.: & 0 & Unit: & \(\%\) \\
Max.: & 500 & Data type: & Ulnt16 \\
Default: & 300 & Change: & Changeable at any time
\end{tabular}

Value Range:
0\% to 500\%

\section*{Description}

This parameter is used to limit the demagnetization current of synchronous motors to prevent faults such as overload. It is a percentage relative to the rated current.

\section*{B9-44 Voltage outer loop lower limit coefficient}
\begin{tabular}{llll} 
Address: & \(0 x B 92 C\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 500 & Data type: & Ulnt16 \\
Default: & 50 & Change: & Changeable at any time
\end{tabular}

Value Range:
0 to 500
Description
This parameter is used to limit the lower limit of flux linkage during field weakening for asynchronous motors to avoid limiting torque reduction.

B9-45 Flux linkage derivative feedforward coefficient
Address: 0xB92D Effective mode: -
Min.: 0.0 Unit: -
Max.: 1.5 Data type: Ulnt16
Default: \(1.0 \quad\) Change: Changeable at any time
Value Range:
0.0 to 1.5

\section*{Description}

When flux linkage derivative feedforward of an asynchronous motor is enabled, this parameter can adjust the ratio of effective feedforward. A smaller value indicates smaller feedforward effect.

B9-46 Flux linkage derivative feedforward filter time
\begin{tabular}{llll} 
Address: & 0xB92E & Effective mode: & - \\
Min.: & 0 & Unit: & ms \\
Max.: & 3000 & Data type: & Ulnt16 \\
Default: & 6 & Change: & Changeable at any time
\end{tabular}

Value Range:

\section*{0 ms to 3000 ms}

\section*{Description}

Increasing the filter time can reduce the fluctuation of the calculated feedforward value.

Torque current rising filter time under energy conservation control
Address: 0xB92F
Effective mode: -
Min.: 0
Max.: 3000
Unit: ms

Default: 50
Data type: Ulnt16
Change: Changeable at any time

\section*{Value Range:}

0 ms to 3000 ms

\section*{Description}

When energy conservation control of an asynchronous motor is enabled, decreasing the value of this parameter can improve dynamic response and avoid a large drop in speed when a sudden load is applied. You need to increase this value when the output current fluctuates greatly.

B9-48 Torque current falling filter time under energy conservation control
Address: 0xB930
Min.: 0
Max.: 3000
Default: 100
Value Range:
0 ms to 3000 ms
Description
When energy conservation control of an asynchronous motor is enabled, decreasing the value of this parameter can make the output current decrease rapidly after the load is reduced. You need to increase this value when the output current fluctuates greatly.

Flux linkage lower limit coefficient under energy conservation control

Address: 0xB931
Min.: \(\quad 0.00\)
Max.: \(\quad 0.50\)
Default: 0.10

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:
0.00 to 0.50

Description
This parameter defines the minimum flux linkage allowed under energy conservation control. A smaller value indicates more significant energy conservation effect when no load is applied, but it will affect dynamic response after the load is added.
-excitation current
Address: 0xB933 Effective mode: -
Min.: 1 Unit:
Max.: 200
Default: 100
Data type: Ulnt16
Change: Changeable at any time
Value Range:
1\% to 200\%
Description
When pre-excitation of an asynchronous motor is implemented based on current, this parameter defines the reference excitation current as a percentage of the rated current.
Pre-excitation time

Address: 0xB934
Min.: 1
Max.: 30000
Default: 1000
Value Range:
1 ms to 30000 ms
Description
When pre-excitation of an asynchronous motor is implemented based on time, this parameter defines the total excitation time. The actual excitation time will be shorter than the set time if remanence exists.

Flux linkage closed-loop bandwidth frequency
\begin{tabular}{llll} 
Address: & \(0 x B 935\) & Effective mode: & - \\
Min.: & 0.0 & Unit: & Hz \\
Max.: & 100.0 & Data type: & Ulnt16 \\
Default: & 2.0 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.0 Hz to 100.0 Hz

\section*{Description}

When flux closed loop is enabled, increasing the setpoint can reduce the deviation of the flux linkage from the rated value during dynamic processes such as sudden load or acceleration and deceleration of the asynchronous motor.

Feedback flux linkage filter time coefficient
Address: 0xB936 Effective mode: -
Min.: 0 Unit: -
Max.: 200 Data type: Ulnt16
Default: 4 Change: Changeable at any time
Value Range:
0 to 200
Description
When flux closed loop is enabled, increasing the setpoint can reduce fluctuation of the reference flux linkage. It is a percentage relative to the rotor time constant.

Static output flux linkage filter time
\begin{tabular}{llll} 
Address: & \(0 \times\) B93 & Effective mode: & - \\
Min.: & 0 & Unit: & ms \\
Max.: & 5000 & Data type: & Ulnt16 \\
Default: & 10 & Change: & Changeable at any time
\end{tabular}

Value Range:
0 ms to 5000 ms
Description
Increasing the setpoint can reduce fluctuation of the reference flux linkage.

Current loop mode
Address: 0xB938
Min.: \(0 \quad\) Unit: -
Max.: 3 Data type: Ulnt16
Default: 1 Change: Changeable only at stop
Value Range:
\begin{tabular}{ll} 
Effective mode: & - \\
Unit: & ms \\
Data type: & Ulnt16 \\
Change: & Changeable at any time
\end{tabular}
```

0: ImCsr2 mode
1: Complex vector mode
2: }880\mathrm{ mode
3: No field weakening
Description
Decreasing the value of this parameter can enhance current loop following but also increase the
overshoot and harmonics of the output current.
B9-57 PI regulator proportional gain adaptation with load

Address:	$0 \times B 939$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0 to 1
Description
B9-58 Current loop damping
Address: 0xB93A Effective mode:
Min.: 0.2 Unit: -
Max.: 5.0 Data type: Ulnt16
Default: 0.8 Change: Changeable at any time
Value Range:
0 . 2 ~ t o ~ 5 . 0 ~

```

\section*{Description}
```

Decreasing the value of this parameter can enhance current loop following but also increase the overshoot and harmonics of the output current.

```

\section*{B9-59 Low-speed current loop Kp adjustment}
```

Address:	0xB93B	Effective mode:	-
Min.:	0.1	Unit:	-
Max.:	10.0	Data type:	Ulnt16
Default:	1.0	Change:	Changeable at any time

Value Range:
0.1 to 10.0

```

\section*{Description}
```

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.
B9-60 High-speed current loop Kp adjustment
Address: 0xB93C Effective mode: -
Min.: 0.1
Max.: $\quad 10.0$
Default: 1.0
Value Range:
0.1 to 10.0

```

\section*{Description}

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.

B9-61 Low-speed current loop Ki adjustment
Address: 0xB93D Effective mode:
Min.: 0.1 Unit:
Max.: \(10.0 \quad\) Data type: Ulnt16
Default: 1.0 Change: Changeable at any time

Value Range:
0.1 to 10.0

\section*{Description}

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.

B9-62 High-speed current loop Ki adjustment
Address: 0xB93E Effective mode: -
Min.: 0.1 Unit: -

Max.: 10.0 Data type: Ulnt16
Default: \(2.0 \quad\) Change: Changeable at any time

\section*{Value Range:}
0.1 to 10.0

\section*{Description}

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.

B9-63 D-axis current loop complex vector adjustment

Address: 0xB93F
Min.: 0.1
Max.: \(\quad 10.0\)
Default: 1.0
Value Range:
0.1 to 10.0

\section*{Description}

B9-64 Q-axis current loop complex vector adjustment
Address: 0xB940
Min.: 0.1
Max.: \(\quad 10.0\)
Default: 1.0

\section*{Value Range:}
0.1 to 10.0

Description

B9-65 Complex vector hysteresis frequency lower limit as a percentage of rated frequency
Address: 0xB941
Effective mode:
\begin{tabular}{llll} 
Min.: & 0 & Unit: & \% \\
Max.: & B9-66 & Data type: & Ulnt16 \\
Default: 0 & Change: & Changeable at any time \\
Value Range: & & \\
0\% to \begin{tabular}{l} 
B9-66
\end{tabular} & & \\
Description & &
\end{tabular}

B9-66 Complex vector hysteresis frequency upper limit as a percentage of rated frequency
\begin{tabular}{llll} 
Address: & \(0 \times\) B942 & Effective mode: \\
Min.: & B9-65 & Unit: & \(\%\) \\
Max.: & 150 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

Value Range:
B9-65 to 150\%
Description

ImCsr2 hysteresis switchover voltage upper limit as a percentage of saturation voltage
Address: 0xB943

Effective mode:
Min.: B9-68
Max.: 95
Default: 89
Unit: \%
Data type: Ulnt16
Change: Changeable at any time
Value Range:
B9-68 to 95\%
Description
mCsr2 hysteresis switchover voltage lower limit as a percentage of saturation voltage
Address: 0xB944
Min.: 60
Max.: B9-67
Default: 79
Value Range:
60\% to B9-67
Description

Effective mode: -
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time
-

ImCsr2 hysteresis switchover frequency hysteresis range as a percentage of rated frequency
Address: 0xB945 Effective mode:
Min.: 1 Unit:
Max.: \(30 \quad\) Data type: Ulnt16
Default: 10 Change: Changeable at any time
Value Range:
1\% to 30\%
Description
-

ImCsr2 hysteresis switchover frequency lower limit (below which the hysteresis condition does not take effect) as a percentage of the rated frequency
Address: 0xB946
Effective mode:
\begin{tabular}{llll} 
Min.: & 40 & Unit: & \% \\
Max.: & 80 & Data type: & Ulnt16 \\
Default: & 60 & Change: & Changeable at any time \\
Value Range: & & \\
40\% to \(80 \%\) & & \\
Description & &
\end{tabular}

B9-71 ImCsr2 current loop Kss adjustment
Address: 0xB947 Effective mode:
Min.: 0.1
Max.: 10.0
Default: 1.0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.1 to 10.0

Description

B9-72 Proportional gain adjustment coefficient corresponding to the maximum torque when proportional gain is adjusted with load
\begin{tabular}{llll} 
Address: & \(0 \times B 948\) & Effective mode: & - \\
Min.: & 0.1 & Unit: & - \\
Max.: & 1.0 & Data type: & Ulnt16 \\
Default: & 0.5 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.1 to 1.0

Description

B9-73 Torque upper limit setpoint as a percentage of rated torque when proportional gain is adjusted with load
Address: 0xB949 Effective mode: -
Min.: B9-74 Unit: \%
Max.: \(300 \quad\) Data type: Ulnt16
Default: 200 Change: Changeable at any time
Value Range:
B9-74 to 300\%
Description

B9-74 Torque lower limit setpoint as a percentage of rated torque when proportional gain is adjusted with load
Address: 0xB94A Effective mode: -
Min.: \(\quad 10\)
Max.: B9-73
Default: 100
Value Range:
10\% to B9-73
Description

B9-75 Derivative feedforward adjustment
\begin{tabular}{llll} 
Address: & \(0 x B 94 B\) & Effective mode: - \\
Min.: & 0.0 & Unit: & - \\
Max.: & 1.0 & Data type: & Ulnt16 \\
Default: 0.0 & Change: & Changeable at any time \\
Value Range: & & \\
0.0 to 1.0 & & \\
Description & &
\end{tabular}

B9-76 Decoupling control start frequency as a percentage of rated frequency
Address: 0xB94C
Min.: 20
Max.: 150
Effective mode:
Unit: \%

Default: 40
Data type: Ulnt16
Change: Changeable at any time
Value Range:
20\% to 150\%
Description

B9-77 Decoupling control filter time adjustment coefficient
Address: 0xB94D

Max.: \(3.0 \quad\) Data type: Ulnt16
Default: \(1.0 \quad\) Change: Changeable at any time
Value Range:
0.1 to 3.0

Description

B9-78 Decoupling control output adjustment coefficient
Address: 0xB94E
Min.: 0.0
Max.: \(\quad 1.0\)
Default: 1.0
Effective mode:
Unit:
Data type: Ulnt16

Value Range:
0.0 to 1.0

Description

B9-79 CPC feedforward enable
\begin{tabular}{llll} 
Address: & \(0 x B 94 F\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

0: Disabled
1: Enabled
Description

\section*{B9-80 Current loop auxiliary command word}
\begin{tabular}{llll} 
Address: & 0xB950 & Effective mode: \\
Min.: & 0 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

Value Range:
Bit00: Complex vector angle limiting
0 : Disabled
1: Enabled
Bit01: Voltage angle limiting
0 : Program internal limiting
1: Parameter setting
Bit02: 0 by default
0 : No lower limit on the excitation current is imposed during the dynamic process.
1: A lower limit on the excitation current is imposed during the dynamic process in ImCsr2 mode.
Bit03-Bit15: Reserved (0 by default)
Description

B9-81 Voltage angle upper limit
Address: 0xB951
Min.: 90
Max.: 180
Default: 150
Value Range:
\(90^{\circ}\) to \(180^{\circ}\)
Description

B9-82 Voltage angle lower limit
Address: 0xB952
Effective mode: -
Min.: 0
Max.: 90
Default: 30
Unit: 。
Data type: Ulnt16
Change: Changeable at any time
Value Range:
\(0^{\circ}\) to \(90^{\circ}\)

\section*{Description}

B9-83 Asynchronous motor D axis integral limit
\begin{tabular}{llll} 
Address: & \(0 \times\) B953 & Effective mode: & - \\
Min.: & 0.500 & Unit: & - \\
Max.: & 1.000 & Data type: & Ulnt16 \\
Default: & 0.707 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.500 to 1.000

Description

\section*{B9-84 Current loop carrier frequency upper limit}

Address: 0xB954
Min.: 5.0
Max.: 16.0
Default: 8.0
Value Range:
5.0 to 16.0

Description

B9-85 Droop enable
Address: 0xB955
Min.: 0
Max.: 1
Default: 0
Value Range:
0 to 1
Description

B9-86 Droop source
Address: 0xB956
Min.: 0
Max.: 3
Default: 1
Value Range:
0: Line current
1: Torque reference
2: Speed adjustment output
3: Speed adjustment integral component
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

B9-87 Frequency reference droop coefficient

Address: 0xB957
Min.: 0.0
Max.: 50.0
Default: 0.0
Value Range:
0.0\% to 50.0\%

Description

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

B9-88 FVC-SVC switchover mode

Address: 0xB958
Min.: 0
Max.: 3
Default: 0
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

0: No switchover
1: Active switchover
2: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during stop and does not switch back to FVC mode when the encoder recovers during running.)
3: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during running or stop.)

\section*{Description}

B9-89 FVC-SVC switchover frequency
\begin{tabular}{llll} 
Address: & 0xB959 & Effective mode: \\
Min.: & 10 & Unit: & \(\%\) \\
Max.: & 500 & Data type: & Ulnt16 \\
Default: & 50 & Change: & Changeable only at stop
\end{tabular}

\section*{Value Range:}

10\% to 500\%
Description

B9-90 FVC-SVC switchover hysteresis
Address: 0xB95A Effective mode:
Min.: \(\quad 10\)
Max.: 100
Default: 10
Value Range:
10\% to 100\%
Description
\begin{tabular}{ll} 
Effective mode: & - \\
Unit: & \(\%\) \\
Data type: & Ulnt16 \\
Change: & Changeable only at stop
\end{tabular}
-

\subsection*{4.34 BA: Motor 3 Nameplate and Learning Parameters}

\section*{BA-00 Motor type}

Address: \(0 x B A 00\)
Min.: 0
Max.: 2
Default: 0
Value Range:
0: Common asynchronous motor
1: Variable frequency asynchronous motor
2: Permanent magnet synchronous motor
Description
\begin{tabular}{ll} 
Effective mode: - \\
Unit: & - \\
Data type: & Ulnt16 \\
Change: & Changeable only at stop
\end{tabular}

BA-01 Rated motor power
\begin{tabular}{ll} 
Address: & 0xBA01 \\
Min.: & 0.1 \\
Max.: & 1000.0 \\
Default: & 3.7
\end{tabular}

Effective mode:
Unit: kW
Data type: Ulnt16
Change: Changeable only at stop

\section*{Value Range:}
0.1 kW to 1000.0 kW

Description

BA-02 Rated motor voltage
Address: 0xBA02
Min.: 1
Max.: 2000
Default: 380
Value Range:
1 V to 2000 V
Description

BA-03 Rated motor current
Address: 0xBA03
Min.: \(\quad 0.01\)
Max.: 655.35
Default: 9.00
Value Range:
0.01 A to 655.35 A

Description

BA-04 Rated motor frequency
\begin{tabular}{ll} 
Address: & \(0 x B A 04\) \\
Min.: & 0.01 \\
Max.: & F0-10 \\
Default: & 50.00
\end{tabular}

Value Range:
0.01 Hz to F0-10

\section*{Description}

\section*{BA-05 Rated motor speed}

Address: 0xBA05
Min.: \(\quad 1\)
Max.: 65535
Default: 1460
Value Range:
1 RPM to 65535 RPM
Description

BA-06 Number of parallel motors
Address: 0xBA06
Min.: \(\quad 1\)
Max.: 200
Default: 1

\section*{Value Range:}

1 to 200

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: A
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

\section*{Description}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{39}{*}{BA-07} & \multicolumn{4}{|l|}{Motor information command word} \\
\hline & Address: & 0xBA07 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & \(0 \times 3\) & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{Bit00: Mutual inductance curve} \\
\hline & \multicolumn{4}{|l|}{0: Disabled} \\
\hline & \multicolumn{4}{|l|}{1: Enabled} \\
\hline & \multicolumn{4}{|l|}{Bit01: D- and Q-axis inductance curve} \\
\hline & \multicolumn{4}{|l|}{0 : Disabled} \\
\hline & \multicolumn{4}{|l|}{1: Enabled} \\
\hline & \multicolumn{4}{|l|}{Bit02: Rotor resistance online auto-tuning} \\
\hline & \multicolumn{4}{|l|}{0 : Disabled} \\
\hline & \multicolumn{4}{|l|}{1: Enabled} \\
\hline & \multicolumn{4}{|l|}{Bit03: Rotor resistance online auto-tuning method} \\
\hline & \multicolumn{4}{|l|}{0: Amplitude} \\
\hline & \multicolumn{4}{|l|}{1: Phase} \\
\hline & \multicolumn{4}{|l|}{Bit04: Motor thermal model} \\
\hline & \multicolumn{4}{|l|}{0 : Disabled} \\
\hline & \multicolumn{4}{|l|}{1: Enabled} \\
\hline & \multicolumn{4}{|l|}{Bit05: Temperature source of motor thermal model} \\
\hline & \multicolumn{4}{|l|}{0 : Estimated temperature} \\
\hline & \multicolumn{4}{|l|}{1: Temperature detected by sensor} \\
\hline & \multicolumn{4}{|l|}{Bit06: Torque coefficient calculation of asynchronous motor} \\
\hline & \multicolumn{4}{|l|}{0 : Torque formula} \\
\hline & \multicolumn{4}{|l|}{1: Current distribution} \\
\hline & \multicolumn{4}{|l|}{Bit07: Torque coefficient calculation of synchronous motor} \\
\hline & \multicolumn{4}{|l|}{0 : Torque formula} \\
\hline & \multicolumn{4}{|l|}{1: Torque matching the rated torque} \\
\hline & \multicolumn{4}{|l|}{Bit08: Zero speed friction torque calculation} \\
\hline & \multicolumn{4}{|l|}{0 : Torque linearly decreasing to zero} \\
\hline & \multicolumn{4}{|l|}{1: Torque to maintain minimum speed} \\
\hline & \multicolumn{4}{|l|}{Bit09: Calculation of model parameters based on nameplate parameters} \\
\hline & \multicolumn{4}{|l|}{0 : Disabled} \\
\hline & \multicolumn{4}{|l|}{1: Enabled} \\
\hline & \multicolumn{4}{|l|}{Bit10: Confirmation of calculating model parameters based on nameplate parameters} \\
\hline & \multicolumn{4}{|l|}{0: Default} \\
\hline & \multicolumn{4}{|l|}{1: Confirm Description} \\
\hline
\end{tabular}

BA-08 Number of motor pole pairs
\begin{tabular}{lll} 
Address: & \(0 \times B A 08\) & Effective mode: \\
Min.: & 0 & Unit:
\end{tabular}
\begin{tabular}{lll} 
Max.: 64 & Data type: & Ulnt16 \\
Default: 0 & Change: & Changeable only at stop \\
Value Range: & & \\
0 to 64 & & \\
Description & &
\end{tabular}

BA-09 Motor power factor
Address: 0xBA09

Min.: \(\quad 0.600\)
Max.: \(\quad 1.000\)
Default: 0.860
Value Range:
0.600 to 1.000

Description

BA-10 Encoder PPR
\begin{tabular}{llll} 
Address: & 0xBAOA & Effective mode: \\
Min.: & 1 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: & 1024 & Change: & Changeable only at stop
\end{tabular}

Value Range:
1 to 65535
Description

BA-11 Encoder type
Address: 0xBA0
Min.: 0
Max.: 3
Default: 0
Value Range:
0 : ABZ incremental encoder
1: 23-bit encoder
2: Resolver
3: External input
Description

BA-12 Speed feedback PG card
Address: 0xBAOC
Min.: 0
Max.: 1
Default: 0
Value Range:
0 : Local PG card
1: Extension PG card
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:

Change: Changeable only at stop

\section*{BA-13 Number of resolver pole pairs}
\begin{tabular}{llll} 
Address: & 0xBAOD & Effective mode: \\
Min.: & 1 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: 1 & Change: & Changeable only at stop \\
Value Range: & & \\
1 to 65535 & & \\
Description & &
\end{tabular}

BA-15 Speed feedback PG wire breakage detection time
Address: 0xBA0F
Min.: 0.0
Max.: 10.0
Default: 0.0
Value Range:
0.0 s to 10.0 s

Description

BA-16 \(\quad\) A/B phase sequence of encoder
Address: 0xBA10
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Forward
1: Reverse
Description
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

```

\section*{-}

BA-17 Encoder installation angle
Address: 0xBA11
Min.: 0.0
Max.: \(\quad 359.9\)
Default: 0.0

\section*{Value Range:}
\(0.0^{\circ}\) to \(359.9^{\circ}\)

\section*{Description \\ Description}

\section*{BA-18 Expansion card}

Address: 0xBA12
Min.: \(\quad 1\)
Max.: 2
Default: 1

\section*{Value Range:}

1: Expansion card 1
2: Expansion card 2

\section*{Description}

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable only at stop
```

BA-19 ABZ encoder speed measurement mode at low speed

Address:	$0 \times B A 13$	Effective mode:	
Min.:	0	Unit:	-
Max.:	2	Data type:	Ulnt16
Default:	2	Change:	Changeable only at stop

Value Range:
0: Maintain
1: Attenuate
2: Optimized solution
Description
BA-20 Encoder speed measurement filter time constant

Address:	$0 x B A 14$	Effective mode:	S
Min.:	0.000	Unit:	S
Max.:	10.000	Data type:	Ulnt16
Default:	0.004	Change:	Changeable at any time

Value Range:
0.000s to 10.000s
Description
BA-21 Encoder wire breakage software detection coefficient

Address:	$0 \times B A$
Min.:	0.000
Max.:	8.000

. 000
Default: 1.000
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.000 to 8.000
Description
BA-22 Encoder control word
Address: 0xBA16 Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
Bit00: Speed measurement
0 : Disabled
1: Enabled
Bit01: Software detection of wire breakage
0: Disabled
1: Enabled
Bit02: Glitch removal
0 : Disabled
1: Enabled
Bit03: ABZ encoder speed measurement mode
0 : Quadruplicated frequency
1: Single pulse

```

\section*{Description}

BA-23 Speed measurement exception count threshold

Address: 0xBA17
Min.: 1
Max.: 100
Default: 10
Value Range:
1 to 100
Description

BA-24 Motor gear ratio (numerator)
\begin{tabular}{ll} 
Address: & \(0 x B A 18\) \\
Min.: & 1
\end{tabular}

Max.: 65535
Default: 1

\section*{Value Range:}

1 to 65535
Description

BA-25 Motor gear ratio (denominator)
\begin{tabular}{llll} 
Address: & 0xBA19 & Effective mode: & - \\
Min.: & 1 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: & 1 & Change: & Changeable only at stop
\end{tabular}

\section*{Value Range:}

1 to 65535
Description

BA-26 External input source of encoder
Address: \(0 x B A 1 A \quad\) Effective mode: -
Min.: \(\quad 0\)
Max.: 8
Default: 0
Value Range:
0: 0
1: AI1
2: AI2
3: Al3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

BA-29 Auto-tuning
\begin{tabular}{|c|c|c|c|}
\hline Address: & 0xBA1D & Effective mode: & \\
\hline Min.: & 0 & Unit: & - \\
\hline Max.: & 13 & Data type: & Ulnt16 \\
\hline Default: & 0 & Change: & Changeable only at stop \\
\hline \multicolumn{4}{|l|}{Value Range:} \\
\hline \multicolumn{4}{|l|}{0: No operation} \\
\hline \multicolumn{4}{|l|}{1: Static auto-tuning on partial parameters of asynchronous motor} \\
\hline \multicolumn{4}{|l|}{2: Dynamic auto-tuning on asynchronous motor} \\
\hline \multicolumn{4}{|l|}{3: Static auto-tuning on all parameters of asynchronous motor} \\
\hline \multicolumn{4}{|l|}{4: Inertia auto-tuning} \\
\hline \multicolumn{4}{|l|}{5: Deadzone auto-tuning} \\
\hline \multicolumn{4}{|l|}{11: With-load auto-tuning on synchronous motor (excluding back EMF)} \\
\hline \multicolumn{4}{|l|}{12: No-load dynamic auto-tuning on synchronous motor} \\
\hline \multicolumn{4}{|l|}{13: Static auto-tuning on all parameters of synchronous motor (excluding zero point angle)} \\
\hline
\end{tabular}

BA-30 Asynchronous motor stator resistance
\begin{tabular}{llll} 
Address: & 0xBA1E & Effective mode: & - \\
Min.: & 0.001 & Unit: & \(\Omega\) \\
Max.: & 65.535 & Data type: & Ulnt16 \\
Default: & 1.204 & Change: & Changeable only at stop
\end{tabular}

BA-31 Asynchronous motor rotor resistance
\begin{tabular}{llll} 
Address: & 0xBA1F & Effective mode: & - \\
Min.: & 0.001 & Unit: & \(\Omega\) \\
Max.: & 65.535 & Data type: & Ulnt16 \\
Default: & 0.908 & Change: & Changeable only at stop
\end{tabular}

Value Range:
\(0.001 \Omega\) to \(65.535 \Omega\)
Description

BA-32 Asynchronous motor leakage inductance
\begin{tabular}{ll} 
Address: & \(0 x B A 20\) \\
Min.: & 0.01 \\
Max.: & 655.35 \\
Default: & 5.28
\end{tabular}

Effective mode:
Unit: \(\quad \mathrm{mH}\)
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0.01 mH to 655.35 mH

Description

BA-33 Asynchronous motor mutual inductance
\begin{tabular}{llll} 
Address: & \(0 \times B A 21\) & Effective mode: & - \\
Min.: & 0.1 & Unit: & mH
\end{tabular}

\section*{Max.: 6553.5 \\ Default: 156.8}

Value Range:
0.1 mH to 6553.5 mH

Description

BA-34 Asynchronous motor no-load current
Address: 0xBA22

Min.: 0.01
Max.: BA-03
Default: 4.20
Value Range:
0.01 A to BA-03

Description

BA-35 Synchronous motor stator resistance
Address: 0xBA23
Min.: 0.001
Max.: 65.535
Default: 1.204

\section*{Value Range:}
\(0.001 \Omega\) to \(65.535 \Omega\)

\section*{Description}

BA-36 Synchronous motor D axis inductance
\begin{tabular}{ll} 
Address: & \(0 \times B A 24\) \\
Min.: & 0.01 \\
Max.: & 655.35 \\
Default: & 5.28
\end{tabular}

\section*{Value Range:}
0.01 mH to 655.35 mH

\section*{Description}

BA-37 Synchronous motor Q axis inductance
\begin{tabular}{ll} 
Address: & \(0 \times B A 25\) \\
Min.: & 0.01 \\
Max.: & 655.35 \\
Default: & 5.28
\end{tabular}

\section*{Value Range:}
0.01 mH to 655.35 mH

\section*{Description}

Data type: Ulnt16
Change: Changeable only at stop
```

Effective mode:
Unit: A
Data type: Ulnt16
Change: Changeable only at stop

```

Effective mode:
Unit: \(\quad \Omega\)

Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: mH
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: \(\quad \mathrm{mH}\)
Data type: Ulnt16
Change: Changeable only at stop

BA-39 Synchronous motor back EMF coefficient
\begin{tabular}{ll} 
Address: & \(0 \times B A 27\) \\
Min.: & 0.0 \\
Max.: & 6553.5 \\
Default: & 300.0
\end{tabular}

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable only at stop

\section*{Value Range:}
0.0 V to 6553.5 V

Description

BA-40 Stator leakage inductance
\begin{tabular}{ll} 
Address: & \(0 x B A 28\) \\
Min.: & 0.000 \\
Max.: & 65.535 \\
Default: & 6.540
\end{tabular}

\section*{Value Range:}
0.000 mH to 65.535 mH

\section*{Description}

BA-41 Electromechanical time constant
Address: 0xBA29
Min.: \(\quad 1\)
Max.: 65535
Default: 100
Value Range:
1 ms to 65535 ms

\section*{Description}

BA-42 Inertia ratio
\begin{tabular}{llll} 
Address: & \(0 \times B A 2 A\) & Effective mode: \\
Min.: & 0.0 & Unit: & \(\%\) \\
Max.: & 6553.5 & Data type: & Ulnt16 \\
Default: & 120.0 & Change: & Changeable only at stop
\end{tabular}

\section*{Value Range:}
0.0\% to 6553.5\%

\section*{Description}

\section*{BA-43 Friction torque}
\begin{tabular}{ll} 
Address: & \(0 x B A 2 B\) \\
Min.: & 0.0 \\
Max.: & 6553.5 \\
Default: & 2.0
\end{tabular}
\begin{tabular}{ll} 
Effective mode: & - \\
Unit: & \(\%\) \\
Data type: & Ulnt16 \\
Change: & Changeable only at stop
\end{tabular}

\section*{Value Range:}
0.0\% to 6553.5\%

\section*{Description}

BA-44 Excitation current coefficient 1 of mutual inductance curve (rated)
\begin{tabular}{llll} 
Address: & \(0 \times B A 2 C\) & Effective mode: & - \\
Min.: & 5.0 & Unit: & \(\%\) \\
Max.: & 100.0 & Data type: & Ulnt16 \\
Default: & 50.0 & Change: & Changeable only at stop \\
Value Range: & & \\
5.0\% to \(100.0 \%\) & &
\end{tabular}

\section*{Description}

BA-45 Excitation current coefficient 2 of mutual inductance curve (rated)
Address: 0xBA2D Effective mode: -
Min.: \(5.0 \quad\) Unit: \(\%\)
Max.: \(100.0 \quad\) Data type: Ulnt16

Default: 75.0
Change: Changeable only at stop
Value Range:
5.0\% to 100.0\%

Description

BA-46 Excitation current coefficient 3 of mutual inductance curve
\begin{tabular}{llll} 
Address: & 0xBA2E & Effective mode: & - \\
Min.: & 100.0 & Unit: & \(\%\) \\
Max.: & 800.0 & Data type: & Ulnt16 \\
Default: & 150.0 & Change: & Changeable only at stop
\end{tabular}

Value Range:
100.0\% to 800.0\%

Description

BA-47 Excitation current coefficient 4 of mutual inductance curve
\begin{tabular}{llll} 
Address: & 0xBA2F & Effective mode: \\
Min.: & 100.0 & Unit: & \(\%\) \\
Max.: & 800.0 & Data type: & Ulnt16 \\
Default: & 210.0 & Change: & Changeable only at stop
\end{tabular}

Value Range:
100.0\% to 800.0\%

Description

BA-48 Flux coefficient 1 of mutual inductance curve (rated)
\begin{tabular}{llll} 
Address: & \(0 \times B A 30\) & Effective mode: & - \\
Min.: & 10.0 & Unit: & \(\%\) \\
Max.: & 100.0 & Data type: & Ulnt16 \\
Default: & 50.0 & Change: & Changeable only at stop
\end{tabular}

Value Range:
10.0\% to 100.0\%

Description

BA-49 Flux coefficient 2 of mutual inductance curve (rated)
\begin{tabular}{llll} 
Address: & 0xBA31 & Effective mode: & \\
Min.: & 10.0 & Unit: & \(\%\) \\
Max.: & 100.0 & Data type: & Ulnt16 \\
Default: & 85.0 & Change: & Changeable only at stop
\end{tabular}

\section*{Value Range:}
10.0\% to 100.0\%

Description
```

BA-50 Flux coefficient 3 of mutual inductance curve
Address: 0xBA32 Effective mode:
Min.: 100.0
Max.: }300.
Default: 115.0
Unit: %
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
100.0% to 300.0%
Description
BA-51 Flux coefficient 4 of mutual inductance curve
Address: 0xBA33
Min.: 100.0
Max.: }300.
Default: 125.0
Effective mode:
Unit: %
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
100.0% to 300.0%
Description
BA-52 Speed point 1 of friction curve
Address: 0xBA34 Effective mode:
Min.: 0
Max.: }3000
Default: 15
Value Range:
0 RPM to 30000 RPM
Description
BA-53 Speed point 2 of friction curve
Address: 0xBA35 Effective mode:
Min.: 0
Max.: }3000
Default: 30
Value Range:
0 RPM to 30000 RPM
Description
BA-54 Speed point 3 of friction curve
Address: 0xBA36
Min.: 0
Max.: }3000
Default: 60
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Address:	0xBA36	Effective mode:	
Min.:	0	Unit:	RPM
Max.:	30000	Data type:	Ulnt16
Default:	60	Change:	Changeable only at stop

 Value Range:
 0 RPM to 30000 RPM
 Description
    ```
BA-55 Speed point 4 of friction curve
    Address: 0xBA37 Effective mode:
\begin{tabular}{|c|c|c|c|c|}
\hline & Min.: & 0 & Unit: & RPM \\
\hline & Max.: & 30000 & Data type: & Ulnt16 \\
\hline & Default: & 120 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0 RPM to 30000 RPM} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{BA-56} & \multicolumn{4}{|l|}{Speed point 5 of friction curve} \\
\hline & Address: & 0xBA38 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & RPM \\
\hline & Max.: & 30000 & Data type: & Ulnt16 \\
\hline & Default: & 150 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0 RPM to 30000 RPM} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{BA-57} & \multicolumn{4}{|l|}{Speed point 6 of friction curve} \\
\hline & Address: & 0xBA39 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & RPM \\
\hline & Max.: & 30000 & Data type: & Ulnt16 \\
\hline & Default: & 300 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0 RPM to 30000 RPM} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{BA-58} & \multicolumn{4}{|l|}{Speed point 7 of friction curve} \\
\hline & Address: & 0xBA3A & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & RPM \\
\hline & Max.: & 30000 & Data type: & Ulnt16 \\
\hline & Default: & 600 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0 RPM to 30000 RPM} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{8}{*}{BA-59} & \multicolumn{4}{|l|}{Speed point 8 of friction curve} \\
\hline & Address: & 0xBA3B & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & RPM \\
\hline & Max.: & 30000 & Data type: & Ulnt16 \\
\hline & Default: & 1200 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0 RPM to 30000 RPM} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline \multirow[t]{4}{*}{BA-60} & \multicolumn{4}{|l|}{Speed point 9 of friction curve} \\
\hline & Address: & 0xBA3C & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & RPM \\
\hline & Max.: & 30000 & Data type: & Ulnt16 \\
\hline
\end{tabular}

Default: 1500
Value Range:
0 RPM to 30000 RPM
Description

BA-61 Speed point 10 of friction curve
\begin{tabular}{ll} 
Address: & \(0 x B A 3 D\) \\
Min.: & 0 \\
Max.: & 30000 \\
Default: & 3000
\end{tabular}

Value Range:
0 RPM to 30000 RPM
Description

BA-62 Torque point 1 of friction curve
Address: 0xBA3E
Min.: \(\quad-320\)
Max.: \(\quad 320.00\)
Default: 0.00
Value Range:
-320 N•m to +320 N•m
Description

BA-63 Torque point 2 of friction curve
Address: 0xBA3F
Min.: \(\quad-320\)
Max.: \(\quad 320.00\)
Default: 0.00
Value Range:
-320 N•m to +320 N•m
Description

BA-64 Torque point 3 of friction curve
Address: 0xBA40
Min.: \(\quad-320\)
Max.: \(\quad 320.00\)
Default: 0.00

\section*{Value Range:}
\(-320 \mathrm{~N} \cdot \mathrm{~m}\) to \(+320 \mathrm{~N} \cdot \mathrm{~m}\)
Description

BA-65 Torque point 4 of friction curve
\begin{tabular}{ll} 
Address: & \(0 x B A 41\) \\
Min.: & -320 \\
Max.: & 320.00 \\
Default: & 0.00
\end{tabular}

Value Range:

Change: Changeable only at stop

Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: \(\quad N \cdot m\)

Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: \(\quad N \cdot m\)
Data type: Int16
Change:
Changeable only at stop

Effective mode:
Unit: \(\quad N \cdot m\)

Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: \(\quad N \cdot m\)

Data type: Int16
Change: Changeable only at stop
```

-320 N\cdotm to +320 N\cdotm
Description

```

BA-66 Torque point 5 of friction curve
\begin{tabular}{ll} 
Address: & \(0 x B A 42\) \\
Min.: & -320 \\
Max.: & 320.00 \\
Default: & 0.00
\end{tabular}

Value Range:
-320 N•m to +320 N•m
Description

BA-67 Torque point 6 of friction curve
Address: 0xBA43
Min.: -320
Max.: \(\quad 320.00\)
Default: 0.00

\section*{Value Range:}
\(-320 \mathrm{~N} \cdot \mathrm{~m}\) to \(+320 \mathrm{~N} \cdot \mathrm{~m}\)
Description

BA-68 Torque point 7 of friction curve
Address: 0xBA44
Min.: \(\quad-320\)
Max.: 320.00
Default: 0.00

\section*{Value Range:}
-320 N•m to \(+320 \mathrm{~N} \cdot \mathrm{~m}\)

\section*{Description}

\section*{BA-69 Torque point 8 of friction curve}
\begin{tabular}{ll} 
Address: & \(0 x B A 45\) \\
Min.: & -320 \\
Max.: & 320.00 \\
Default: & 0.00
\end{tabular}

\section*{Value Range:}
-320 N•m to +320 N•m

\section*{Description}

BA-70 Torque point 9 of friction curve
Address: 0xBA46

Min.: \(\quad-320\)
Max.: \(\quad 320.00\)
Default: 0.00
Value Range:
\(-320 \mathrm{~N} \cdot \mathrm{~m}\) to \(+320 \mathrm{~N} \cdot \mathrm{~m}\)

Effective mode:
Unit: N•m
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: \(\quad N \cdot m\)
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: \(\quad N \cdot m\)
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: \(\quad N \cdot m\)
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: \(\quad N \cdot m\)
Data type: Int16
Change: Changeable only at stop

\section*{Description}

BA-71 Torque point 10 of friction curve
\begin{tabular}{llll} 
Address: & 0xBA47 & Effective mode: & - \\
Min.: & -320 & Unit: & \(\mathrm{N} \cdot \mathrm{m}\) \\
Max.: & 320.00 & Data type: & Int16 \\
Default: & 0.00 & Change: & Changeable only at stop
\end{tabular}

Value Range:
-320 N•m to +320 N•m
Description

BA-72 Current coefficient starting point of \(D\) - and \(Q\)-axis inductance curve
Address: 0xBA48
Effective mode:
Min.: \(\quad-800\)
Max.: 800.0
Default: -200
Unit: \%
Data type: Int16

Value Range:
-800\% to +800.0\%
Description

BA-73 Current coefficient end point of \(D\) - and \(Q\)-axis inductance curve
Address: 0xBA49 Effective mode: -

Min.: -800 Unit:
Max.: \(800.0 \quad\) Data type: Int16
Default: 200.0
Change: Changeable only at stop
Value Range:
-800\% to +800.0\%
Description

BA-74 \(D\) axis inductance 1 of \(D\) - and \(Q\)-axis inductance curve
Address: 0xBA4A
Effective mode:
Min.: 0.0
Max.: 6553.5
Unit: \(\%\)

Default: 100.0
Data type: Ulnt16

Value Range:
0.0\% to 6553.5\%

\section*{Description}

BA-75 D axis inductance 2 of \(D\) - and \(Q\)-axis inductance curve
Address: 0xBA4B
Min.: 0.0
Max.: 6553.5
Default: 100.0
Change: Changeable only at stop

Description

\section*{Value Range:}
0.0\% to 6553.5\%

Description
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{9}{*}{BA-76} & \multicolumn{4}{|l|}{\(D\) axis inductance 3 of D - and Q -axis inductance curve} \\
\hline & Address: & 0xBA4C & Effective mode: & \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 6553.5 & Data type: & Ulnt16 \\
\hline & Default: & 100.0 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0\% to 6553.5\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{BA-77} & \multicolumn{4}{|l|}{D axis inductance 4 of D - and Q -axis inductance curve} \\
\hline & Address: & 0xBA4D & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 6553.5 & Data type: & Ulnt16 \\
\hline & Default: & 100.0 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0\% to 6553.5\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{BA-78} & \multicolumn{4}{|l|}{\(D\) axis inductance 5 of D - and Q-axis inductance curve} \\
\hline & Address: & 0xBA4E & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 6553.5 & Data type: & Ulnt16 \\
\hline & Default: & 100.0 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0\% to 6553.5\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{BA-79} & \multicolumn{4}{|l|}{\(D\) axis inductance 6 of \(D\) - and \(Q\)-axis inductance curve} \\
\hline & Address: & 0xBA4F & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 6553.5 & Data type: & Ulnt16 \\
\hline & Default: & 100.0 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0\% to 6553.5\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{BA-80} & \multicolumn{4}{|l|}{\(D\) axis inductance 7 of \(D\) - and \(Q\)-axis inductance curve} \\
\hline & Address: & 0xBA50 & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 6553.5 & Data type: & Ulnt16 \\
\hline & Default: & 100.0 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0\% to 6553.5\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{des} \\
\hline BA-81 & \multicolumn{4}{|l|}{D axis inductance 8 of D - and Q -axis inductance curve} \\
\hline & Address: & 0xBA51 & Effective mode: & - \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Min.: & 0.0 & Unit: & \% \\
Max.: & 6553.5 & Data type: & Ulnt16 \\
Default: & 100.0 & Change: & Changeable only at stop
\end{tabular}
Value Range:
0.0\% to 6553.5\%
Description
BA-82 D axis inductance 9 of \(D\) - and \(Q\)-axis inductance curve
Address: 0xBA52 Effective mode: -
Min.: \(0.0 \quad\) Unit:
Max.: 6553.5 Data type: Ulnt16
Default: \(100.0 \quad\) Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%
Description
BA-83 D axis inductance 10 of D - and Q -axis inductance curve
Address: 0xBA53 Effective mode:
Min.: \(0.0 \quad\) Unit:
Max.: \(6553.5 \quad\) Data type: Ulnt16
Default: \(100.0 \quad\) Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%
Description
BA-84 D axis inductance 11 of D - and Q -axis inductance curve
Address: 0xBA54 Effective mode:
Min.: \(0.0 \quad\) Unit:
Max.: \(6553.5 \quad\) Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

\section*{Description}
BA-85 D axis inductance 12 of D - and Q -axis inductance curve
\begin{tabular}{llll} 
Address: & \(0 \times B A 55\) & Effective mode: \\
Min.: & 0.0 & Unit: & \(\%\) \\
Max.: & 6553.5 & Data type: & Ulnt16 \\
Default: & 100.0 & Change: & Changeable only at stop
\end{tabular}
Value Range:
0.0\% to 6553.5\%

\section*{Description}
BA-86 \(\quad Q\) axis inductance 1 of \(D\) - and \(Q\)-axis inductance curve
\begin{tabular}{llll} 
Address: & \(0 x B A 56\) & Effective mode: - \\
Min.: & 0.0 & Unit: & \(\%\) \\
Max.: & 6553.5 & Data type: & Ulnt16
\end{tabular}

Default: 100.0
Value Range:
0.0\% to 6553.5\%

Description

BA-87 \(\quad \mathrm{Q}\) axis inductance 2 of D - and Q -axis inductance curve



Max.: 6553.5
Data type: Ulnt16
Change: Changeable only at stop
Default: 100.0
Change:
Changeable only at stop

\section*{Value Range:}

\section*{0.0\% to 6553.5\%}

\section*{Description}

BA-92 \(\quad Q\) axis inductance 7 of \(D\) - and \(Q\)-axis inductance curve
Address: 0xBA5C Effective mode: -
Min.: \(0.0 \quad\) Unit:
Max.: \(6553.5 \quad\) Data type: Ulnt16
Default: \(100.0 \quad\) Change: Changeable only at stop

Value Range:
0.0\% to 6553.5\%

Description

BA-93 \(\quad \mathrm{Q}\) axis inductance 8 of D - and Q -axis inductance curve
Address: 0xBA5D Effective mode:
Min.: \(0.0 \quad\) Unit:

Max.: \(6553.5 \quad\) Data type: Ulnt16
Default: \(100.0 \quad\) Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

Description

BA-94 \(\quad \mathrm{Q}\) axis inductance 9 of D - and Q -axis inductance curve
Address: 0xBA5E Effective mode:
Min.: \(0.0 \quad\) Unit:

Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

Description

BA-95 \(\quad \mathrm{Q}\) axis inductance 10 of D - and Q -axis inductance curve
\begin{tabular}{ll} 
Address: & \(0 \times B A 5 F\) \\
Min.: & 0.0 \\
Max.: & 6553.5 \\
Default: & 100.0
\end{tabular}

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

\section*{Description}

BA-96 \(\quad Q\) axis inductance 11 of \(D\) - and \(Q\)-axis inductance curve
\begin{tabular}{ll} 
Address: & \(0 x B A 60\) \\
Min.: & 0.0 \\
Max.: & 6553.5 \\
Default: & 100.0
\end{tabular}

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop

\section*{Value Range:}
0.0\% to 6553.5\%

\section*{Description}

BA-97 \(\quad Q\) axis inductance 12 of \(D\) - and \(Q\)-axis inductance curve
Address: 0xBA61

Effective mode: -
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

Description

\subsection*{4.35 BB: Motor 3 V/f Control Parameters}

\section*{BB-00 V/f curve}

Address: 0xBB00
Min.: 0
Max.: \(\quad 11\)
Default: 0
Value Range:
0 : Straight-line V/f curve
1: Multi-point V/f curve
2: Reserved
3: Reserved
4: Reserved
5: Reserved
6: Reserved
7: Reserved
8: Reserved
9: Reserved
10: V/f complete separation mode
11: V/f half separation mode
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

\section*{BB-01 Torque boost}

Address: 0xBB01
Min.: 0.0
Max.: \(\quad 30.0\)
Default: 3.0

\section*{Value Range:}
0.0\% to 30.0\%

Description

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

BB-02 Cut-off frequency of torque boost
Address: 0xBB02
Effective mode:
\begin{tabular}{ll} 
Min.: & 0.00 \\
Max.: & F0-10 \\
Default: & 50.00
\end{tabular}

\section*{Value Range:}
0.00 Hz to F0-10

Description
\begin{tabular}{ll} 
Unit: & Hz \\
Data type: & Ulnt16 \\
Change: & Changeable only at stop
\end{tabular}

BB-03 Multi-point V/f frequency 1
Address: 0xBB03
Min.: \(\quad 0.00\)
Max.: BB-05
Default: 0.00
Value Range:
0.00 Hz to BB-05

Description

BB-04 Multi-point V/f voltage 1
Address: 0xBB04
Min.: 0.0
Max.: \(\quad 100.0\)
Default: 0.0
Value Range:
0.0\% to +100.0\%

\section*{Description}

\section*{BB-05 Multi-point V/f frequency 2}
\begin{tabular}{ll} 
Address: & 0xBB05 \\
Min.: & BB-03 \\
Max.: & BB-07 \\
Default: & 0.00
\end{tabular}

\section*{Value Range:}

BB-03 to BB-07

\section*{Description}

BB-06 Multi-point V/f voltage 2
Address: 0xBB06
Min.: 0.0
Max.: \(\quad 100.0\)
Default: 0.0
Value Range:
0.0\% to +100.0\%

\section*{Description}

BB-07 Multi-point V/f frequency 3
\begin{tabular}{llll} 
Address: & 0xBB07 & Effective mode: & - \\
Min.: & BB-05 & Unit: & Hz \\
Max.: & BA-04 & Data type: & Ulnt16
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & Default: 0.00 & Change: & Changeable only at stop \\
\hline & Value Range: & & \\
\hline & BB-05 to BA-04 & & \\
\hline & Description & & \\
\hline & - & & \\
\hline \multirow[t]{9}{*}{BB-08} & Multi-point V/f voltage 3 & & \\
\hline & Address: 0xBB08 & Effective mode: & - \\
\hline & Min.: 0.0 & Unit: & \% \\
\hline & Max.: \(\quad 100.0\) & Data type: & Ulnt16 \\
\hline & Default: 0.0 & Change: & Changeable only at stop \\
\hline & Value Range: & & \\
\hline & 0.0\% to +100.0\% & & \\
\hline & Description & & \\
\hline & & & \\
\hline \multirow[t]{9}{*}{BB-09} & V/f slip compensation gain & & \\
\hline & Address: 0xBB09 & Effective mode: & - \\
\hline & Min.: 0.0 & Unit: & - \\
\hline & Max.: 200.0 & Data type: & Ulnt16 \\
\hline & Default: 0.0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0.0 to 200.0 & & \\
\hline & Description & & \\
\hline & - & & \\
\hline \multirow[t]{9}{*}{BB-10} & V/f overexcitation gain & & \\
\hline & Address: 0xBB0A & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 200 & Data type: & Ulnt16 \\
\hline & Default: 64 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0 to 200 & & \\
\hline & Description & & \\
\hline &  & & \\
\hline \multirow[t]{9}{*}{BB-11} & V/f oscillation suppression gain & & \\
\hline & Address: 0xBBOB & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 100 & Data type: & Ulnt16 \\
\hline & Default: 40 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0 to 100 & & \\
\hline & Description & & \\
\hline &  & & \\
\hline \multirow[t]{6}{*}{BB-12} & V/f oscillation suppression & & \\
\hline & Address: 0xBBOC & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 1 & Data type: & Ulnt16 \\
\hline & Default: 1 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline
\end{tabular}
```

0: Disabled
1: Enabled
Description

```

\section*{BB-13 Voltage source for V/f separation}

Address: 0xBB0D
Min.: 0
Max.: 8
Default: 0
Default:
0 : Digital setting (BB-14)
1: AI1
2: Al2
3: Al3
4: Pulse reference (DI5)
5: Multi-reference
6: Simple PLC
7: PID
8: Communication
Others: F connector

\section*{Description}

This parameter defines the source of the target voltage in \(\mathrm{V} / \mathrm{f}\) separation mode.
0 : Digital setting (F3-14)
The V/f separation voltage is set by F3-14 (V/f separation voltage).
1: Al1
The V/f separation voltage is input with current or voltage signals through the AI1 terminal. The frequency is calculated according to the preset AI curve.
2: AI2
The \(\mathrm{V} / \mathrm{f}\) separation voltage is input with current or voltage signals through the Al 2 terminal. The frequency is calculated according to the preset AI curve.
3: AI3
The V/f separation voltage is input with current or voltage signals through the AI3 terminal. The frequency is calculated according to the preset AI curve. The AC drive has two AI terminals by default, and the AI3 terminal needs to be provided through the I/O expansion card.
4: Pulse reference (DI5)
The V/f separation voltage is set through DI5. The frequency is calculated based on the curve reflecting the relationship between the pulse frequency and running frequency.
5: Multi-reference
When multi-reference is used as the source of the V/f separation voltage, different combinations of DI terminal states correspond to different reference values. The four multi-reference terminals can provide 16 state combinations, corresponding to 16 reference values (percentage x maximum frequency) of parameters in group FC.
6: Simple PLC
The V/f separation voltage is set by simple PLC. For details, see the function description of simple PLC.
7: PID
The V/f separation voltage is set by PID. For details, see the PID function description.

\section*{8: Communication}

The main frequency is set through communication. The running frequency is input through remote communication. The AC drive must be equipped with a communication card to implement communication with the host controller. This mode applies to remote control or centralized control of multiple equipment.
Others: F connector
A function code is set for a floating-point connector, and the value of the connector is read as the motoring torque upper limit in speed control mode. This mode is used for expansion besides the common sources.

\section*{BB-14 V/f separation voltage}

Address: \(0 x B B 0 E \quad\) Effective mode: -
Min.: 0 Unit: V
Max.: BA-02 Data type: Ulnt16
Default: \(0 \quad\) Change: Changeable at any time
Value Range:
0 V to BA-02
Description
This parameter defines the V/f separation voltage.

BB-15 Voltage rise time of V/f separation
Address: 0xBB0F Effective mode: -
Min.: \(0.0 \quad\) Unit:
Max.: \(1000.0 \quad\) Data type: Ulnt16
Default: \(0.0 \quad\) Change: Changeable at any time
Value Range:
0.0 s to 1000.0 s

\section*{Description}

This parameter defines the time required for the output voltage to rise from 0 to the rated motor voltage.

BB-16 Voltage fall time of V/f separation
\begin{tabular}{llll} 
Address: & \(0 \times\) BB10 & Effective mode: \\
Min.: & 0.0 & Unit: & s \\
Max.: & 1000.0 & Data type: & Ulnt16 \\
Default: & 0.0 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.0s to 1000.0s

\section*{Description}

This parameter defines the time required for the output voltage to fall from the rated motor voltage to 0 .

\section*{BB-17 Stop mode for V/f separation}
\begin{tabular}{llll} 
Address: & \(0 x\) BB11 & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 2 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

0 : Frequency and voltage decline to 0 independently
1: Frequency declines to 0 after voltage declines to 0
2: Coast to stop (new)

\section*{Description}

0 : The frequency and voltage decrease to 0 independently.
1: The frequency decreases to 0 according to the deceleration time after the voltage decreases to 0 according to the deceleration time.
2: The AC drive coasts to stop without following the stop deceleration curve.

BB-18 Overcurrent stall suppression action current
Address: 0xBB12 Effective mode: -
Min.: \(50 \quad\) Unit:
Max.: 200 Data type: Ulnt16
Default: 150
Change: Changeable only at stop
Value Range:
50\% to 200\%
Description

BB-19 Overcurrent stall suppression
Address: 0xBB13 Effective mode: -
Min.: 0
Max.: 1
Unit:

Default: 1
Data type: Ulnt16

Value Range:
0: Disabled
1: Enabled
Description

BB-20 Overcurrent stall suppression gain
\begin{tabular}{llll} 
Address: & \(0 \times B B 14\) & Effective mode: \\
Min.: & 1 & Unit: & - \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: & 20 & Change: & Changeable at any time
\end{tabular}

Value Range:
1 to 100
Description

BB-21 Compensation coefficient of speed multiplying overcurrent stall suppression action current
Address: 0xBB15
Min.: 50
Max.: 200
Default: 100
Effective mode:
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
50\% to 200\%
Description

BB-22 Overvoltage stall suppression action voltage
\begin{tabular}{llll} 
Address: & 0xBB16 & Effective mode: - \\
Min.: & 330.0 & Unit: & V \\
Max.: & 800.0 & Data type: & Ulnt16
\end{tabular}
Default: 770.0 Changeable at any time
Value Range:
330.0 V to 800.0 V
Description
BB-23 Overvoltage stall suppression
\begin{tabular}{llll} 
Address: & \(0 \times B B 17\) & Effective mode: \\
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16 \\
Default: & 1 & Change: & Changeable only at stop
\end{tabular}
Value Range:
0: Disabled
1: Enabled
Description
BB-24 Overvoltage stall suppression frequency gain
\begin{tabular}{llll} 
Address: & \(0 x B B 18\) & Effective mode: & - \\
Min.: & 1 & Unit: & - \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: & 30 & Change: & Changeable at any time
\end{tabular}Value Range:
1 to 100
Description
BB-25 Overvoltage stall suppression voltage gain
\begin{tabular}{llll} 
Address: & \(0 \times B B 19\) & Effective mode: \\
Min.: & 1 & Unit: & - \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: & 30 & Change: & Changeable at any time
\end{tabular}
Value Range:
1 to 100
Description
BB-26 Frequency rise threshold for overvoltage stall suppressionAddress: \(0 x B B 1 A\)
Min.: 0
Max.: 50Default: 5
Effective mode: -
Value Range:
0 Hz to 50 Hz
Description
BB-27 Slip compensation filter time
\begin{tabular}{llll} 
Address: & \(0 \times B B 1 B\) & Effective mode: \\
Min.: & 0.1 & Unit: & S \\
Max.: & 10.0 & Data type: & Ulnt16 \\
Default: & 0.5 & Change: & Changeable only at stop
\end{tabular}

\section*{Value Range:}
0.1 s to 10.0 s

Description

BB-28 Multi-point curve source
\begin{tabular}{llll} 
Address: & \(0 \times B B 1 C\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 2 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable only at stop
\end{tabular}

Value Range:
0 : 3-point curve
1: Multi-point curve module A
2: Multi-point curve module B

\section*{Description}

0 : 3-point curve
The 3-point curve is used by default, which is set in F3-03 to F3-08.
1: Multi-point curve module A
The output of free module \(A\) is used as the voltage reference of the multi-point curve.
2: Multi-point curve module \(B\)
The output of free module B is used as the voltage reference of the multi-point curve.

BB-33 Online torque compensation gain
Address: 0xBB21 Effective mode: -
Min.: 80
Max.: \(\quad 150\)
Default: 100
Unit:
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
80 to 150
Description

BB-34 ImaxKi coefficient
Address: 0xBB22
Effective mode: -
Min.: 10
Unit: \(\%\)
Max.: 1000
Data type: Ulnt16
Default: 100
Value Range:
10\% to 1000\%
Description

BB-35 Overcurrent suppression threshold (relative to rated motor current)
\begin{tabular}{llll} 
Address: & \(0 x B B 23\) & Effective mode: & \\
Min.: & 80 & Unit: & \(\%\) \\
Max.: & 300 & Data type: & Ulnt16 \\
Default: & 200 & Change: & Changeable only at stop
\end{tabular}

Value Range:
80\% to 300\%

\section*{Description}

BB-36 Frequency threshold for overcurrent suppression field weakening

Address: 0xBB24
Min.: 100
Max.: 500
Default: 100
Value Range:
100\% to 500\%
Description

BB-37 IT filter time
Address: 0xBB25 Effective mode: -
Min.: 10
Max.: 1000
Default: 100
Value Range:
10 ms to 1000 ms
Description

BB-38 Slip compensation mode
Address: 0xBB26 Effective mode:
Min.: 0
Max.: 2
Default: 1
Value Range:
0: Disabled
1: Slip compensation without PG
2: Slip compensation with PG

\section*{Description}

BB-39 VdcMaxCtrl allowed runtime
\begin{tabular}{llll} 
Address: & \(0 \times\) BB27 & Effective mode: & S \\
Min.: & 0.0 & Unit: & s \\
Max.: & 100.0 & Data type: & Ulnt16 \\
Default: & 0.0 & Change: & Changeable only at stop
\end{tabular}

Value Range:
0.0 s to 100.0 s

\section*{Description}

BB-40 Upper limit of V/f separation voltage
\begin{tabular}{llll} 
Address: & 0xBB28 & Effective mode: \\
Min.: & 50.0 & Unit: & \(\%\) \\
Max.: & 200.0 & Data type: & Ulnt16 \\
Default: & 100.0 & Change: & Changeable only at stop
\end{tabular}

Value Range:
50.0\% to 200.0\%

\section*{Description}

This parameter defines the upper limit of the \(\mathrm{V} / \mathrm{f}\) separation voltage, which is a percentage relative to the rated motor voltage.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{9}{*}{BB-41} & \multicolumn{4}{|l|}{RFG time of V/f separation frequency} \\
\hline & Address: & \(0 \times B B 29\) & Effective mode: & \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 1 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0 : RFG time forced to 0} \\
\hline & \multicolumn{4}{|l|}{1: Preset RFG time Description} \\
\hline & \multicolumn{4}{|l|}{reference acceleration/deceleration time is forced to 0 ; when it is set to 1 , the acceleration/ deceleration time is set as normal.} \\
\hline \multirow[t]{9}{*}{BB-42} & \multicolumn{4}{|l|}{Cut-off frequency of V/f oscillation suppression filter} \\
\hline & Address: & \(0 \times B B 2 A\) & Effective mode: & - \\
\hline & Min.: & 1.0 & Unit: & Hz \\
\hline & Max.: & 50.0 & Data type: & Ulnt16 \\
\hline & Default: & 8.0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{1.0 Hz to 50.0 Hz} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{BB-43} & \multicolumn{4}{|l|}{Cut-off frequency threshold for V/f oscillation suppression} \\
\hline & Address: & 0xBB2B & Effective mode: & - \\
\hline & Min.: & 10 & Unit: & Hz \\
\hline & Max.: & 3000 & Data type: & Ulnt16 \\
\hline & Default: & 200 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{10 Hz to 3000 Hz} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{BB-44} & \multicolumn{4}{|l|}{VdcMaxCtrl feedforward coefficient} \\
\hline & Address: & 0xBB2C & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & \% \\
\hline & Max.: & 500 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0\% to 500\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{8}{*}{BB-50} & \multicolumn{4}{|l|}{PMVVC low-speed IF} \\
\hline & Address: & 0xBB32 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 1 & Data type: & Ulnt16 \\
\hline & Default: & 1 & Change: & Changeable only at stop \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0 : Disabled} \\
\hline & \multicolumn{4}{|l|}{1: Enabled} \\
\hline
\end{tabular}
```

Description
BB-51 PMVVC low-speed IF current
Address: 0xBB33 Effective mode: -
Min.: 30 Unit:
Max.: 250 Data type: Ulnt16
Default: }10
Value Range:
30 to 250
Description
BB-52 PMVVC low-speed IF speed switching threshold
Address: 0xBB34 Effective mode: -
Min.: 2.0 Unit: %
Max.: 100.0 Data type: Ulnt16
Default: 10.0
Change: Changeable only at stop
Value Range:
2.0% to 100.0%
Description
BB-53 PMVVC oscillation suppression gain coefficient
Address: 0xBB35 Effective mode:
Min.: 0 Unit:
Max.: 500
Default: 100
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 to 500
Description
BB-54 PMVVC filter time coefficient
Address: 0xBB36 Effective mode:
Min.: 0 Unit:
Max.: }50
Default: 100
Data type: Ulnt16
Change: Changeable at any time
Value Range:
O to 500
Description
BB-55 PMVVC energy conservation control mode
Address: $0 x B B 37$ Effective mode: -
Min.: 0
Max.: 2
Default: 2

```

Unit
Data type: Ulnt16
Change: Changeable only at stop

\section*{Value Range:}
```

0 : Fixed straight-line V/f curve
1: Fixed 30% reactive current
2: MTPA control

```

\section*{Description}

\subsection*{4.36 BC: Motor 3 Control and Protection Parameters}

\section*{BC-00 Startup mode}

Address: \(0 x B C 00\)
Min.: \(\quad 0\)
Max.: 3
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0: Direct start
1: Flying start
2: Pre-excitation start (AC asynchronous motor)
3: SVC quick start
Description
Flying start is recommended if you need to start a motor that is rotating at a high speed. Pre-excitation start and SVC quick start apply only to AC asynchronous motors.

\section*{BC-01 Speed tracking mode}

Address: 0xBC01 Effective mode:
Min.: 0 Unit
Max.: 4 Data type: Ulnt16

Default: \(0 \quad\) Change: Changeable at any time

\section*{Value Range:}

0 : From the stop frequency
1: From the power frequency
2: From the maximum frequency
3: Reserved
4: Magnetic field directional speed tracking (MD290)

\section*{Description}

BC-02 Speed of speed tracking
Address: 0xBC02 Effective mode:
Min.: \(\quad 1\)
Max.: 100
Default: 20
Value Range:
1 to 100
Description

BC-03 Startup frequency
Address: 0xBC03
Min.: 0.00
Max.: \(\quad 10.00\)
Default: 0.00
Value Range:

\subsection*{0.00 Hz to 10.00 Hz}

\section*{Description}

This parameter defines the startup frequency for direct start of the AC drive. When the frequency reference is lower than the startup frequency, the AC drive will not start but stay standby.

BC-04 Startup frequency hold time
\begin{tabular}{llll} 
Address: & \(0 \times B C 04\) & Effective mode: & S \\
Min.: & 0.0 & Unit: & S \\
Max.: & 100.0 & Data type: & Ulnt16 \\
Default: & 0.0 & Change: & Changeable only at stop
\end{tabular}

Value Range:
0.0 s to 100.0 s

\section*{Description}

This parameter defines the hold time during which the output frequency remains at the startup frequency. After this hold time elapses, the AC drive will accelerate/decelerate to the reference frequency.

\section*{BC-05 DC braking current at startup}
\begin{tabular}{llll} 
Address: & \(0 \times B C 05\) & Effective mode: \\
Min.: & 0 & Unit: & \(\%\) \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: & 50 & Change: & Changeable only at stop
\end{tabular}

Value Range:
0\% to 100\%

\section*{Description}

A larger DC braking current indicates stronger braking force. 100\% corresponds to the rated motor current (the current upper limit is \(80 \%\) of the rated current of the AC drive).

BC-06 DC braking time at startup
Address: \(0 x B C 06\) Effective mode: -
Min.: 0.0 Unit: S
Max.: \(100.0 \quad\) Data type: Ulnt16
Default: \(0.0 \quad\) Change: Changeable only at stop

\section*{Value Range:}
0.0 s to 100.0 s

\section*{Description}

This parameter defines the time for DC braking at startup, which is valid only when the startup mode is direct start.

\section*{BC-07 Stop mode}
\begin{tabular}{llll} 
Address: & \(0 x B C 07\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 2 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

0: Decelerate to stop
1: Coast to stop
2: Stop at maximum capability
Description
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{9}{*}{BC-08} & \multicolumn{4}{|l|}{Start frequency of DC braking at stop} \\
\hline & Address: & 0xBC08 & Effective mode: & \\
\hline & Min.: & 0.00 & Unit: & Hz \\
\hline & Max.: & F0-10 & Data type: & Ulnt16 \\
\hline & Default: & 0.00 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.00 Hz to F0-10} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{The AC drive starts DC braking when the running frequency decreases to the value of this parameter during deceleration to stop.} \\
\hline \multirow[t]{9}{*}{BC-09} & \multicolumn{4}{|l|}{DC braking delay at stop} \\
\hline & Address: & 0xBC09 & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & s \\
\hline & Max.: & 100.0 & Data type: & Ulnt16 \\
\hline & Default: & 0.0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0 s to 100.0 s} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{When the running frequency decreases to the start frequency of DC braking at stop, the \(A C\) drive stops output and starts DC braking after this waiting time.} \\
\hline \multirow[t]{9}{*}{BC-10} & \multicolumn{4}{|l|}{DC braking current at stop} \\
\hline & Address: & 0xBCOA & Effective mode: & \\
\hline & Min.: & 0 & Unit: & \% \\
\hline & Max.: & 100 & Data type: & Ulnt16 \\
\hline & Default: & 50 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0\% to 100\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{A larger DC braking current indicates stronger braking force. 100\% corresponds to the rated motor} \\
\hline \multirow[t]{8}{*}{BC-11} & \multicolumn{4}{|l|}{DC braking time at stop} \\
\hline & Address: & 0xBC0B & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \(s\) \\
\hline & Max.: & 100.0 & Data type: & Ulnt16 \\
\hline & Default: & 0.0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0s to 100.0s} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline \multirow[t]{7}{*}{BC-12} & \multicolumn{4}{|l|}{Speed tracking sweep current limit closed loop Kp} \\
\hline & Address: & 0xBCOC & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 1000 & Data type: & Ulnt16 \\
\hline & Default: & 500 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & 0 to 1000 & & & \\
\hline
\end{tabular}

\section*{Description}

BC-13 Speed tracking sweep current limit closed loop Ki
\begin{tabular}{ll} 
Address: & \(0 x B C O D\) \\
Min.: & 0 \\
Max.: & 1000 \\
Default: & 800
\end{tabular}
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```

Value Range:
0 to 1000
Description

BC-14 Speed tracking current
\begin{tabular}{llll} 
Address: & \(0 x B C O E\) & Effective mode: & - \\
Min.: & 30 & Unit: & \(\%\) \\
Max.: & 200 & Data type: & Ulnt16 \\
Default: & 80 & Change: & Changeable only at stop
\end{tabular}

Value Range:
30\% to 200\%

\section*{Description}

\section*{BC-15 Current loop multiple}

Address: \(0 \times B C 0 F\)
Min.: \(\quad 10\)
Max.: \(\quad 600\)
Default: 100

\section*{Value Range:}

10\% to 600\%

\section*{Description}

BC-16 Demagnetization time (valid for asynchronous motors)
Address: \(0 \times B C 10\)
Min.: \(\quad 0.00\)
Max.: \(\quad 5.00\)
Default: 0.50
\begin{tabular}{ll} 
Effective mode: & - \\
Unit: & \(\%\) \\
Data type: & Ulnt16 \\
Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}
0.00 s to 5.00 s

Description
This parameter defines the minimum waiting time for restart after shutdown.

BC-17 Overexcitation enable
Address: 0xBC11
Min.: 0
Max.: 2
Default: 0

\section*{Value Range:}

0: Disabled
2: Enabled during deceleration
3: Enabled always

\section*{Description}

This parameter defines the active mode of overexcitation in vector control mode for asynchronous motors. When it is set to 2 , overexcitation takes effect during acceleration, operation at constant speed, and deceleration.

\section*{BC-18 Overexcitation suppression current}
Address: \(0 x B C 12\) Effective mode: -
Min.: \(0 \quad\) Unit:

Max.: \(\quad 150\)
Default: 100
Value Range:
0\% to 150\%

\section*{Description}

This parameter defines the target current after overexcitation takes effect and is a percentage relative to the rated motor current.

\section*{BC-19 Overexcitation gain}
\begin{tabular}{llll} 
Address: & \(0 \times B C 13\) & Effective mode: & - \\
Min.: & 0.01 & Unit: & - \\
Max.: & 2.50 & Data type: & Ulnt16 \\
Default: & 1.25 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.01 to 2.50

Description

BC-20 Parameter auto-tuning upon startup
\begin{tabular}{llll} 
Address: & \(0 \times B C 14\) & Effective mode: \\
Min.: & 0 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: & 1 & Change: & Changeable only at stop
\end{tabular}

Value Range:

Bit00: Synchronous motor pole position auto-tuning upon startup
0 : Disabled
1: Enabled
Bit01: Quick stator resistance auto-tuning upon startup
0: Disabled
1: Enabled
Bit02-Bit03: HFI pole position auto-tuning
0: Disabled
1: Enabled
2: Adaptive
Bit04: IGBT shoot-through self-check upon startup
0: Disabled
1: Enabled
Bit05: Short-to-ground self-check upon startup (reserved)
0: Disabled
1: Enabled
Bit06: Phase loss self-check upon startup (reserved)
0 : Disabled
1: Enabled
Description

BC-21 Auto-tuning direction
\begin{tabular}{llll} 
Address: & \(0 \times B C 15\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16 \\
Default: & 1 & Change: & Changeable only at stop
\end{tabular}

Value Range:
0 to 1
Description

\section*{BC-22 Oscillation suppression gain of synchronous motor back EMF auto-tuning}

Address: 0xBC16
Min.: \(\quad 0.0\)
Max.: 30.0
Default: 3.2
Value Range:
0.0 to 30.0

Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

BC-23 Target speed of rotation auto-tuning
Address: 0xBC17 Effective mode: -
Min.: \(\quad 30.0\)
Max.: \(\quad 100.0\)
Default: 70.0

\section*{Value Range:}
30.0\% to 100.0\%

\section*{Description}

BC-24 Target speed 1 of inertia auto-tuning
\begin{tabular}{llll} 
Address: & \(0 \times B C 18\) & Effective mode: & - \\
Min.: & 10.0 & Unit: & \(\%\) \\
Max.: & BC-25 & Data type: & Ulnt16 \\
Default: & 40.0 & Change: & Changeable only at stop \\
Value Range: & & \\
10.0\% to BC-25 & & \\
Description & &
\end{tabular}

\section*{BC-25 Target speed 2 of inertia auto-tuning}
\begin{tabular}{llll} 
Address: & 0xBC19 & Effective mode: & \\
Min.: & BC-24 & Unit: & \(\%\) \\
Max.: & 100.0 & Data type: & Ulnt16 \\
Default: & 60.0 & Change: & Changeable only at stop
\end{tabular}

Value Range:
BC-24 to 100.0\%
Description

BC-26 Overcurrent prevention of mutual inductance saturation curve

Address: \(0 \times B C 1 A\)
Min.: \(\quad 0\)
Max.: \(\quad 1\)
Default: 1
Value Range:
0 to 1
Description

BC-27 Auto-tuning items
Address: \(0 \times B C 1 B\)
Min.: 0
Max.: 65535
Default: 117
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop
-

Value Range:

Bit00: Speed loop parameter adaptation
0 : Disabled
1: Enabled
Bit01: Current loop parameter adaptation
0 : Disabled
1: Enabled
Bit02: Drive nonlinear auto-tuning
0 : Disabled
1: Enabled
Bit03: Inter-phase deviation coefficient auto-tuning
0 : Disabled
1: Enabled
Bit04: Auto-tuning of initial pole position of synchronous motor
0 : Disabled
1: Enabled
Bit05: Auto-tuning of D- and Q-axis inductance model of synchronous motor
0: Disabled
1: Enabled
Bit06: System inertia auto-tuning
0: Disabled
1: Enabled
Bit07: HFI pole position auto-tuning
0: Disabled
1: Enabled
Description

BC-28 OFF3 stop mode
Address: 0xBC1C Effective mode: -
Min.: 0
Max.: 1
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0: Quick stop
1: Stop at maximum capability

\section*{Description}

BC-29 Stop mode during running
Address: 0xBC1D Effective mode: -
Min.: \(\quad 0\)
Max.: 2
Default: 1

Unit:
Data type: Ulnt16
Change: Changeable only at stop

\section*{Value Range:}

0: OFF1 stop mode
1: OFF2 stop mode
2: OFF3 stop mode

\section*{Description}

BC-30 Stop mode for torque control
\begin{tabular}{llll} 
Address: & \(0 \times B C 1 E\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 2 & Data type: & Ulnt16 \\
Default: & 1 & Change: & Changeable only at stop
\end{tabular}

Value Range:
0 : Coast to stop forcibly
1: Switch to speed control mode and then stop
2: Maintain torque control mode until zero speed and then block

\section*{Description}

\section*{BC-32 Proportional gain adjustment coefficient}
\begin{tabular}{llll} 
Address: & \(0 x B C 20\) & Effective mode: & - \\
Min.: & 0.1 & Unit: & - \\
Max.: & 2.0 & Data type: & Ulnt16 \\
Default: & 1.0 & Change: & Changeable at any time \\
Value Range: & & \\
0.1 to 2.0 & & \\
Description & & &
\end{tabular}

BC-33 Integral gain adjustment coefficient
Address: 0xBC21 Effective mode:
Min.: 0.1
Max.: \(\quad 2.0\)
Default: 1.0
Value Range:
0.1 to 2.0

Description

BC-34 Zero-speed threshold
Address: 0xBC22
Min.: \(\quad 0.1\)
Max.: 200.0
Default: 2.0
\begin{tabular}{ll} 
Effective mode: - \\
Unit: & \(\%\) \\
Data type: & Ulnt16 \\
Change: & Changeable at any time \\
& \\
&
\end{tabular}

BC-35 Zero-speed stop delay
Address: 0xBC23
Min.: \(\quad 0.00\)
Max.: \(\quad 10.00\)
Default: 0.10
Value Range:

\subsection*{0.00 s to 10.00 s}

\section*{Description}

BC-36 Reference source execution interval
\begin{tabular}{llll} 
Address: & \(0 \times B C 24\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 20 & Data type: & Ulnt16 \\
Default: 4 & Change: & Changeable only at stop \\
Value Range: & & \\
0 to 20 & & \\
Description & &
\end{tabular}

BC-37 Trial current for speed tracking of synchronous motor
Address: \(0 \times B C 25\)
Min.: 5.0
Max.: 50.0
Default: 10.0
Effective mode:
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable only at stop

\section*{Value Range:}
5.0\% to 50.0\%

Description

BC-38 Minimum frequency for speed tracking of synchronous motor
\begin{tabular}{ll} 
Address: & \(0 x B C 26\) \\
Min.: & 0.0 \\
Max.: & 100.0 \\
Default: & 0.0
\end{tabular}

Effective mode: -
Unit: Hz
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0.0 Hz to 100.0 Hz

Description

BC-39 Angle compensation for speed tracking of synchronous motor

Address: 0xBC27
Min.: 0
Max.: 360
Default: 0

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable only at stop

\section*{Value Range:}

0 to 360
Description

BC-40 Parameter auto-tuning of synchronous motor upon startup
Address: 0xBC28 Effective mode:
Min.: \(0 \quad\) Unit: -
Max.: \(1 \quad\) Data type: Ulnt16
Default: \(0 \quad\) Change: Changeable at any time
Value Range:
0 to 1

\section*{Description}

\section*{BC-41 Current motor angle}
\begin{tabular}{llll} 
Address: & \(0 \times\) BC29 & Effective mode: - \\
Min.: & 0 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Unchangeable
\end{tabular}

Value Range:
0 to 65535
Description

\section*{BC-42 Forward torque limit 1}

Address: 0xBC2A
Min.: \(\quad 0.0\)
Max.: 400.0
Default: 150.0
Value Range:
0.0 to 400.0

Description

BC-43 Reverse torque limit 1
\begin{tabular}{ll} 
Address: & \(0 x B C 2 B\) \\
Min.: & 0.0 \\
Max.: & 400.0 \\
Default: & 150.0
\end{tabular}

\section*{Value Range:}
0.0 to 400.0

Description

BC-44 Source of forward torque limit 2
Address: \(0 \times B C 2 C\)
Min.: \(\quad 0\)
Max.: 0
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

\section*{Value Range:}

0: 400\%
Others: F connector

\section*{Description}

BC-45 Source of reverse torque limit 2
Address: 0xBC2D
Min.: \(\quad 0\)
Max.: 0
Default: 0

\section*{Value Range:}

0: -400\%
Others: F connector

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

\section*{Description}

\section*{BC-46 Ramp (FRG) selection bit0}

Address: 0xBC2E
Min.: 0
Max.: 18
Default: 0
Value Range:
0: 0
1: 1
2: Terminal function input
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DII3
16: DI14
17: DI15
18: DI16
Others: B connector
Description

BC-47 Ramp (FRG) selection bit1
Address: 0xBC2F
Min.: 0
Max.: 18
Default: 0
Value Range:

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

0: 0
1: 1
2: Terminal function input
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

BC-50 Motor overload protection
Address: 0xBC32
Min.: 0
Max.: 1
Default: 1
Value Range:
0: Disabled
1: Enabled
Description

BC-51 Motor overload protection gain
Address: 0xBC33
Min.: \(\quad 0.20\)
Max.: 10.00
Default: 1.00

\section*{Value Range:}
0.20 to 10.00

Description

BC-52 Motor overload pre-warning coefficient
Address: 0xBC34
Min.: 50
Max.: \(\quad 100\)
Default: 80

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

\section*{Value Range:}

\section*{50\% to 100\%}

Description

BC-53 Overvoltage stall suppression gain
\begin{tabular}{llll} 
Address: & \(0 \times B C 35\) & Effective mode: & - \\
Min.: & 1 & Unit: & - \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: & 30 & Change: & Changeable at any time
\end{tabular}

Value Range:
1 to 100
Description

BC-54 Overvoltage stall protection voltage
\begin{tabular}{llll} 
Address: & 0xBC36 & Effective mode: & - \\
Min.: & 330.0 & Unit: & V \\
Max.: & 800.0 & Data type: & Ulnt16 \\
Default: & 770.0 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}
330.0 V to 800.0 V

\section*{Description}

\section*{BC-55 Input phase loss/Contactor pickup protection}

Address: 0xBC37
Min.: 0
Max.: \(\quad 13\)
Default: 11

\section*{Value Range:}

Ones: Input phase loss protection
0 : Disabled
1: Protection enabled when both software and hardware input phase loss conditions are met
2: Protection enabled when software input phase loss conditions are met
3: Protection enabled when hardware input phase loss conditions are met
Tens: Contactor pickup protection
0 : Disabled
1: Enabled
Description

BC-56 Output phase loss protection
Address: 0xBC38 Effective mode: -
Min.: 0
Max.: \(\quad 11\)
Unit:
Data type: Ulnt16
Change: Changeable at any time
Default: 1
Value Range:

Ones: Output phase loss protection upon power-on
0 : Disabled
1: Enabled
Tens: Output phase loss protection before running
0 : Disabled
1: Enabled
Description

\section*{BC-57 Power dip ride-through}
\begin{tabular}{llll} 
Address: & \(0 \times B C 39\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 3 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable only at stop
\end{tabular}

\section*{Value Range:}

0: Disabled
1: Decelerate
2: Decelerate to stop
3: Suppress voltage dip
Description

BC-58 Voltage threshold for disabling power dip ride-through
Address: 0xBC3A Effective mode:
Min.: \(80 \quad\) Unit:
Max.: 100 Data type: Ulnt16
Default: 85
Change: Changeable only at stop
Value Range:
80\% to 100\%
Description

BC-59 Delay of voltage recovery from power dip
Address: \(0 \times B C 3 B \quad\) Effective mode:
Min.: \(0.0 \quad\) Unit: S

Max.: \(\quad 100.0\)
Default: 0.5
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0.0 s to 100.0 s

Description

BC-60 Voltage threshold for enabling power dip ride-through
\begin{tabular}{llll} 
Address: & 0xBC3C & Effective mode: & - \\
Min.: & 60 & Unit: & \(\%\) \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: 80 & Change: & Changeable only at stop \\
Value Range: & & \\
60\% to \(100 \%\) & & \\
Description & &
\end{tabular}

BC-61 Protection upon load loss

Address: 0xBC3D
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Disabled
1: Enabled
Description

BC-62 Load loss detection level
Address: 0xBC3E
Min.: 0.0
Max.: \(\quad 100.0\)
Default: 10.0
Value Range:
0.0\% to +100.0\%

Description

BC-63 Load loss detection time
Address: 0xBC3F
Min.: 0.0
Max.: 60.0
Default: 1.0
Value Range:
0.0s to 60.0s

Description

BC-64 Overspeed detection level
Address: 0xBC40
Min.: 0.0
Max.: 50.0
Default: 20.0
Value Range:
0.0\% to 50.0\%

Description

BC-65 Overspeed detection time
Address: 0xBC41
Min.: 0.0
Max.: 60.0
Default: 1.0
Value Range:
0.0 s to 60.0s

Description

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time
\begin{tabular}{ll} 
Effective mode: & - \\
Unit: & s \\
Data type: & Ulnt16 \\
Change: & Changeable at any time
\end{tabular}

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time
BC-66 Detection level of excessive speed deviation
\begin{tabular}{llll} 
Address: & \(0 x B C 42\) & Effective mode: & - \\
Min.: & 0.0 & Unit: & \(\%\) \\
Max.: & 50.0 & Data type: & Ulnt16 \\
Default: & 20.0 & Change: & Changeable at any time
\end{tabular}Value Range:0.0\% to 50.0\%
Description
BC-67 Detection time of excessive speed deviation
Address: 0xBC43Effective mode:Unit: s
Max.: 60.0 Data type: Ulnt16
Default: 5.0
Change: Changeable at any time
Value Range:
0.0 s to 60.0s
Description
BC-68 Power dip ride-through gain Kp
\begin{tabular}{llll} 
Address: & \(0 \times B C 44\) & Effective mode: & - \\
Min.: & 1 & Unit: & - \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: & 40 & Change: & Changeable at any time
\end{tabular}Value Range:
1 to 100
Description
BC-69 Power dip ride-through integral coefficient Ki
\begin{tabular}{llll} 
Address: & \(0 \times B C 45\) & Effective mode: & - \\
Min.: & 1 & Unit: & - \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: 30 & Change: & Changeable at any time \\
Value Range: & & \\
\begin{tabular}{ll}
1 to 100 & \\
Description &
\end{tabular} &
\end{tabular}
BC-70 Deceleration time of power dip ride-through
Address: 0xBC46 Effective mode:
Min.: \(0.0 \quad\) Unit:
Max.: \(\quad 300.0\)
Default: 20.0

Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0 s to 300.0 s
Description
BC-71 Voltage dip suppression time
Address: 0xBC47 Effective mode:
\begin{tabular}{llll} 
Min.: & 0.1 & Unit: & S \\
Max.: & 600.0 & Data type: & Ulnt16 \\
Default: 0.5 & Change: & Changeable at any time \\
Value Range: & & \\
0.1s to 600.0 s & & \\
Description & &
\end{tabular}

\section*{BC-72 Motor protection}
\begin{tabular}{llll} 
Address: & \(0 \times B C 48\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: & 537 & Change: & Changeable at any time
\end{tabular}

Value Range:
Bit00: Motor overload determination (reserved)
Bit01: Motor overheat detection (reserved)
Bit02: PG fault detection (reserved)
Bit03: Current control error detection
Bit04: Motor stall error detection
Bit05: Locked-rotor detection
Bit06: Synchronous motor demagnetization protection
Bit07: Protection against locked-rotor in SVC speed open-loop control
Bit08: Reserved
Bit09: Parameter setting error

\section*{Description}

BC-73 Locked-rotor time
Address: 0xBC49 Effective mode: -
Min.: 0.0
Unit: s
Max.: \(\quad 65.0\)
Default: 2.0
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0 s to 65.0s

Description

BC-74 Locked-rotor frequency
Address: 0xBC4A
Effective mode: -
Min.: 0.0
Unit: \%
Max.: 600.0
Default: 6.0
Value Range:
0.0\% to 600.0\%

Description

BC-75 Motor stall detection time
\begin{tabular}{lll} 
Address: & \(0 \times B C 4 B\) & Effective mode: \\
Min.: & 0.0 & Unit:
\end{tabular}
\begin{tabular}{lll} 
Max.: 10.0 & Data type: & Ulnt16 \\
Default: 0.5 & Change: & Changeable at any time \\
Value Range: & & \\
0.0s to 10.0 s & & \\
Description & &
\end{tabular}

BC-76 Stall detection threshold
Address: 0xBC4C Effective mode: -

Min.: 0.0
Max.: 100.0
Unit: \%

Default: 30.0
Value Range:
0.0\% to +100.0\%

Description

BC-77 Current control exception detection time
\begin{tabular}{llll} 
Address: & \(0 \times B C 4 D\) & Effective mode: & - \\
Min.: & 0.00 & Unit: & S \\
Max.: & 1.00 & Data type: & Ulnt16 \\
Default: & 0.05 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.00 s to 1.00 s

Description

BC-78 Current control exception detection threshold

Address: \(0 x B C 4 E\)
Min.: \(\quad 0.0\)
Max.: 200.0
Default: 25.0

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Value Range:
0.0\% to 200.0\%

Description

BC-79 Synchronous motor overcurrent threshold
\begin{tabular}{ll} 
Address: & \(0 x B C 4 F\) \\
Min.: & 0.0 \\
Max.: & 500.0 \\
Default: & 300.0
\end{tabular}

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0\% to 500.0\%

\section*{Description}

BC-81 Speed deviation detection
\begin{tabular}{llll} 
Address: & \(0 \times B C 51\) & Effective mode: \\
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16 \\
Default: & 1 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

0 to 1
Description

BC-82 Skip frequency 1
\begin{tabular}{ll} 
Address: & \(0 x B C 52\) \\
Min.: & 0.00 \\
Max.: & F0-10 \\
Default: & 0.00
\end{tabular}

\section*{Value Range:}
0.00 Hz to F0-10

\section*{Description}

\section*{BC-83 Skip frequency 2}
\begin{tabular}{ll} 
Address: & \(0 \times B C 53\) \\
Min.: & 0.00 \\
Max.: & F0-10 \\
Default: & 0.00
\end{tabular}

\section*{Value Range:}
0.00 Hz to F0-10

\section*{Description}

\section*{BC-84 Skip frequency 3}
\begin{tabular}{ll} 
Address: & \(0 x B C 54\) \\
Min.: & 0.00 \\
Max.: & F0-10 \\
Default: & 0.00
\end{tabular}

\section*{Value Range:}
0.00 Hz to F0-10

\section*{Description}

\section*{BC-85 Skip frequency 4}
\begin{tabular}{ll} 
Address: & \(0 \times B C 55\) \\
Min.: & 0.00 \\
Max.: & F0-10 \\
Default: & 0.00
\end{tabular}

\section*{Value Range:}
0.00 Hz to \(\mathrm{FO}-10\)

\section*{Description}

BC-86 Skip frequency band
Address: 0xBC56
Min.: \(\quad 0.00\)
Max.: \(\quad\) F0-10
Default: 0.00
Value Range:
0.00 Hz to \(\mathrm{FO}-10\)
```

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

```

Effective mode: -
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

\section*{Description}

BC-87 Source of frequency upper limit
Address: 0xBC57
Min.: 0
Max.: 5
Default: 0
Value Range:
0: F0-12
1: AI1
2: Al2
3: AI3
4: Pulse reference
5: Communication
Others: F connector
Description

BC-88 Frequency upper limit
Address: \(0 \times B C 58\)
Min.: BC-90
Max.: \(\quad\) F0-10
Default: 50.00
Value Range:
BC-90 to F0-10
Description

BC-89 Frequency upper limit offset
Address: 0xBC59
Min.: \(\quad 0.00\)
Max.: \(\quad\) F0-10
Default: 0.00
Value Range:
0.00 Hz to \(\mathrm{FO}-10\) (maximum frequency)

\section*{Description}

BC-90 Frequency lower limit
Address: \(0 x B C 5 A\)
Min.: \(\quad 0.00\)
Max.: \(\quad B C-88\)
Default: 0.00
Value Range:
0.00 Hz to \(\mathrm{BC}-88\)

Description

BC-91 Speed/Torque control mode
Address: 0xBC5B
Effective mode:
Unit: \(\quad \mathrm{Hz}\)
Data type: Ulnt16
Change: Changeable at any time
Unit: \(\quad \mathrm{Hz}\)

Data type: Ulnt16
Change: Changeable at any time

Effective mode:
\begin{tabular}{llll} 
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16 \\
Default: 0 & Change: & Changeable at any time \\
Value Range: & & \\
0: Speed control & & \\
1: Torque control & & \\
Description & &
\end{tabular}

\subsection*{4.37 BD: Motor 3 Observation and Vector Parameters}

\section*{BD-00 Asynchronous motor FVC model switchover frequency}
\begin{tabular}{llll} 
Address: & \(0 \times B D 00\) & Effective mode: \\
Min.: & 0 & Unit: & \(\%\) \\
Max.: & 1000 & Data type: & Ulnt16 \\
Default: 20 & Change: & Changeable only at stop \\
Value Range: & & \\
0\% to \(1000 \%\) & & \\
Description & &
\end{tabular}

BD-01 Asynchronous motor FVC model switchover hysteresis frequency
\begin{tabular}{llll} 
Address: & \(0 \times B D 01\) & Effective mode: \\
Min.: & 10 & Unit: & \(\%\) \\
Max.: & 50 & Data type: & Ulnt16 \\
Default: & 20 & Change: & Changeable only at stop
\end{tabular}

Value Range:
10\% to 50\%
Description

BD-02 Asynchronous motor FVC observer filter time
\begin{tabular}{llll} 
Address: & 0xBD02 & Effective mode: & - \\
Min.: & 5 & Unit: & ms \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: 15 & Change: & Changeable only at stop \\
Value Range: & & \\
5 ms to 100 ms & & \\
Description & &
\end{tabular}

BD-03 Asynchronous motor FVC current model mode
\begin{tabular}{llll} 
Address: & \(0 \times B D 03\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16 \\
Default: 0 & Change: & Changeable only at stop \\
Value Range: & & \\
0 to 1 & & \\
Description & &
\end{tabular}
BD-04 Asynchronous motor FVC pre-excitation output observation angle mode

Address: 0xBD04 Effective mode: -
Min.: 0
Max.: 1
Default: 0
Value
Description-
BD-05 Asynchronous motor SVC model switchover frequency
\begin{tabular}{lll} 
Address: & \(0 x B D 05\) & Effective mode: - \\
Min.: & 10 & Unit:
\end{tabular}
Min.: 10 Unit: \%
Max.: 20 Data type: Ulnt16
Default: 15
Change: Changeable only at stop
Value Range:
10\% to 20\%
Description
BD-06 Asynchronous motor SVC observer filter time
\begin{tabular}{llll} 
Address: & \(0 \times\) xDD06 & Effective mode: & - \\
Min.: & 5 & Unit: & ms \\
Max.: & 50 & Data type: & Ulnt16 \\
Default: & 10 & Change: & Changeable at any time
\end{tabular}Change: Changeable at any time
Value Range:
5 ms to 50 ms
Description
BD-07 Asynchronous motor SVC observer gain 1
\begin{tabular}{llll} 
Address: & \(0 \times\) BDD 07 & Effective mode: & - \\
Min.: & 10 & Unit: & \(\%\) \\
Max.: & 500 & Data type: & Ulnt16 \\
Default: & 100 & Change: & Changeable at any time
\end{tabular}
Value Range:
10\% to 500\%
Description
BD-08 Asynchronous motor SVC observer gain 2
\begin{tabular}{llll} 
Address: & \(0 x\) BD08 & Effective mode: - \\
Min.: & 10 & Unit: & \(\%\) \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: & 20 & Change: & Changeable at any time
\end{tabular}
Value Range:
10\% to 100\%
Description
BD-09 Asynchronous motor SVC observer mode
Address: 0xBD09 Effective mode:
\begin{tabular}{lrll} 
Min.: & 0 & Unit: & - \\
Max.: & 3 & Data type: & Ulnt16 \\
Default: 0 & Change: & Changeable only at stop \\
Value Range: & & \\
0 to 3 & & \\
Description & &
\end{tabular}

BD-10 Asynchronous motor SVC pre-excitation mode
Address: 0xBD0A Effective mode:
Min.: 0
Max.: \(1 \quad\) Data type: Ulnt16
Default: \(0 \quad\) Change: Changeable only at stop

Value Range:
0 to 1
Description

BD-11 Asynchronous motor SVC speed tracking mode

Address: 0xBD0B
Min.: 0
Max.: 1
Default: 0
Value Range:
0 to 1
Description

BD-14 Synchronous motor 1 model control
\begin{tabular}{ll} 
Address: & \(0 x B D 0 E\) \\
Min.: & 0 \\
Max.: & 65535 \\
Default: & 5
\end{tabular}

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

\section*{Value Range:}

Bit00: Low speed processing
Bit01: Low speed processing 1
Bit02: Online auto-tuning of resistance
Bit03: Online auto-tuning of back EMF
Bit04: KS
Description

BD-15 Synchronous motor model K1
\begin{tabular}{llll} 
Address: & 0xBDOF & Effective mode: & - \\
Min.: & 10 & Unit: & - \\
Max.: & 3000 & Data type: & Ulnt16 \\
Default: & 200 & Change: & Changeable at any time
\end{tabular}

Value Range:
10 to 3000
Description
BD-16 Synchronous motor model K1Max

Address: 0xBD10 Effective mode:

Min.: 100
Max.: 6000
Default: 3000
Value Range:
100 to 6000
Description

Unit:
Data type: Ulnt16
Change: Changeable at any time
BD-17 Synchronous motor model KsMin
Address: 0xBD11 Effective mode:
Min.: 0.0
Max.: \(\quad 4.0\)
Unit:
Data type: Ulnt16
Default: 0.3
Value Range:
0.0 to 4.0
Description
BD-18 Synchronous motor model Kspeed
Address: 0xBD12 Effective mode:
Min.: 50
Max.: 2000
Unit:
Default: 400
Value Range:
50 to 2000
Description
BD-19 Synchronous motor frequency filter time constant
Address: 0xBD13
Min.: 2
Max.: 100
Default: 10
Data type: Ulnt16
Change: Changeable at any time
Value Range:
2 ms to 100 ms
Description
BD-20 Frequency upper limit of synchronous motor Rs online auto-tuning
Address: 0xBD14
Min.: \(\quad 1.0\)
Max.: 20.0
Default: 3.5
Effective mode:
Unit: ms
Data type: Ulnt16
Change: Changeable at any time
Effective mode: -
Value Range:
1.0\% to 20.0\%
Description
BD-21 Synchronous motor model Kr
Address: 0xBD15 Effective mode:
\begin{tabular}{llll} 
Min.: & 0 & Unit: & - \\
Max.: & 50 & Data type: & Ulnt16 \\
Default: 10 & Change: & Changeable at any time \\
Value Range: & & \\
0 to 50 & & \\
Description & &
\end{tabular}
BD-22 Synchronous motor model Kr1
\begin{tabular}{llll} 
Address: & \(0 x B D 16\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 50 & Data type: & Ulnt16 \\
Default: & 5 & Change: & Changeable at any time
\end{tabular}
Value Range:
0 to 50
Description
BD-23 Synchronous motor low-speed D axis injection current
Address: 0xBD17 Effective mode:
Min.: \(0 \quad\) Unit:
Max.: 100 Data type: Ulnt16
Default: 20
Change: Changeable at any time
Value Range:
0\% to 100\%
Description
BD-24 Synchronous motor model LowFreqTime1
\begin{tabular}{llll} 
Address: & \(0 \times\) BD18 & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 500 & Data type: & Ulnt16 \\
Default: & 50 & Change: & Changeable at any time
\end{tabular}
Value Range:
0 to 500
Description
BD-27 Frequency lower limit of back EMF online auto-tuning
Address: 0xBD1B
Min.: 10
Max.: \(\quad 100\)
Default: 25
Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time
Value Range:
10\% to 100\%
Description
BD-28 Synchronous motor model LowFreq
\begin{tabular}{lll} 
Address: & \(0 x B D 1 C\) & Effective mode: - \\
Min.: & 0.0 & Unit: \\
Max.: & 2.0 & Data type:
\end{tabular}
Default: 0.3
Change:
Changeable at any time

Value Range:
0.0\% to 2.0\%

Description

BD-29 Synchronous motor model LowFreqTime
Address: 0xBD1D Effective mode:
Min.: 0
Max.: 100
Default: 10
Value Range:
0 to 100
Description

BD-30 Percentage of pole auto-tuning current

Address: 0xBD1E
Min.: 50
Max.: 200
Default: 100
Value Range:
50\% to 200\%
Description

Effective mode:
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time

BD-31 Percentage of high frequency response current
\begin{tabular}{llll} 
Address: & 0xBD1F & Effective mode: & \% \\
Min.: & 0 & Unit: & \(\%\) \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: 25 & Change: & Changeable at any time \\
Value Range: & & \\
0\% to \(100 \%\) & & \\
Description & & &
\end{tabular}

BD-32 Percentage of HFI and SVC switching frequency
\begin{tabular}{llll} 
Address: & \(0 \times B D 20\) & Effective mode: & \\
Min.: & 0 & Unit: & \(\%\) \\
Max.: & 30 & Data type: & Ulnt16 \\
Default: 10 & Change: & Changeable at any time \\
Value Range: & & \\
\(0 \%\) to 30\% & & \\
Description & & &
\end{tabular}

BD-33 Observer parameter
Address: 0xBD21
Min.: \(\quad 10\)
Max.: 200
Default: 100
Value Range:

\section*{10 to 200}

\section*{Description}

BD-34 Speed filter cut-off frequency
\begin{tabular}{llll} 
Address: & 0xBD22 & Effective mode: & - \\
Min.: & 1 & Unit: & Hz \\
Max.: & 200 & Data type: & Ulnt16 \\
Default: & 10 & Change: & Changeable at any time
\end{tabular}

Value Range:
1 Hz to 200 Hz
Description

BD-35 Carrier frequency during NS auto-tuning
\begin{tabular}{llll} 
Address: & 0xBD23 & Effective mode: & - \\
Min.: & 2.00 & Unit: & Hz \\
Max.: & 16.00 & Data type: & Ulnt16 \\
Default: & 8.00 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}
2.00 Hz to 16.00 Hz

Description

BD-36 Automatic calculation of NS auto-tuning voltage
\begin{tabular}{llll} 
Address: & \(0 \times B D 24\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16 \\
Default: & 1 & Change: & Changeable at any time \\
Value Range: & & \\
0: Disabled & & \\
1: Enabled & & \\
Description & & &
\end{tabular}

BD-37 Percentage of NS auto-tuning voltage set manually
Address: 0xBD25
Min.: 0
Max.: 100
Default: 10
Value Range:
0\% to 100\%
Description

BD-38 Duration of HFI stage 1
Address: 0xBD26
Min.: 50
Max.: 500
Default: 150
Value Range:
50 ms to 500 ms

\section*{Description}

BD-40 Speed loop proportional gain 1

Address: 0xBD28
Min.: 1
Max.: \(\quad 100\)
Default: 30
Value Range:
1 to 100
Description

BD-41 Speed loop integral time 1
\begin{tabular}{ll} 
Address: & \(0 x B D 29\) \\
Min.: & 0.01 \\
Max.: & 10.00 \\
Default: & 0.50
\end{tabular}

\section*{Value Range:}
0.01 s to 10.00 s

\section*{Description}

BD-42 Switchover frequency 1
Address: 0xBD2A
Min.: \(\quad 0.00\)
Max.: BD-45
Default: 5.00
Value Range:
0.00 Hz to BD-45

Description

BD-43 Speed loop proportional gain 2
Address: 0xBD2B
Min.: \(\quad 1\)
Max.: \(\quad 100\)
Default: 20
Value Range:
1 to 100
Description

BD-44 Speed loop integral time 2
Address: 0xBD2C
Min.: \(\quad 0.01\)
Max.: \(\quad 10.00\)
Default: 1.00
Value Range:
0.01 s to 10.00 s

Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable at any time
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{9}{*}{BD-45} & \multicolumn{4}{|l|}{Switchover frequency 2} \\
\hline & Address: & 0xBD2D & Effective mode: & \\
\hline & Min.: & BD-42 & Unit: & Hz \\
\hline & Max.: & F0-10 & Data type: & Ulnt16 \\
\hline & Default: & 10.00 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{BD-42 to F0-10} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{BD-46} & \multicolumn{4}{|l|}{Vector control slip gain} \\
\hline & Address: & 0xBD2E & Effective mode: & - \\
\hline & Min.: & 50 & Unit: & \% \\
\hline & Max.: & 200 & Data type: & Ulnt16 \\
\hline & Default: & 100 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{50\% to 200\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{BD-47} & \multicolumn{4}{|l|}{Speed feedback filter time in SVC mode} \\
\hline & Address: & 0xBD2F & Effective mode: & - \\
\hline & Min.: & 0.000 & Unit: & s \\
\hline & Max.: & 0.100 & Data type: & Ulnt16 \\
\hline & Default: & 0.015 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.000 s to 0.100s} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{15}{*}{BD-49} & \multicolumn{4}{|l|}{Torque upper limit source in speed control mode (motoring)} \\
\hline & Address: & 0xBD31 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 7 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0: Digital setting (F2-10)} \\
\hline & \multicolumn{4}{|l|}{1: Al1} \\
\hline & \multicolumn{4}{|l|}{2: AI2} \\
\hline & \multicolumn{4}{|l|}{3: AI3} \\
\hline & \multicolumn{4}{|l|}{4: Pulse reference} \\
\hline & \multicolumn{4}{|l|}{5: Communication} \\
\hline & \multicolumn{4}{|l|}{6: MIN (AI1, Al2)} \\
\hline & \multicolumn{4}{|l|}{7: MAX (AI1, Al2)} \\
\hline & \multicolumn{4}{|l|}{Others: F connector Description} \\
\hline \multirow[t]{3}{*}{BD-50} & \multicolumn{4}{|l|}{Torque upper limit in speed control mode} \\
\hline & Address: & 0xBD32 & Effective mode: & \\
\hline & Min.: & & Unit: & \% \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Max.: & 200.0 & Data type: & Ulnt16 \\
Default: & 150.0 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.0\% to 200.0\%

Description

BD-51 Torque upper limit source in speed control mode (generating)
Address: 0xBD33
Min.: 0
Max.: \(8 \quad\) Data type: Ulnt16
Default: 0
Change: Changeable at any time

\section*{Value Range:}

0 : Digital setting (F2-10)
1: AI1
2: AI2
3: AI3
4: Pulse reference (DI5)
5: Communication
6: MIN (AI1, AI2)
7: MAX (AI1, AI2)
8: Digital setting (F2-12)
Others: F connector
Description

BD-52 Torque upper limit in speed control mode (generating)
Address: 0xBD34
Effective mode: -
Min.: 0.0
Max.: 200.0
Default: 150.0
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0\% to 200.0\%

\section*{Description}

BD-53 Field weakening mode
Address: 0xBD35 Effective mode: -
Min.: 0
Max.: \(2 \quad\) Data type: Ulnt16
Default: 1 Change: Changeable only at stop
Value Range:
0 : No field weakening
1: Auto adjustment
2: Calculation+Auto adjustment

\section*{Description}

0: No field weakening
Without field weakening control, the maximum motor speed is related to the bus voltage of the AC drive. The output current is smaller under the same load, but the running frequency cannot reach the frequency reference. Do not select this function if a higher speed is required.

1: Auto adjustment
This field weakening mode is simple and reliable. In scenarios requiring quick field weakening, the field weakening coefficient (F2-19) can be increased as appropriate. However, if the coefficient is too large,
the current may be unstable.
2: Calculation+Auto adjustment
In this mode, the field weakening current is adjusted quickly. This mode can be selected in scenarios
where the auto adjustment mode cannot
meet requirements.

BD-54 Field weakening gain
Address: 0xBD36 Effective mode: -
Min.: 1 Unit: -
Max.: 50 Data type: Ulnt16
Default: 5 Change: Changeable at any time

\section*{Value Range:}

1 to 50
Description
Increasing the setpoint can improve dynamic response. However, an excessively large setpoint may also cause current oscillation.

BD-57 Generating power limiting

Address: 0xBD39
Effective mode:
Min.: 0
Max.: 3
Default: 0
Value Range:
0: Disabled
1: Enabled in the whole process
2: Enabled at constant speed
3: Enabled during deceleration

\section*{Description}

BD-58 Generating power upper limit
Address: 0xBD3A
Effective mode: -
Min.: 0.0
Max.: \(\quad 200.0\)
Default: 20.0
Value Range:
0.0\% to 200.0\%

\section*{Description}

BD-59 Motor 3 control mode
Address: 0xBD3B
Min.: \(\quad 0\)
Max.: 2
Default: 2

Value Range:
\(\square\)

Unit: -
Data type: Ulnt16
Change: Changeable at any time

Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable only at stop
Change. Changeable only at

0: SVC
1: FVC
2: V/f
Description

BD-60 Initial position angle detection current of synchronous motor
Address: 0xBD3C Effective mode: -
Min.: 50 Unit: -

Max.: \(180 \quad\) Data type: Ulnt16
Default: 80 Change: Changeable only at stop
Value Range:
50 to 180

\section*{Description}

A smaller current indicates lower noise during detection. However, an excessively small current may lead to position detection inaccuracy. You are advised not to modify this parameter in FVC mode.

\section*{BD-61 Initial position angle detection of synchronous motor}
\begin{tabular}{llll} 
Address: & \(0 x B D 3 D\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 2 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

0 : Detected upon running
1: Not detected
2: Detected upon initial running after power-on

\section*{Description}

The initial position angle detection can prevent reverse rotation at startup, but it causes certain noise. For scenarios where reverse rotation is not allowed at startup and the rotor position of the motor will change after stop, F2-25 must be set to 0 .
It can be set to 1 or 2 in other scenarios.

\section*{BD-63 Salient pole rate adjustment gain of synchronous motor}
\begin{tabular}{llll} 
Address: & \(0 x B D 3 F\) & Effective mode: & - \\
Min.: & 0.20 & Unit: & - \\
Max.: & 3.00 & Data type: & Ulnt16 \\
Default: & 1.00 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.20 to 3.00

Description
If F2-28 is set to 1 , you can adjust F2-27 when the output current does not decrease or even increase under the same load. When the load remains unchanged, adjust F2-27 until the output current is the smallest.

BD-64 Maximum torque-to-current ratio control of synchronous motor

Address: 0xBD40
Min.: 0
Max.: 1
Default: 1
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time


\section*{Value Range:}

1 to 100
Description

BD-71 Position lock speed loop integral time
\begin{tabular}{llll} 
Address: & \(0 \times B D 47\) & Effective mode: & - \\
Min.: & 0.01 & Unit: & S \\
Max.: & 10.00 & Data type: & Ulnt16 \\
Default: & 0.50 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}
0.01 s to 10.00 s

\section*{Description}

BD-74 Auto-tuning free mode
\begin{tabular}{llll} 
Address: & \(0 \times B D 4 A\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 2 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

0: Disabled
1: Auto-tuning upon initial running after power-on
2: Auto-tuning upon running
Description

BD-76 Initial position compensation angle
\begin{tabular}{llll} 
Address: & \(0 x B D 4 C\) & Effective mode: & - \\
Min.: & 0.0 & Unit: & - \\
Max.: & 359.9 & Data type: & Ulnt16 \\
Default: 0.0 & Change: & Changeable at any time \\
Value Range: & & \\
0.0 to 359.9 & & \\
Description & &
\end{tabular}

BD-80 Speed loop command word
\begin{tabular}{llll} 
Address: & 0xBD50 & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: & 11 & Change: & Changeable at any time
\end{tabular}

Value Range:
```

 Bit00: Speed loop
 0: Disabled
 1: Enabled
 Bit01: Integration mode
 0: Conventional integration
 1: Position integration
 Bit02: Acceleration torque
 0: Disabled
 1: Enabled
 Bit03-Bit04: Acceleration source
 0: Function transfer torque
 1: Automatic calculation
 2: Function transfer acceleration
 Bit05: Anti-load disturbance
 0: Disabled
 1: Enabled
 Description
 BD-81 Locked-rotor fast integral cancel coefficient
Address: 0xBD51 Effective mode:
Min.: 0.0 Unit: %
Max.: 100.0
Default: 0.0
Value Range:
0.0% to +100.0%
Description
BD-82 Integral torque
Address: 0xBD52
Min.: -100
Max.: }100.
Default: 0.0
Value Range:
-100% to +100.0%
Description
BD-83 Speed controller frequency window size

```

```

 Max.: }10.0
 Default: 0.00
 Value Range:
 0.00 Hz to 10.00 Hz
 Description
    ```
BD-84 Current filter time for torque reference
\begin{tabular}{llll} 
Address: & \(0 \times B D 54\) & Effective mode: & - \\
Min.: & 0.0 & Unit: & ms \\
Max.: & 100.0 & Data type: & Ulnt16 \\
Default: 0.0 & Change: & Changeable only at stop \\
Value Range: & & \\
0.0 ms to 100.0 ms & & \\
Description & &
\end{tabular}
BD-85 Acceleration torque
Address: 0xBD55 Effective mode: -

Min.: 0
Max.: 8
Default: 0
Value Range:
0 : Inactive
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

BD-87 Reference model bandwidth
\begin{tabular}{llll} 
Address: & 0xBD57 & Effective mode: & - \\
Min.: & 0.00 & Unit: & Hz \\
Max.: & 300.00 & Data type: & Ulnt16 \\
Default: & 0.00 & Change: & Changeable at any time
\end{tabular}

\section*{Unit:}

Data type: Ulnt16
Change: Changeable at any time

\section*{Value Range:}
0.00 Hz to 300.00 Hz

\section*{Description}
BD-88 Torque feedforward coefficient
Address: 0xBD58
Effective mode:
Min.: 0.0
Max.: \(\quad 1000.0\)
Default: 100.0

\section*{Value Range:}
0.0\% to 1000.0\%

\section*{Description}
BD-89 Vector control reference frequency filter time
Address: 0xBD59
Effective mode:
\begin{tabular}{|c|c|c|c|c|}
\hline & Min.: & 0.0 & Unit: & ms \\
\hline & Max.: & 100.0 & Data type: & Ulnt16 \\
\hline & Default: & 0.0 & Change: & Changeable only at stop \\
\hline & Value Ra & & & \\
\hline & 0.0 ms to & 100.0 ms & & \\
\hline & Descript & & & \\
\hline & - & & & \\
\hline BD-90 & Vector c & trol feedb & & \\
\hline & Address: & 0xBD5A & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & ms \\
\hline & Max.: & 100.0 & Data type: & Ulnt16 \\
\hline & Default: & 0.0 & Change: & Changeable only at stop \\
\hline & Value Ra & & & \\
\hline & 0.0 ms to & 100.0 ms & & \\
\hline & Descript & & & \\
\hline & - & & & \\
\hline BD-91 & Load ob & rvation ba & & \\
\hline & Address: & 0xBD5B & Effective mode: & - \\
\hline & Min.: & 0.00 & Unit: & Hz \\
\hline & Max.: & 300.00 & Data type: & Ulnt16 \\
\hline & Default: & 0.00 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0.00 Hz to & 300.00 Hz & & \\
\hline & Descript & & & \\
\hline & & & & \\
\hline BD-92 & Load ob & rvation co & & \\
\hline & Address: & 0xBD5C & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 1000.0 & Data type: & Ulnt16 \\
\hline & Default: & 100.0 & Change: & Changeable at any time \\
\hline & Value Ra & ge: & & \\
\hline & 0.0\% to & 0.0\% & & \\
\hline & Descript & & & \\
\hline & & & & \\
\hline BD-93 & Pseudo & egral coef & & \\
\hline & Address: & 0xBD5D & Effective mode: & - \\
\hline & Min.: & 0.000 & Unit: & - \\
\hline & Max.: & 10.000 & Data type: & Ulnt16 \\
\hline & Default: & 1.000 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0.000 to & . 000 & & \\
\hline & Descript & & & \\
\hline BD-94 & Torque & efficient & & \\
\hline & Address: & 0xBD5E & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 1 & Data type: & Ulnt16 \\
\hline
\end{tabular}
Default: 0
Change:
Changeable at any time

Value Range:
0: Disabled
1: Enabled
Description

BD-96 Center frequency of notch filter 1
\begin{tabular}{llll} 
Address: & \(0 x B D 60\) & Effective mode: & - \\
Min.: & 0.0 & Unit: & - \\
Max.: & 4000.0 & Data type: & Ulnt16 \\
Default: & 4000.0 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}
0.0 to 4000.0

\section*{Description}

BD-97 Center frequency of notch filter 2
Address: 0xBD61
Min.: 0.0
Max.: 4000.0
Default: 4000.0
Value Range:
0.0 to 4000.0

Description

BD-98 Integral setting control word
Address: 0xBD62
Min.: \(\quad 0\)
Max.: 1
Default: 0

\section*{Value Range:}

0 : Disabled
1: Enabled
Others: B connector
Description

BD-99 Integral reference source
Address: 0xBD63
Min.: 0
Max.: 8
Default: 0
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

0: Digital setting
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

\subsection*{4.38 BE: Motor 3 Vector Parameters}

BE-00 Externally transferred acceleration

Address: 0xBE00
Min.: \(\quad 0\)
Max.: 8
Default: 0
Value Range:
0 : Inactive
1: AI1
2: AI2
3: Al3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time
-

BE-03 Overturning torque limiting coefficient
Address: 0xBE03
Min.: 0.0
Max.: \(\quad 400.0\)
Default: 100.0
Value Range:
0.0\% to 400.0\%

Description

BE-04 Motoring power limiting coefficient
Address: 0xBE04
Min.: 0.0
Max.: 400.0

Effective mode: -
Unit: \%
Data type: Ulnt16
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & Default: 400.0 & \multirow[t]{5}{*}{Change:} & \multirow[t]{5}{*}{Changeable at any time} \\
\hline & Value Range: & & \\
\hline & 0.0\% to 400.0\% & & \\
\hline & Description & & \\
\hline & - & & \\
\hline \multirow[t]{9}{*}{BE-05} & Generating power limiting coefficient & & \\
\hline & Address: 0xBE05 & Effective mode: & - \\
\hline & Min.: 0.0 & Unit: & \% \\
\hline & Max.: 400.0 & Data type: & Ulnt16 \\
\hline & Default: 400.0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0.0\% to 400.0\% & & \\
\hline & Description & & \\
\hline & & & \\
\hline \multirow[t]{9}{*}{BE-06} & Overspeed limiting enable & & \\
\hline & Address: 0xBE06 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 1 & Data type: & Ulnt16 \\
\hline & Default: 1 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0 to 1 & & \\
\hline & Description & & \\
\hline & - & & \\
\hline \multirow[t]{9}{*}{BE-07} & Sine wave frequency of bandwidth test & & \\
\hline & Address: 0xBE07 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & Hz \\
\hline & Max.: 1000 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0 Hz to 1000 Hz & & \\
\hline & Description & & \\
\hline &  & & \\
\hline \multirow[t]{9}{*}{BE-08} & Sine wave amplitude of bandwidth test & & \\
\hline & Address: 0xBE08 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & \% \\
\hline & Max.: 100 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0\% to 100\% & & \\
\hline & Description & & \\
\hline & - & & \\
\hline \multirow[t]{5}{*}{BE-09} & Bandwidth test enable & & \\
\hline & Address: 0xBE09 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 4 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline
\end{tabular}

Value Range:
0.0\% to 400.0\%

Description

BE-05 Generating power limiting coefficient
Address: 0xBE05
Min: 0.0

Default: 400.0
Value Range:
0.0\% to 400.0\%

Description

Overspeed limiting enable

Max:
Default: 1
Value Range:
0 to 1
Description

Value Range:
0 Hz to 1000 Hz
Description

Sine wave amplitude of bandwidth test

Min.: 0
Max.: 100
Default: 0
Value Range:
0\% to 100\%
Description

Effective mode:
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time
```

0 to 4
Description

```

BE-11 Speed loop parameter calculation mode
\begin{tabular}{llll} 
Address: & \(0 \times B E O B\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16 \\
Default: 1 & Change: & Changeable only at stop \\
Value Range: & & \\
0: New solution & & \\
1: Compatible solution & & \\
Description & &
\end{tabular}

BE-12 Speed loop proportional gain in FVC mode

Address: 0xBEOC
Min.: \(\quad 0.00\)
Max.: \(\quad 100.00\)
Default: 8.00
Value Range:
0.00 Hz to 100.00 Hz

Description

BE-13 Speed loop integral time in FVC mode
Address: 0xBEOD
Min.: 0.000
Max.: \(\quad 20.000\)
Default: 0.080
Value Range:
0.000 s to 20.000 s

Description

BE-14 Speed loop proportional gain in SVC mode
Address: 0xBEOE
Min.: \(\quad 0.00\)
Max.: \(\quad 100.00\)
Default: 5.00
Value Range:
0.00 Hz to 100.00 Hz

\section*{Description}

BE-15 Speed loop integral time in SVC mode
\begin{tabular}{ll} 
Address: & \(0 \times B E 0 F\) \\
Min.: & 0.000 \\
Max.: & 20.000 \\
Default: & 0.127
\end{tabular}

Value Range:
\begin{tabular}{ll} 
Effective mode: & - \\
Unit: & Hz \\
Data type: & Ulnt16 \\
Change: & Changeable at any time
\end{tabular}

Effective mode: -
Unit: s
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit: s
Data type: Ulnt16
Change: Changeable at any time
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{0.000s to 20.000s} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{BE-16} & \multicolumn{4}{|l|}{Low frequency proportional correction coefficient} \\
\hline & Address: & 0xBE10 & Effective mode: & \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 1000.0 & Data type: & Ulnt16 \\
\hline & Default: & 100.0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0\% to 1000.0\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{BE-17} & \multicolumn{4}{|l|}{Low frequency integral correction coefficient} \\
\hline & Address: & 0xBE11 & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 1000.0 & Data type: & UInt16 \\
\hline & Default: & 100.0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0\% to 1000.0\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{BE-18} & \multicolumn{4}{|l|}{Speed loop adaption factor} \\
\hline & Address: & 0xBE12 & Effective mode: & - \\
\hline & Min.: & 0.000 & Unit: & - \\
\hline & Max.: & 10.000 & Data type: & Ulnt16 \\
\hline & Default: & 0.200 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.000 to 10.000} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{BE-19} & \multicolumn{4}{|l|}{Speed loop adaption switchover lower limit} \\
\hline & Address: & 0xBE13 & Effective mode: & - \\
\hline & Min.: & 0.000 & Unit: & - \\
\hline & Max.: & 10.000 & Data type: & Ulnt16 \\
\hline & Default: & 0.400 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.000 to 10.000} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{7}{*}{BE-20} & \multicolumn{4}{|l|}{Speed loop adaption switchover upper limit} \\
\hline & Address: & 0xBE14 & Effective mode: & - \\
\hline & Min.: & 0.000 & Unit: & - \\
\hline & Max.: & 10.000 & Data type: & Ulnt16 \\
\hline & Default: & 1.000 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.000 to 10.000} \\
\hline
\end{tabular}

\section*{Description}

BE-21 Speed loop adaption correction upper limit

Address: 0xBE15
Min.: 0.0
Max.: \(\quad 1000.0\)
Default: 100.0
Value Range:
0.0\% to 1000.0\%

\section*{Description}

Effective mode: -
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time

BE-22 Speed loop adaption correction lower limit
Address: 0xBE16
Min.: 0.0
Max.: \(\quad 1000.0\)
Default: 100.0

\section*{Value Range:}
0.0\% to 1000.0\%

\section*{Description}

BE-23 Flux adaptation enable
Address: 0xBE17
Min.: 0
Max.: \(\quad 1\)
Default: 0

\section*{Value Range:}

0 to 1
Description
Effective mode: -
Unit: \%

Data type: Ulnt16
Change: Changeable at any time

Description

BE-24 Overspeed controller correction coefficient
Address: 0xBE18
Min.: 0.0
Max.: 1000.0
Default: 100.0

\section*{Value Range:}
0.0\% to 1000.0\%

\section*{Description}

BE-25 VDC control command word
\begin{tabular}{llll} 
Address: & \(0 x B E 19\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

Bit00: VdcMin
0: Disabled
1: Enabled
Bit01: VdcMax
0: Disabled
1: Enabled
Bit02: Automatic calculation of VDC trigger voltage
0 : Disabled
1: Enabled
Bit03: VDC control integral action
0: Disabled
1: Enabled
Description

\section*{BE-26 Bus capacitance ratio}
\begin{tabular}{llll} 
Address: & \(0 \times B E 1 A\) & Effective mode: & - \\
Min.: & 50.0 & Unit: & \(\%\) \\
Max.: & 1000.0 & Data type: & Ulnt16 \\
Default: & 100.0 & Change: & Changeable at any time
\end{tabular}

Value Range:
50.0\% to 1000.0\%

\section*{Description}

BE-27 Undervoltage suppression exit hysteresis frequency
Address: 0xBE1B
Min.: 0.00
Max.: \(\quad 10.00\)
Default: 3.00
Value Range:
0.00 Hz to 10.00 Hz

Description

BE-28 Minimum VDC failure speed threshold
\begin{tabular}{llll} 
Address: & 0xBE1C & Effective mode: & - \\
Min.: & 0.00 & Unit: & Hz \\
Max.: & 20.00 & Data type: & Ulnt16 \\
Default: & 2.00 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.00 Hz to 20.00 Hz

Description

BE-29 Dynamic adjustment coefficient
\begin{tabular}{llll} 
Address: & 0xBE1D & Effective mode: & - \\
Min.: & 0.0 & Unit: & \(\%\) \\
Max.: & 1000.0 & Data type: & Ulnt16 \\
Default: & 100.0 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}
0.0\% to 1000.0\%

Description

BE-30 Minimum VDC activation voltage
Address: 0xBE1E
Min.: 320.0
Max.: \(\quad 540.0\)
Default: 430.0
Value Range:
320.0 V to 540.0 V

Description

BE-31 Maximum VDC activation voltage
Address: 0xBE1F
Min.: 650.0
Max.: 800.0
Default: 770.0
Value Range:
650.0 V to 800.0 V

\section*{Description}

\section*{BE-32 Flux linkage control command word}

Address: 0xBE20
Min.: 0
Max.: 65535
Default: 2357
Value Range:

Effective mode: -
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Bit00: Output voltage limit calculation filtering mode
0 : Symmetric filtering
1: Asymmetric filtering
Bit01: Asynchronous motor inverse proportion curve calculation
0 : The inverse proportional synchronization frequency decreases.
1: The inverse proportional speed decreases.
Bit02: Flux linkage feedforward calculation by using inverse proportional speed
0: Disabled
1: Enabled
Bit03: Reserved
Bit04: Reserved
Bit05: Field weakening adjustment
0: Disabled
1: Enabled
Bit06: Flux linkage derivative feedforward
0: Disabled
1: Enabled
Bit07: Energy conservation control
0 : Disabled
1: Enabled
Bit08: Asynchronous motor flux closed loop
0: Disabled
1: Enabled
Bit09: Reserved
Bit10: Reserved
Bit11: Asynchronous motor pre-excitation mode
0 : Pre-excitation based on time
1: Pre-excitation based on current
Bit12: Asynchronous motor pre-excitation current
0: Reference current
1: Maximum current allowed by the drive

\section*{Description}

Bit00: Output voltage limit calculation filtering mode
0 indicates the usual first-order filtering, and 1 indicates filtering when the bus voltage rises and no filtering when it falls, so as to avoid overmodulation.

Bit01: Asynchronous motor inverse proportion curve calculation
You can select 1 to deliberately lower the break frequency to avoid saturation in the field-weakening range. The setting is valid only when Bit02 is set to 1 .
Bit02: Flux linkage feedforward calculation by using inverse proportional speed
If it is set to 1 , the inverse proportional speed of flux linkage reference decreases when the output
frequency exceeds the break frequency, which can improve dynamic response during acceleration.
Bit05: Field weakening adjustment
When it is set to 1 , voltage outer loop adjustment is valid.
Bit07: Energy conservation control
This function is valid for asynchronous motors. It can reduce copper loss at light load in vector control mode.
Bit11: Asynchronous motor pre-excitation mode

0: Pre-excitation is implemented according to the set time. The time will be shorter than the set time if remanence exists.
1: Fixed current is output during the pre-excitation process, and the motor exits the pre-excitation mode when it detects that the flux linkage reaches the setpoint.
Bit12: Asynchronous motor pre-excitation current
0 : Pre-excitation is implemented based on the current defined by AB-51.
1: Pre-excitation is implemented based on the maximum current allowed by the drive, which can shorten the pre-excitation time.

\section*{BE-33 Output voltage upper limit margin for field weakening adjustment}

Address: 0xBE21
Min.: 1
Max.: 50
Default: 5
Value Range:
1\% to 50\%
Description
Decreasing the setpoint can improve voltage utilization. The current is smaller under the same load in the field weakening region. However, an excessively small setpoint will affect dynamic performance.

BE-34 Output voltage upper limit margin for auto adjustment of field weakening
Address: 0xBE22
Min.: \(\quad 1\)
Max.: \(\quad 20\)
Default: 3
Value Range:
1\% to 20\%
Description
When F2-18 is set to 2 (calculation+auto adjustment), the value of this parameter affects the voltage margin, and the effect is similar to that of AB-33.

BE-35 Filter time for calculating maximum output voltage
\begin{tabular}{llll} 
Address: & \(0 x\) BE23 & Effective mode: & - \\
Min.: & 0 & Unit: & ms \\
Max.: & 3000 & Data type: & Ulnt16 \\
Default: & 30 & Change: & Changeable at any time
\end{tabular}

Defaut. 30
Value Range:
0 ms to 3000 ms

\section*{Description}

Increasing the filter time allows the maximum output voltage to change slowly but affects voltage utilization.

BE-36 Rated flux adjustment coefficient for calculation
\begin{tabular}{llll} 
Address: & \(0 \times B E 24\) & Effective mode: & - \\
Min.: & 0.5 & Unit: & - \\
Max.: & 2.0 & Data type: & Ulnt16 \\
Default: & 1.0 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.5 to 2.0

Effective mode:
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

\section*{Description}

You can decrease the value of this parameter if underexcitation is required, or increase it if overexcitation is required.

BE-37 Field weakening frequency adjustment coefficient for calculation
Address: 0xBE25
Min.: 0.8
Max.: \(1.2 \quad\) Data type: Ulnt16
Default: \(1.0 \quad\) Change: Changeable at any time
Value Range:
0.8 to 1.2

Description
This parameter is used to adjust the break frequency calculated automatically by the AC drive. After flux linkage feedforward calculation by using inverse proportional speed is enabled, deceasing the value of this parameter enables the motor to enter the field weakening state in advance, which is applicable to occasions with short acceleration time and high dynamic response requirements.

BE-38 Slip filter time for calculating field weakening frequency
Address: 0xBE26 Effective mode:
Min.: 0 Unit: ms
Max.: 3000 Data type: Ulnt16
Default: 62 Change: Changeable at any time
Value Range:
0 ms to 3000 ms

\section*{Description}

When flux linkage feedforward calculation by using inverse proportional speed is enabled, increasing the value of this parameter can reduce the fluctuation range of the calculated reference flux linkage.

\section*{BE-39 Feedback speed filtering}

Address: 0xBE27 Effective mode: -
Min.: 0 Unit: ms
Max.: 8000 Data type: Ulnt16
Default: 50
Value Range:
0 ms to 8000 ms
Description
When flux linkage feedforward calculation by using inverse proportional speed is enabled, increasing the value of this parameter can reduce the disturbance to the calculated flux linkage feedforward introduced by speed test.

BE-40 Flux linkage rising filter time
Address: 0xBE28 Effective mode: -
Min.: \(0 \quad\) Unit: ms
Max.: 8000 Data type: Ulnt16
Default: \(20 \quad\) Change: Changeable at any time
Value Range:
0 ms to 8000 ms
Description
When flux linkage feedforward calculation by using inverse proportional speed is enabled, this parameter defines the filter time of the asymmetric filter that takes effect only when the reference flux linkage increases.

BE-42 Feedback voltage filter time
Address: 0xBE2A Effective mode: -
Min.: 0
Max.: 3000
Default: 5
Unit: ms
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 ms to 3000 ms

\section*{Description}

When field weakening adjustment is enabled, increasing this filter time can reduce the fluctuation of the reference excitation current. To increase the field weakening gain, you need to decrease the filter time to avoid system oscillation.

BE-43 Maximum demagnetization current of synchronous motor
\begin{tabular}{llll} 
Address: & 0xBE2B & Effective mode: & - \\
Min.: & 0 & Unit: & \(\%\) \\
Max.: & 500 & Data type: & Ulnt16 \\
Default: & 300 & Change: & Changeable at any time
\end{tabular}

Value Range:
0\% to 500\%

\section*{Description}

This parameter is used to limit the demagnetization current of synchronous motors to prevent faults such as overload. It is a percentage relative to the rated current.

\section*{BE-44 Voltage outer loop lower limit coefficient}
\begin{tabular}{llll} 
Address: & 0xBE2C & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 500 & Data type: & Ulnt16 \\
Default: & 50 & Change: & Changeable at any time
\end{tabular}

Value Range:
0 to 500
Description
This parameter is used to limit the lower limit of flux linkage during field weakening for asynchronous motors to avoid limiting torque reduction.

BE-45 Flux linkage derivative feedforward coefficient
Address: 0xBE2D Effective mode: -
Min.: 0.0 Unit: -
Max.: 1.5 Data type: Ulnt16
Default: \(1.0 \quad\) Change: Changeable at any time
Value Range:
0.0 to 1.5

\section*{Description}

When flux linkage derivative feedforward of an asynchronous motor is enabled, this parameter can adjust the ratio of effective feedforward. A smaller value indicates smaller feedforward effect.

BE-46 Flux linkage derivative feedforward filter time
\begin{tabular}{llll} 
Address: & 0xBE2E & Effective mode: & - \\
Min.: & 0 & Unit: & ms \\
Max.: & 3000 & Data type: & Ulnt16 \\
Default: & 6 & Change: & Changeable at any time
\end{tabular}

Value Range:

\section*{0 ms to 3000 ms}

\section*{Description}

Increasing the filter time can reduce the fluctuation of the calculated feedforward value.

BE-47 Torque current rising filter time under energy conservation control
Address: 0xBE2F Effective mode:
Min.: 0 Unit: ms

Max.: 3000
Data type: Ulnt16
Default: 50
Change: Changeable at any time
Value Range:
0 ms to 3000 ms

\section*{Description}

When energy conservation control of an asynchronous motor is enabled, decreasing the value of this parameter can improve dynamic response and avoid a large drop in speed when a sudden load is applied. You need to increase this value when the output current fluctuates greatly.

BE-48 Torque current falling filter time under energy conservation control
Address: 0xBE30
Min.: 0
Max.: 3000
Default: 100
Value Range:
0 ms to 3000 ms
Description
When energy conservation control of an asynchronous motor is enabled, decreasing the value of this parameter can make the output current decrease rapidly after the load is reduced. You need to increase this value when the output current fluctuates greatly.

BE-49 Flux linkage lower limit coefficient under energy conservation control

Address: 0xBE31
Min.: \(\quad 0.00\)
Max.: \(\quad 0.50\)
Default: 0.10
Value Range:
0.00 to 0.50

Description
This parameter defines the minimum flux linkage allowed under energy conservation control. A smaller value indicates more significant energy conservation effect when no load is applied, but it will affect dynamic response after the load is added.

\section*{BE-51 Pre-excitation current}

Address: 0xBE33
Min.: \(\quad 1\)
Max.: 200
Default: 100

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Value Range:
1\% to 200\%
Description
When pre-excitation of an asynchronous motor is implemented based on current, this parameter defines the reference excitation current as a percentage of the rated current.

BE-52

BE-53 Flux linkage closed-loop bandwidth frequency
Address: 0xBE35 Effective mode: -
Min.: 0.0 Unit: Hz

Max.: \(\quad 100.0\)
Default: 2.0

\section*{Value Range:}
0.0 Hz to 100.0 Hz

\section*{Description}

When flux closed loop is enabled, increasing the setpoint can reduce the deviation of the flux linkage from the rated value during dynamic processes such as sudden load or acceleration and deceleration
of the asynchronous motor.

\section*{BE-54 Feedback flux linkage filter time coefficient}

Address: 0xBE36 Effective mode: -
Min.: \(0 \quad\) Unit: -
Max.: 200 Data type: Ulnt16
Default: 4 Change: Changeable at any time
Value Range:
0 to 200
Description
When flux closed loop is enabled, increasing the setpoint can reduce fluctuation of the reference flux linkage. It is a percentage relative to the rotor time constant.

BE-55 Static output flux linkage filter time
\begin{tabular}{llll} 
Address: & \(0 \times B E 37\) & Effective mode: & - \\
Min.: & 0 & Unit: & ms \\
Max.: & 5000 & Data type: & Ulnt16 \\
Default: & 10 & Change: & Changeable at any time
\end{tabular}

Value Range:
0 ms to 5000 ms
Description
Increasing the setpoint can reduce fluctuation of the reference flux linkage.

BE-56 Current loop mode
Address: 0xBE38
Min.: \(0 \quad\) Unit: -
Max.: 3 Data type: Ulnt16
Default: 1 Change: Changeable only at stop
Value Range:
\begin{tabular}{ll} 
Effective mode: & - \\
Unit: & ms \\
Data type: & Ulnt16 \\
Change: & Changeable at any time
\end{tabular}

Value Range:
1 ms to 30000 ms
Description
When pre-excitation of an asynchronous motor is implemented based on time, this parameter defines the total excitation time. The actual excitation time will be shorter than the set time if remanence exists.

\footnotetext{
Value Range:
}
```

0: ImCsr2 mode
1: Complex vector mode
2: }880\mathrm{ mode
3: No field weakening
Description
Decreasing the value of this parameter can enhance current loop following but also increase the
overshoot and harmonics of the output current.
BE-57 PI regulator proportional gain adaptation with load

Address:	$0 \times B E 39$	Effective mode:	
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0: Disabled
1: Enabled
Description

```

\section*{BE-58 Current loop damping}
```

Address: 0xBE3A Effective mode:
Min.: 0.2 Unit: -
Max.: 5.0 Data type: Ulnt16
Default: 0.8 Change: Changeable at any time
Value Range:
0.2 to 5.0

```

\section*{Description}
```

Decreasing the value of this parameter can enhance current loop following but also increase the overshoot and harmonics of the output current.

```

\section*{BE-59 Low-speed current loop Kp adjustment}
```

Address:	$0 \times B E 3 B$	Effective mode:	-
Min.:	0.1	Unit:	-
Max.:	10.0	Data type:	Ulnt16
Default:	1.0	Change:	Changeable at any time

Value Range:
0.1 to 10.0

```

\section*{Description}
```

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.
BE-60 High-speed current loop Kp adjustment
Address: 0xBE3C Effective mode: -
Min.: 0.1
Max.: $\quad 10.0$
Default: 1.0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.1 to 10.0

```

\section*{Description}

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.

BE-61 Low-speed current loop Ki adjustment
Address: 0xBE3D Effective mode: -
Min.: \(\quad 0.1\)
Max.: \(\quad 10.0\)
Default: 1.0
\begin{tabular}{ll} 
Unit: & - \\
Data type: & Ulnt16 \\
Change: & Changeable at any time
\end{tabular}

Value Range:
0.1 to 10.0

\section*{Description}

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.

BE-62 High-speed current loop Ki adjustment
Address: 0xBE3E Effective mode: -
Min.: 0.1 Unit: -

Max.: 10.0 Data type: Ulnt16
Default: \(2.0 \quad\) Change: Changeable at any time

\section*{Value Range:}
0.1 to 10.0

\section*{Description}

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.

BE-63 D-axis current loop complex vector adjustment

Address: 0xBE3F
Min.: 0.1
Max.: \(\quad 10.0\)
Default: 1.0
Value Range:
0.1 to 10.0

\section*{Description}

BE-64 Q-axis current loop complex vector adjustment
Address: 0xBE40
Min.: 0.1
Max.: \(\quad 10.0\)
Default: 1.0

\section*{Value Range:}
0.1 to 10.0

Description

BE-65 Complex vector hysteresis frequency lower limit as a percentage of rated frequency
Address: 0xBE41
Effective mode:

\begin{tabular}{llll} 
Min.: & 40 & Unit: & \% \\
Max.: & 80 & Data type: & Ulnt16 \\
Default: & 60 & Change: & Changeable at any time \\
Value Range: & & \\
40\% to \(80 \%\) & & \\
Description & &
\end{tabular}

BE-71 ImCsr2 current loop Kss adjustment
Address: 0xBE47 Effective mode:
Min.: 0.1
Max.: 10.0
Default: 1.0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.1 to 10.0

Description

BE-72 Proportional gain adjustment coefficient corresponding to the maximum torque when proportional gain is adjusted with load
\begin{tabular}{llll} 
Address: & \(0 \times B E 48\) & Effective mode: & - \\
Min.: & 0.1 & Unit: & - \\
Max.: & 1.0 & Data type: & Ulnt16 \\
Default: & 0.5 & Change: & Changeable at any time
\end{tabular}

Value Range:
0.1 to 1.0

Description

BE-73 Torque upper limit setpoint as a percentage of rated torque when proportional gain is adjusted with load
Address: 0xBE49 Effective mode: -
Min.: BE-74 Unit: \%
Max.: 300 Data type: Ulnt16
Default: 200 Change: Changeable at any time
Value Range:
BE-74 to 300\%
Description

BE-74 Torque lower limit setpoint as a percentage of rated torque when proportional gain is adjusted with load
Address: 0xBE4A Effective mode: -
Min.: 10 Unit:
Max.: BE-73 Data type: Ulnt16
Default: \(100 \quad\) Change: Changeable at any time
Value Range:
10\% to BE-73
Description

BE-75 Derivative feedforward adjustment
\begin{tabular}{llll} 
Address: & \(0 x B E 4 B\) & Effective mode: - \\
Min.: & 0.0 & Unit: & - \\
Max.: & 1.0 & Data type: & Ulnt16 \\
Default: 0.0 & Change: & Changeable at any time \\
Value Range: & & \\
0.0 to 1.0 & & \\
Description & &
\end{tabular}

BE-76 Decoupling control start frequency as a percentage of rated frequency
Address: 0xBE4C
Min.: 20
Max.: 150
Effective mode: -
Unit: \%

Default: 40
Data type: Ulnt16
Change: Changeable at any time
Value Range:
20\% to 150\%
Description

BE-77 Decoupling control filter time adjustment coefficient
Address: 0xBE4D

Max.: \(3.0 \quad\) Data type: Ulnt16
Default: \(1.0 \quad\) Change: Changeable at any time
Value Range:
0.1 to 3.0

Description

BE-78 Decoupling control output adjustment coefficient
Address: 0xBE4E
Min.: 0.0
Max.: \(\quad 1.0\)
Default: 1.0
Effective mode:
Unit:
Data type: Ulnt16

Value Range:
0.0 to 1.0

Description

BE-79 CPC feedforward enable
Address: 0xBE4F
Min.: \(\quad 0\)
Max.: 1
Default: 0
Change: Changeable at any time

Description

\section*{Value Range:}

0 : Disabled
1: Enabled
Description

\section*{BE-80 Current loop auxiliary command word}
\begin{tabular}{llll} 
Address: & 0xBE50 & Effective mode: \\
Min.: & 0 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

Value Range:
Bit00: Complex vector angle limiting
0 : Disabled
1: Enabled
Bit01: Voltage angle limiting
0: Program internal limiting
1: Parameter setting
Bit02: 0 by default
0 : No lower limit on the excitation current is imposed during the dynamic process.
1: A lower limit on the excitation current is imposed during the dynamic process in ImCsr2 mode.
Bit03-Bit15: Reserved (0 by default)

\section*{Description}

BE-81 Voltage angle upper limit
Address: 0xBE51
Min.: 90
Max.: 180
Default: 150
Value Range:
\(90^{\circ}\) to \(180^{\circ}\)
Description

BE-82 Voltage angle lower limit
Address: 0xBE52
Min.: 0
Max.: 90
Default: 30
Value Range:
\(0^{\circ}\) to \(90^{\circ}\)

\section*{Description}

BE-83 Asynchronous motor D axis integral limit
\begin{tabular}{llll} 
Address: & \(0 \times\) BE53 & Effective mode: & - \\
Min.: & 0.500 & Unit: & - \\
Max.: & 1.000 & Data type: & Ulnt16 \\
Default: & 0.707 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}
0.500 to 1.000

Description

\section*{BE-84 Current loop carrier frequency upper limit}

Address: 0xBE54
Min.: 5.0
Max.: 16.0
Default: 8.0
Value Range:
5.0 to 16.0

Description

BE-85 Droop enable
Address: 0xBE55
Min.: 0
Max.: \(\quad 1\)
Default: 0
Value Range:
0 to 1
Description

BE-86 Droop source
Address: 0xBE5
Min.: 0
Max.: 3
Default: 1
Value Range:
0: Line current
1: Torque reference
2: Speed adjustment output
3: Speed adjustment integral component
Description

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

BE-87 Frequency reference droop coefficient

Address: 0xBE57
Min.: 0.0
Max.: 50.0
Default: 0.0
Value Range:
0.0\% to 50.0\%

Description

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

BE-88 FVC-SVC switchover mode
Address: 0xBE58
Min.: 0
Max.: 3
Default: 0
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

0: No switchover
1: Active switchover
2: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during stop and does not switch back to FVC mode when the encoder recovers during running.)
3: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during running or stop.)

\section*{Description}

\section*{BE-89 FVC-SVC switchover frequency}
\begin{tabular}{llll} 
Address: & 0xBE59 & Effective mode: \\
Min.: & 10 & Unit: & \(\%\) \\
Max.: & 500 & Data type: & Ulnt16 \\
Default: & 50 & Change: & Changeable only at stop
\end{tabular}

\section*{Value Range:}

10\% to 500\%

\section*{Description}

\section*{BE-90 FVC-SVC switchover hysteresis}
\begin{tabular}{llll} 
Address: & \(0 \times B E 5 A\) & Effective mode: \\
Min.: & 10 & Unit: & \(\%\) \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: & 10 & Change: & Changeable only at stop
\end{tabular}

Value Range:
10\% to 100\%
Description

\subsection*{4.39 BF: AC Drive Parameters}

BF-00 Minimum speed measurement interval of resolver
\begin{tabular}{llll} 
Address: & \(0 \times B F 00\) & Effective mode: \\
Min.: & 0.010 & Unit: & s \\
Max.: & 10.000 & Data type: & Ulnt16 \\
Default: & 0.450 & Change: & Changeable only at stop
\end{tabular}

\section*{Value Range:}
0.010 s to 10.000 s

\section*{Description}

BF-01 Dynamic parameter adaption factor
\begin{tabular}{llll} 
Address: & 0xBF01 & Effective mode: - \\
Min.: & 20.0 & Unit: & \(\%\) \\
Max.: & 200.0 & Data type: & Ulnt16 \\
Default: & 100.0 & Change: & Changeable only at stop
\end{tabular}

\section*{Value Range:}
20.0\% to 200.0\%

\section*{Description}

BF-03 Reserved 2 saturation model auto-tuning carrier frequency reference
Address: 0xBF03

Min.: 0.0
Max.: \(\quad 10.0\)
Default: 6.0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0 to 10.0

Description

BF-04 Saturation model auto-tuning target rated current multiple
\begin{tabular}{llll} 
Address: & 0xBF04 & Effective mode: \\
Min.: & 0 & Unit: & \(\%\) \\
Max.: & 250 & Data type: & Ulnt16 \\
Default: & 200 & Change: & Changeable at any time
\end{tabular}

Value Range:
0\% to 250\%
Description

BF-05 Saturation model auto-tuning manual voltage setpoint

Address: 0xBF05
Min.: 0
Max.: 4096
Default: 2000
Value Range:
0 to 4096
Description

BF-06 Bus voltage filter time
Address: 0xBF06
Min.: 0
Max.: 10000
Default: 0
Value Range:
0 ms to 10000 ms
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
-
```

BF-07 Inverter protection
Address: 0xBF07 Effective mode: -
Min.: 0 Unit
Max.: 65535 Data type: Ulnt16
Default: }12
Change: Changeable at any time
Value Range:
Bit00: Pulse-by-pulse current limit protection (reserved)
0: Disabled
1: Enabled
Bit01: Output phase loss (reserved)
0: Disabled
1: Enabled
Bit02: Leakage current protection (reserved)
0: Disabled
1: Enabled
Bit03: PL signal input phase loss detection (reserved)
0: Disabled
1: Enabled
Bit04: Bus input phase loss detection (reserved)
0: Disabled
1: Enabled
Bit05: Derating at low frequency
0: Disabled
1: Enabled
Bit06: Reporting overvoltage upon shutdown
0: Enabled
1: Disabled
Bit07: Zero drift detection fault
0: Disabled
1: Enabled
Bit08: Pre-charge fault detection (reserved)
0: Disabled
1: Enabled
Bit09: Bus voltage collection and analysis
0: Disabled
1: Enabled
Description
BF-09 AC drive pre-overload threshold
Address: 0xBF09 Effective mode: -
Min.: 0.0 Unit: %
Max.: 100.0 Data type: Ulnt16
Default: 90.0 Change: Changeable at any time
Value Range:
0.0% to +100.0%
Description

```

\section*{BF-12 Input phase loss detection time}
Address: 0xBFOC Effective mode: -

Min.: 1.0
Max.: 10.0
Default: 2.0
Value Range:
1.0 s to 10.0 s

Description

BF-13 Allowable bus fluctuation range
\begin{tabular}{llll} 
Address: & 0xBFOD & Effective mode: & - \\
Min.: & 10.0 & Unit: & V \\
Max.: & 500.0 & Data type: & Ulnt16 \\
Default: & 65.0 & Change: & Changeable at any time
\end{tabular}

Value Range:
10.0 V to 500.0 V

Description

BF-14 Module pre-overtemperature to overtemperature margin
Address: 0xBF0E Effective mode:

Min.: 0.0
Max.: 60.0
Default: 5.0
Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

\section*{Value Range:}
0.0\% to 60.0\%

\section*{Description}

BF-15 Maximum output current
\begin{tabular}{llll} 
Address: & 0xBFOF & Effective mode: \\
Min.: & 0.0 & Unit: & \(\%\) \\
Max.: & 1000.0 & Data type: & Ulnt16 \\
Default: & 1000.0 & Change: & Changeable at any time
\end{tabular}

BF-16 PWM setting
\begin{tabular}{llll} 
Address: & 0xBF10 & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: & 130 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

Bit00: Carrier frequency adjusted with temperature
0: Disabled
1: Enabled
Bit01: Carrier frequency adjusted with sync frequency
0 : Disabled
1: Enabled
Bit02-Bit03:
0 : Asynchronous modulation
1: Pseudo synchronous modulation
2: Synchronous modulation (reserved)
Bit04-Bit06:
0: CPWM
1: DPWM0
2: DPWM1
3: DPWM2
4: DPWM3
5: DPWMph
Bit07: Deadzone compensation
0: Disabled
1: Enabled
Bit08: Overmodulation mode
0 : Amplitude
1: Phase
Description

\section*{BF-17 Hysteresis for adjusting carrier frequency with sync frequency}
\begin{tabular}{llll} 
Address: & \(0 \times B F 11\) & Effective mode: & - \\
Min.: & 0.0 & Unit: & Hz \\
Max.: & 100.0 & Data type: & Ulnt16 \\
Default: 3.0 & Change: & Changeable at any time \\
Value Range: & & \\
0.0 Hz to 100.0 Hz & & \\
Description & &
\end{tabular}

BF-18 Cut-off frequency for deadzone compensation
Address: 0xBF12 Effective mode:
Min.: 0.0 Unit: Hz

Max.: 600.0
Default: 70.0
Value Range:
0.0 Hz to 600.0 Hz

Description

BF-19 Narrow pulse coefficient
Address: 0xBF13 Effective mode:
Min.: 0.0
Unit:
\%
```

Max.: 100.0 Data type: Ulnt16
Default: 0.0
Value Range:
0.0% to +100.0%
Description

```
BF-20 Start frequency for adjusting carrier frequency with sync frequency
Address: 0xBF14 Effective mode:
Min.: 0.0
Max.: 600.0
Default: 5.0
Value Range:
0.0 Hz to 600.0 Hz
Description
BF-21 Modulation ratio limit
Address: 0xBF15
Min.: A5-05
Max.: 115.5
Default: 105.0
Value Range:
A5-05 to 115.5\%
Description

BF-22 Drive transistor voltage drop voltage
\begin{tabular}{ll} 
Address: & \(0 \times B F 16\) \\
Min.: & 0.00 \\
Max.: & 5.00 \\
Default: & 0.80
\end{tabular}

Effective mode:
Unit: V
Data type: Ulnt16
Default: 0.80
Change: Changeable only at stop
Value Range:
0.00 V to 5.00 V

Description

BF-23 Current 1 of deadzone time curve
Address: 0xBF17
Min.: 0.0
Max.: \(\quad 150.0\)
Default: 1.0
Value Range:
0.0\% to 150.0\%

Description

BF-24 Current 2 of deadzone time curve
\begin{tabular}{ll} 
Address: & \(0 x B F 18\) \\
Min.: & 0.0 \\
Max.: & 150.0 \\
Default: & 2.0
\end{tabular}

Effective mode:
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable only at stop

\section*{Value Range:}
\(0.0 \%\) to \(150.0 \%\)

\section*{Description}

BF-25 Current 3 of deadzone time curve
Address: 0xBF19
Min.: 0.0
Max.: \(\quad 150.0\)
Default: 5.0
Value Range:
0.0\% to 150.0\%

Description

BF-26 Current 4 of deadzone time curve
Address: 0xBF1A
Min.: 0.0
Max.: \(\quad 150.0\)
Default: 10.0
Value Range:
0.0\% to 150.0\%

Description

BF-27 Current 5 of deadzone time curve
Address: 0xBF1B
Min.: 0.0
Max.: \(\quad 150.0\)
Default: 20.0
Value Range:
0.0\% to 150.0\%

Description

BF-28 Current 6 of deadzone time curve
Address: 0xBF1C
Min.: 0.0
Max.: \(\quad 150.0\)
Default: 40.0
Value Range:
0.0\% to 150.0\%

Description

BF-29 Current 7 of deadzone time curve
Address: 0xBF1D
Min.: 0.0
Max.: \(\quad 150.0\)
Default: 60.0

\section*{Value Range:}
0.0\% to 150.0\%
```

Effective mode: -
Unit: %
Data type: Ulnt16
Change: Changeable only at stop

```

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable only at stop

\section*{Description}

BF-30 Current 8 of deadzone time curve
Address: 0xBF1E
Min.: 0.0
Max.: 150.0
Default: 80.0
Value Range:
0.0\% to 150.0\%

Description

BF-31 Time 1 of deadzone time curve
Address: 0xBF1F
Min.: 0.0
Max.: \(\quad 300.0\)
Default: 10.0
Value Range:
0.0\% to 300.0\%

Description

BF-32 Time 2 of deadzone time curve
Address: 0xBF20
Min.: 0.0
Max.: \(\quad 300.0\)
Default: 20.0
Value Range:
0.0\% to 300.0\%

Description

BF-33 Time 3 of deadzone time curve
Address: 0xBF21 Effective mode: -
Min.: 0.0
Max.: \(\quad 300.0\)
Default: 50.0

\section*{Value Range:}
0.0\% to 300.0\%

\section*{Description}

BF-34 Time 4 of deadzone time curve
Address: 0xBF22
Min.: 0.0
Max.: \(\quad 300.0\)
Default: 80.0

\section*{Value Range:}
0.0\% to 300.0\%

\section*{Description}
```

Effective mode: -
Unit: %
Data type: Ulnt16
Change: Changeable only at stop

```
```

Effective mode: -
Unit: %
Data type: Ulnt16
Change: Changeable only at stop

```
Effective mode:
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable only at stop

BF-35 Time 5 of deadzone time curve
Address: 0xBF23
Min.: 0.0
Max.: \(\quad 300.0\)
Default: 90.0
Value Range:
0.0\% to 300.0\%

Description

BF-36 Time 6 of deadzone time curve
Address: 0xBF24
Min.: 0.0
Max.: \(\quad 300.0\)
Default: 90.0
Value Range:
0.0\% to 300.0\%

Description

BF-37 Time 7 of deadzone time curve
Address: 0xBF25
Min.: 0.0
Max.: \(\quad 300.0\)
Default: 90.0
Value Range:
0.0\% to 300.0\%

Description
\begin{tabular}{ll} 
Effective mode: & - \\
Unit: & \(\%\) \\
Data type: & Ulnt16 \\
Change: & Changeable only at stop
\end{tabular}

BF-38 Time 8 of deadzone time curve
Address: 0xBF26
Min.: 0.0
Max.: \(\quad 300.0\)
Default: 90.0
Value Range:
0.0\% to 300.0\%

Description
\begin{tabular}{ll} 
Effective mode: & - \\
Unit: & \(\%\) \\
Data type: & Ulnt16 \\
Change: & Changeable only at stop
\end{tabular}

BF-39 Detection of excessive leakage current
Address: 0xBF27

Min.: 0
Max.: \(\quad 1\)
Default: 0

\section*{Value Range:}

0: Disabled
1: Enabled
Description
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

```

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop
BF-40 Excessive leakage current fault threshold protection gain
Address: 0xBF28 Effective mode:
            Min.: \(\quad 50.0\)
            Max.: \(\quad 100.0\)
            Default: 100.0
                                    Unit: \%
                                    Data type: Ulnt16
                                    Change: Changeable at any time
Value Range:
50.0\% to 100.0\%
Description
BF-44 Start voltage for actuating braking unit
            Address: 0xBF2C
            Min.: 200.0
            Max.: 2000.0
            Default: 760.0
            Value Range:
            200.0 V to 2000.0 V
            Description

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time
BF-45 Load loss detection level
Address: 0xBF2D Effective mode:

Min.: 0.0
Max.: 100.0
Default: 10.0
Value Range:
0.0\% to +100.0\%

Description

\section*{-}

BF-46 Load loss detection time
Address: 0xBF2E Effective mode:
Min.: \(\quad 0.0\)
Max.: 60.0
Default: 1.0
Value Range:
0.0 s to 60.0s

Description

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

Unit: s
Data type: Ulnt16
Change: Changeable at any time

\subsection*{4.40 C0: Communication Adaptation Parameters}

C0-00 Communication mapping
Address: 0xC000
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Disabled
1: Enabled
```

Description
C0-01 Automatic address detection

Address:	$0 x C 001$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	2	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0: Disabled
1: Reset detection (overwriting the index)
2: Incremental detection (without overwriting the index)
Description
C0-02 Automatic address detection time

Address:	$0 x C 002$	Effective mode:	-
Min.:	0	Unit:	S
Max.:	65535	Data type:	Ulnt16
Default:	60	Change:	Changeable at any time

Value Range:
0s to 65535s
Description
C0-03 Confirmation of automatic address detection

```

Address: 0xC003
Min.: 0
Max.: \(\quad 1\)
Default: 0
Value Range:
0 : Cancel
1: Confirm
Description

C0-04 Data transmission endian mode
Address: 0xC004 Effective mode:
Min.: 0
Max.: \(\quad 1\)
Default: 0
Value Range:
Ones: RX data
0: Low-order bytes before high-order bytes
1: High-order bytes before low-order bytes
Description

Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

C0-05 Read data type selection 1

Address:	$0 x C 005$	Effective mode:
Min.:	0	Unit:

```

\section*{Max.: 55555 \\ Default: 0}

Value Range:
Ones: Read index 1
0: Ulnt16
1: Int16
2: Ulnt32
3: Int32
4: Unsigned Float32
5: Signed Float32
Tens: Read index 2
0: Ulnt16
1: Int16
2: Ulnt32
3: Int32
4: Unsigned Float32
5: Signed Float32
Hundreds: Read index 3
0: Ulnt16
1: Int16
2: Ulnt32
3: Int32
4: Unsigned Float32
5: Signed Float32
Thousands: Read index 4
0: UInt16
1: Int16
2: Ulnt32
3: Int32
4: Unsigned Float32
5: Signed Float32
Ten thousands: Read index 5
0: Ulnt16
1: Int16
2: Ulnt32
3: Int32
4: Unsigned Float32
5: Signed Float32

\section*{Description}

\section*{C0-06 Read data type selection 2}

Address: 0xC006
Min.: 0
Max.: 55555
Default: 0

Data type: Ulnt16
Change: Changeable at any time

Ones: Read index 6
0: Ulnt16
1: Int16
2: Ulnt32
3: Int32
4: Unsigned Float32
5: Signed Float32
Tens: Read index 7
0: Ulnt16
1: Int16
2: UInt32
3: Int32
4: Unsigned Float32
5: Signed Float32
Hundreds: Read index 8
0: Ulnt16
1: Int16
2: UInt32
3: Int32
4: Unsigned Float32
5: Signed Float32
Thousands: Read index 9
0: Ulnt16
1: Int16
2: UInt32
3: Int32
4: Unsigned Float32
5: Signed Float32
Ten thousands: Read index 10
0: Ulnt16
1: Int16
2: UInt32
3: Int32
4: Unsigned Float32
5: Signed Float32

\section*{Description}

C0-07 Read data scale factor selection 1
Address: 0xC007
Min.: \(\quad 0\)
Max.: 58888
Default: 0
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:

Ones: Read index 1
\(0: x 1\)
1: x0.1
2: x0.01
3: x0.001
4: x10
5: x100
6: x1000
7: x0.0001
8: x10000
Tens: Read index 2
0: x1
1: x0.1
2: \(\times 0.01\)
3: x0.001
4: x10
5: x100
6: x1000
7: x0.0001
8: x10000
Hundreds: Read index 3
\(0: x 1\)
1: x0.1
2: x0.01
3: \(\times 0.001\)
4: x10
5: x100
6: x1000
7: x0.0001
8: x10000
(To be continued)
(Continued)
Thousands: Read index 4
\(0: x 1\)
1: x0.1
2: x0.01
3: x0.001
4: x10
5: x100
6: x1000
7: x0.0001
8: x10000
Ten thousands: Read index 5
\(0: \times 1\)
1: x0.1
2: \(\times 0.01\)
3: x0.001
4: x10
5: x100
Description

C0-08 Read data scale factor selection 2
Address: 0xC008
Min.: 0
Max.: 58888
Default: 0
Value Range:
```

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

```

Ones: Read index 6
\(0: x 1\)
1: x0.1
2: x0.01
3: x0.001
4: x10
5: x100
6: x1000
7: x0.0001
8: x10000
Tens: Read index 7
0: x1
1: x0.1
2: \(\times 0.01\)
3: x0.001
4: x10
5: x100
6: x1000
7: x0.0001
8: x10000
Hundreds: Read index 8
\(0: x 1\)
1: x0.1
2: x0.01
3: x0.001
4: x10
5: x100
6: x1000
7: x0.0001
8: x10000
(To be continued)
(Continued)
Thousands: Read index 9
\(0: \times 1\)
1: x0.1
2: x0.01
3: x0.001
4: x10
5: x100
6: x1000
7: x0.0001
8: x10000
Ten thousands: Read index 10
0: x1
1: x0.1
2: \(\times 0.01\)
3: x0.001
4: x10
5: x100
Description

C0-09 Write data type
Address: 0xC009
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description

C0-10 Address mapping status
Address: 0xC00A
Min.: \(0 \times 0\)
Max.: 0xFFFF
Default: \(0 \times 0\)
Value Range:
0x0 to 0xFFFF
Description

C0-18 Number of read mapping addresses
Address: 0xC012
Min.: 0
Max.: \(\quad 10\)
Default: 10
Value Range:
0 to 10

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

\section*{Description}
C0-19 Number of write mapping addresses

Address: 0xC013
Min.: 0
Max.: 10
Default: 10
Value Range:
0 to 10
Description

\section*{C0-20 Read index 1}
\begin{tabular}{llll} 
Address: & \(0 \times C 014\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0x0 to 0xFFFF

\section*{Description}

\section*{C0-21 Read subindex 1}
\begin{tabular}{llll} 
Address: & \(0 \times C 015\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}
0x0 to 0xFFFF

\section*{Description}

\section*{C0-22 Read mapping internal address index 1}
\begin{tabular}{ll} 
Address: & \(0 \times C 016\) \\
Min.: & \(0 \times 0\) \\
Max.: & \(0 \times F F F F\) \\
Default: & \(0 \times 0\)
\end{tabular}

\section*{Value Range:}
0x0 to 0xFFFF
Description
C0-23 Read mapping internal address subindex 1
\begin{tabular}{llll} 
Address: & \(0 \times C 017\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}
Value Range:
0x0 to 0xFFFF
Description

C0-24 Read index 2
\begin{tabular}{llll} 
Address: & \(0 \times C 018\) & Effective mode: & - \\
Min.: & 0x0 & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: \(0 \times 0\) & Change: & Changeable at any time \\
Value Range: & & \\
Ox0 to 0xFFFF & & \\
Description & &
\end{tabular}

C0-25 Read subindex 2
\begin{tabular}{llll} 
Address: & 0xC019 & Effective mode: & - \\
Min.: & 0x0 & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: \(0 \times 0\) & Change: & Changeable at any time \\
Value Range: & & \\
0x0 to 0xFFFF & & \\
Description & &
\end{tabular}

C0-26 Read mapping internal address index 2
Address: 0xC01A Effective mode: -

Min.: 0x0
Max.: 0xFFFF
Unit:

Default: \(0 \times 0\)
Value Range:
0x0 to 0xFFFF
Description

C0-27 Read mapping internal address subindex 2
\begin{tabular}{llll} 
Address: & \(0 \times C 01 B\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

0x0 to 0xFFFF

\section*{Description}

\section*{C0-28 Read index 3}
\begin{tabular}{llll} 
Address: & \(0 \times C 01 C\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

0x0 to 0xFFFF
Description

C0-29 Read subindex 3
Address: 0xC01D Effective mode:
\begin{tabular}{|c|c|c|c|c|}
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0x0 to 0x & & & \\
\hline & Descript & & & \\
\hline & - & & & \\
\hline C0-30 & Read ma & ing inter & & \\
\hline & Address: & 0xC01E & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0x0 to 0x & & & \\
\hline & Descript & & & \\
\hline & - & & & \\
\hline C0-31 & Read ma & ing inter & & \\
\hline & Address: & 0xC01F & Effective mode: & - \\
\hline & Min.: & \(0 \times 0\) & Unit: & \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0x0 to 0x & & & \\
\hline & Descript & & & \\
\hline & & & & \\
\hline C0-32 & Read ind & & & \\
\hline & Address: & 0xC020 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0x0 to 0x & & & \\
\hline & Descript & & & \\
\hline &  & & & \\
\hline C0-33 & Read sub & dex 4 & & \\
\hline & Address: & 0xC021 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0x0 to 0x & & & \\
\hline & Descript & & & \\
\hline & - & & & \\
\hline C0-34 & Read ma & ing inter & & \\
\hline & Address: & 0xC022 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Default: 0x0} & \multirow[t]{5}{*}{Change:} & \multirow[t]{3}{*}{Changeable at any time} \\
\hline & \multicolumn{2}{|l|}{Value Range:} & & \\
\hline & \multicolumn{2}{|l|}{0x0 to 0xFFFF} & & \\
\hline & \multicolumn{3}{|l|}{Description} & \\
\hline & \multicolumn{3}{|l|}{-} & \\
\hline \multirow[t]{9}{*}{C0-35} & \multicolumn{4}{|l|}{Read mapping internal address subindex 4} \\
\hline & Address: & 0xC023 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{C0-36} & \multicolumn{4}{|l|}{Read index 5} \\
\hline & Address: & 0xC024 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{\(0 \times 0\) to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{C0-37} & \multicolumn{4}{|l|}{Read subindex 5} \\
\hline & Address: & 0xC025 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{\(0 \times 0\) to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{C0-38} & \multicolumn{4}{|l|}{Read mapping internal address index 5} \\
\hline & Address: & 0xC026 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{\(0 \times 0\) to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{6}{*}{C0-39} & \multicolumn{4}{|l|}{Read mapping internal address subindex 5} \\
\hline & Address: & 0xC027 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{C0-40} & \multicolumn{4}{|l|}{Read index 6} \\
\hline & Address: & 0xC028 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{C0-41} & \multicolumn{4}{|l|}{Read subindex 6} \\
\hline & Address: & 0xC029 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{C0-42} & \multicolumn{4}{|l|}{Read mapping internal address index 6} \\
\hline & Address: & 0xC02A & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{C0-43} & \multicolumn{4}{|l|}{Read mapping internal address subindex 6} \\
\hline & Address: & \(0 \times C 02 B\) & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{7}{*}{C0-44} & \multicolumn{4}{|l|}{Read index 7} \\
\hline & Address: & 0xC02C & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{\(0 \times 0\) to 0xFFFF} \\
\hline
\end{tabular}

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Description
C0-45 Read subindex 7
\begin{tabular}{llll} 
Address: & \(0 \times C 02 D\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}
Value Range:
0x0 to 0xFFFF
Description
C0-46 Read mapping internal address index 7
Address: 0xC02E
Min.: 0x0
Max.: 0xFFFF
Default: \(0 \times 0\)
Value Range:
0x0 to 0xFFFF
Description
C0-47 Read mapping internal address subindex 7
\begin{tabular}{llll} 
Address: & \(0 \times C 02 F\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}
Value Range:
0x0 to 0xFFFF
Description
C0-48 Read index 8
Address: 0xC030
Min.: \(0 \times 0\)
Max.: 0xFFFF
Default: \(0 \times 0\)

\section*{Value Range:}
0x0 to 0xFFFF

\section*{Description}
C0-49 Read subindex 8
\begin{tabular}{llll} 
Address: & \(0 \times C 031\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: \(0 \times 0\) & Change: & Changeable at any time \\
Value Range: & & \\
Ox0 to 0xFFFF & & \\
Description & &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{9}{*}{C0-50} & \multicolumn{3}{|l|}{Read mapping internal address index 8} \\
\hline & Address: 0xC032 & Effective mode: & \\
\hline & Min.: \(0 \times 0\) & Unit: & - \\
\hline & Max.: 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: \(0 \times 0\) & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0x0 to 0xFFFF & & \\
\hline & Description & & \\
\hline & - & & \\
\hline \multirow[t]{9}{*}{C0-51} & \multicolumn{3}{|l|}{Read mapping internal address subindex 8} \\
\hline & Address: 0xC033 & Effective mode: & - \\
\hline & Min.: \(0 \times 0\) & Unit: & - \\
\hline & Max.: 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: 0x0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0x0 to 0xFFFF & & \\
\hline & Description & & \\
\hline & Description & & \\
\hline \multirow[t]{9}{*}{C0-52} & \multicolumn{3}{|l|}{Read index 9} \\
\hline & Address: 0xC034 & Effective mode: & - \\
\hline & Min.: \(0 \times 0\) & Unit: & - \\
\hline & Max.: 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: \(0 \times 0\) & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0x0 to 0xFFFF & & \\
\hline & Description & & \\
\hline &  & & \\
\hline \multirow[t]{9}{*}{C0-53} & \multicolumn{3}{|l|}{Read subindex 9} \\
\hline & Address: 0xC035 & Effective mode: & - \\
\hline & Min.: \(0 \times 0\) & Unit: & - \\
\hline & Max.: 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: \(0 \times 0\) & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & & & \\
\hline \multirow[t]{8}{*}{C0-54} & \multicolumn{3}{|l|}{Read mapping internal address index 9} \\
\hline & Address: 0xC036 & Effective mode: & - \\
\hline & Min.: \(0 \times 0\) & Unit: & - \\
\hline & Max.: 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: 0x0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0x0 to 0xFFFF & & \\
\hline & Description & & \\
\hline
\end{tabular}

\section*{C0-55 Read mapping internal address subindex 9}

Address: 0xC037 Effective mode:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{} & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Value Range: \\
0x0 to 0xFFFF
\end{tabular}}} \\
\hline & & & & \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{C0-56} & \multicolumn{4}{|l|}{Read index 10} \\
\hline & Address: & 0xC038 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{C0-57} & \multicolumn{4}{|l|}{Read subindex 10} \\
\hline & Address: & 0xC039 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{C0-58} & \multicolumn{4}{|l|}{Read mapping internal address index 10} \\
\hline & Address: & 0xC03A & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0x0 to 0x & & & \\
\hline & Descript & & & \\
\hline &  & & & \\
\hline \multirow[t]{9}{*}{C0-59} & \multicolumn{4}{|l|}{Read mapping internal address subindex 10} \\
\hline & Address: & \(0 \times C 03 B\) & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{C0-60} & \multicolumn{4}{|l|}{Write index 1} \\
\hline & Address: & 0xC03C & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline
\end{tabular}
```

 Default: 0x0 Change: Changeable at any time
 Value Range:
 0x0 to 0xFFFF
 Description
 C0-61 Write subindex 1
Address: 0xC03D Effective mode: -
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description
C0-62 Write mapping internal address index 1
Address: 0xC03E
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description
C0-63 Write mapping internal address subindex 1
Address: 0xC03F Effective mode:
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description
C0-64 Write index 2

Address:	$0 \times C 040$
Min.:	0×0
Max.:	$0 \times F F F F$
Default:	0×0

Value Range:
0x0 to 0xFFFF
Description
C0-65 Write subindex 2

Address:	$0 \times C 041$
Min.:	0×0
Max.:	$0 \times F F F F$
Default:	0×0

```

Value Range:


Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

\section*{Description}
C0-71 Write mapping internal address subindex 3
Address: 0xC047 Effective mode: -
Min.: 0x0 Unit:
Max.: 0xFFFF Data type: Ulnt16
Default: 0x0Change: Changeable at any time
Value Range:
\(0 \times 0\) to 0xFFFF
Description
C0-72 Write index 4
\begin{tabular}{llll} 
Address: & \(0 \times C 048\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}
Value Range:
0x0 to 0xFFFF
Description
C0-73 Write subindex 4
\begin{tabular}{llll} 
Address: & \(0 \times C 049\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}
Value Range:
0x0 to 0xFFFF
Description
C0-74 Write mapping internal address index 4
\begin{tabular}{ll} 
Address: & \(0 \times C 04 \mathrm{~A}\) \\
Min.: & \(0 \times 0\) \\
Max.: & \(0 x F F F F\) \\
Default: & \(0 \times 0\)
\end{tabular}Effective mode:

Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
\(0 \times 0\) to 0xFFFF

\section*{Description}
C0-75 Write mapping internal address subindex 4
\begin{tabular}{llll} 
Address: & \(0 \times C 04 B\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}
Value Range:
\(0 \times 0\) to 0xFFFF
Description

C0-76 Write index 5
\begin{tabular}{llll} 
Address: & 0xC04C & Effective mode: \\
Min.: & 0x0 & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: \(0 \times 0\) & Change: & Changeable at any time \\
Value Range: & & \\
Ox0 to 0xFFFF & & \\
Description & &
\end{tabular}

C0-77 Write subindex 5
\begin{tabular}{llll} 
Address: & \(0 \times C 04 D\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: \(0 \times 0\) & Change: & Changeable at any time \\
Value Range: & & \\
0x0 to 0xFFFF & & \\
Description & &
\end{tabular}

C0-78 Write mapping internal address index 5
\begin{tabular}{llll} 
Address: & \(0 \times C 04 E\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}

Value Range:
0x0 to 0xFFFF
Description

C0-79 Write mapping internal address subindex 5
\begin{tabular}{llll} 
Address: & \(0 \times C 04 F\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

0x0 to 0xFFFF

\section*{Description}

C0-80 Write index 6
\begin{tabular}{llll} 
Address: & \(0 \times C 050\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

0x0 to 0xFFFF

\section*{Description}

C0-81 Write subindex 6
Address: 0xC051
Effective mode:
\begin{tabular}{|c|c|c|c|c|}
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & \(0 \times 0\) to 0x & & & \\
\hline & Descript & & & \\
\hline & - & & & \\
\hline C0-82 & Write mapres & ping inter & & \\
\hline & Address: & 0xC052 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0x0 to 0x & & & \\
\hline & Descript & & & \\
\hline & - & & & \\
\hline C0-83 & Write map & ping inter & & \\
\hline & Address: & 0xC053 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0x0 to 0x & & & \\
\hline & Descript & & & \\
\hline & & & & \\
\hline C0-84 & Write in & & & \\
\hline & Address: & 0xC054 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0x0 to 0x & & & \\
\hline & Descript & & & \\
\hline & - & & & \\
\hline C0-85 & Write su & dex 7 & & \\
\hline & Address: & 0xC055 & Effective mode: & - \\
\hline & Min.: & \(0 \times 0\) & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & 0x0 to 0x & & & \\
\hline & Descript & & & \\
\hline & - & & & \\
\hline C0-86 & Write ma & ping inter & & \\
\hline & Address: & 0xC056 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Default: 0x0} & \multirow[t]{5}{*}{Change:} & \multirow[t]{3}{*}{Changeable at any time} \\
\hline & \multicolumn{2}{|l|}{Value Range:} & & \\
\hline & \multicolumn{2}{|l|}{0x0 to 0xFFFF} & & \\
\hline & \multicolumn{3}{|l|}{Description} & \\
\hline & \multicolumn{3}{|l|}{-} & \\
\hline \multirow[t]{9}{*}{C0-87} & \multicolumn{4}{|l|}{Write mapping internal address subindex 7} \\
\hline & Address: & 0xC057 & Effective mode: & - \\
\hline & Min.: & \(0 \times 0\) & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{C0-88} & \multicolumn{4}{|l|}{Write index 8} \\
\hline & Address: & 0xC058 & Effective mode: & - \\
\hline & Min.: & \(0 \times 0\) & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{\(0 \times 0\) to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{C0-89} & \multicolumn{4}{|l|}{Write subindex 8} \\
\hline & Address: & 0xC059 & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{\(0 \times 0\) to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{C0-90} & \multicolumn{4}{|l|}{Write mapping internal address index 8} \\
\hline & Address: & 0xC05A & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{\(0 \times 0\) to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{6}{*}{C0-91} & \multicolumn{4}{|l|}{Write mapping internal address subindex 8} \\
\hline & Address: & 0xC05B & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & Value Ran & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{C0-92} & \multicolumn{4}{|l|}{Write index 9} \\
\hline & Address: & 0xC05C & Effective mode: & \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{C0-93} & \multicolumn{4}{|l|}{Write subindex 9} \\
\hline & Address: & 0xC05D & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{C0-94} & \multicolumn{4}{|l|}{Write mapping internal address index 9} \\
\hline & Address: & 0xC05E & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{\(0 \times 0\) to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{} \\
\hline \multirow[t]{9}{*}{C0-95} & \multicolumn{4}{|l|}{Write mapping internal address subindex 9} \\
\hline & Address: & 0xC05F & Effective mode: & - \\
\hline & Min.: & 0x0 & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0x0 to 0xFFFF} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{7}{*}{C0-96} & \multicolumn{4}{|l|}{Write index 10} \\
\hline & Address: & 0xC060 & Effective mode: & - \\
\hline & Min.: & \(0 \times 0\) & Unit: & - \\
\hline & Max.: & 0xFFFF & Data type: & Ulnt16 \\
\hline & Default: & 0x0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{\(0 \times 0\) to 0xFFFF} \\
\hline
\end{tabular}

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

\section*{Description}

C0-97 Write subindex 10
\begin{tabular}{llll} 
Address: & \(0 \times C 061\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}

Value Range:
0x0 to 0xFFFF
Description

C0-98 Write mapping internal address index 10
\begin{tabular}{llll} 
Address: & \(0 \times C 062\) & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: & \(0 \times 0\) & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

0x0 to 0xFFFF

\section*{Description}

C0-99 Write mapping internal address subindex 10
\begin{tabular}{llll} 
Address: & 0xC063 & Effective mode: & - \\
Min.: & \(0 \times 0\) & Unit: & - \\
Max.: & \(0 \times F F F F\) & Data type: & Ulnt16 \\
Default: \(0 \times 0\) & Change: & Changeable at any time \\
Value Range: & & \\
0x0 to 0xFFFF & & \\
Description & &
\end{tabular}

\subsection*{4.41 C1: Word-Bit Conversion Parameters}

C1-00 Input of W2B module A
Address: \(0 x C 100 \quad\) Effective mode:
Min.: 0
Max.: \(\quad 0\)
Default: 0
Value Range:
0: 0
Others: K connector
Description
0 : Disabled. The output is 0 .
Others: If the word connector is selected, the value of the word connector is converted to bit output.
If the DWord connector is selected, the high-order 16 bits of the value of the DWord connector are converted to bit output.
C1-01 Input of W2B module B
Address: 0xC101 Effective mode: -

Min.: 0
Max.: 0
Default: 0
Value Range:
Same as C1-00
Description
Same as module A

C1-02 Input of W2B module C
Address: 0xC102
Min.: 0
Max.: 0
Default: 0
Value Range:
Same as C1-00
Description
Same as module A

C1-03 Input of W2B module D
Address: 0xC103
Min.: 0
Max.: 0
Default: 0
Value Range:
Same as C1-00
Description
Same as module A

\section*{C1-04 Input of W2B module E}

Address: 0xC104
Min.: 0
Max.: 0
Default: 0
Value Range:
Same as C1-00
Description
Same as module A

\section*{C1-05 Input of W2B module F}

Address: 0xC105
Min.: 0
Max.: 0
Default: 0

\section*{Value Range:}

Same as C1-00
Description
Same as module A

C1-06 Input of W2B module G
Address: 0xC106

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{} & Min.: & 0 & Unit: & - \\
\hline & Max.: & 0 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & Same as & -00 & & \\
\hline & Descript & & & \\
\hline & Same as & odule A & & \\
\hline \multirow[t]{9}{*}{C1-07} & \multicolumn{3}{|l|}{Input of W2B module H} & \\
\hline & Address: & 0xC107 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 0 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{Same as C1-00} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{Same as module A} \\
\hline \multirow[t]{10}{*}{C1-12} & \multicolumn{4}{|l|}{B2W module A enable} \\
\hline & Address: & \(0 \times \mathrm{Cl} 10 \mathrm{C}\) & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 1 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0: Disabled} \\
\hline & \multicolumn{4}{|l|}{1: Enabled Description} \\
\hline & \multicolumn{4}{|l|}{0 : Disabled. The output is 0 .} \\
\hline & \multicolumn{4}{|l|}{1: Enabled. The inputs of C1-14 to C1-29 are converted to word output as bit0 to bit15.} \\
\hline \multirow[t]{9}{*}{C1-13} & \multicolumn{4}{|l|}{Bit inversion flag of B2W module A} \\
\hline & Address: & 0xC10D & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 65535 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0 to 65535} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{Bit0 to Bit5 of the setpoint are used as the inversion flag to invert each input bit of C1-14 to C1-29.} \\
\hline \multirow[t]{6}{*}{C1-14} & \multicolumn{4}{|l|}{B2W module A - Bit00} \\
\hline & Address: & 0xC10E & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline
\end{tabular}

0: 0
1: 1
2: 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
0: Input 0
1: Input 1
2: Input 0
3-18: Input of corresponding DI
Others: Input of the connector

\section*{C1-15 B2W module A - Bit01}

Address: 0xC10F
Min.: 0
Max.: 18
Default: 0
Value Range:
Same as C1-14
Description
Same as C1-14

C1-16 B2W module A - Bit02
Address: 0xC110
Min.: 0
Max.: 18
Default: 0
Value Range:
Same as C1-14
Description
Same as C1-14

C1-17 B2W module A - Bit03
Address: 0xC111

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{} & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & Same as & & & \\
\hline & Descript & & & \\
\hline & Same as & & & \\
\hline \multirow[t]{9}{*}{C1-18} & \multicolumn{4}{|l|}{B2W module A - Bit04} \\
\hline & Address: & 0xC112 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{Same as C1-14} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{Same as C1-14} \\
\hline \multirow[t]{9}{*}{C1-19} & \multicolumn{4}{|l|}{B2W module A - Bit05} \\
\hline & Address: & \(0 \times C 113\) & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{Same as C1-14} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{Same as C1-14} \\
\hline \multirow[t]{9}{*}{C1-20} & \multicolumn{4}{|l|}{B2W module A - Bit06} \\
\hline & Address: & \(0 \times C 114\) & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{Same as C1-14} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{Same as C1-14} \\
\hline \multirow[t]{9}{*}{C1-21} & \multicolumn{4}{|l|}{B2W module A - Bit07} \\
\hline & Address: & 0xC115 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{Same as C1-14} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{Same as C1-14} \\
\hline \multirow[t]{4}{*}{C1-22} & \multicolumn{4}{|l|}{B2W module A - Bit08} \\
\hline & Address: & \(0 \times C 116\) & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline
\end{tabular}
Default: 0 Change: Changeable at any time
Value Range:
Same as C1-14
Description
Same as C1-14
C1-23 B2W module A - Bit09
Address: 0xC117

Effective mode:
Min.: 0
Max: 18 ..... 18
Default:
Value Range:
Same as C1-14
Description
Same as C1-14
C1-24 B2W module A - Bit10
Address: 0xC118
Min.: 0
Max: 18
Default: ..... 0
Value Range:
Same as C1-14
Description
Same as C1-14
C1-25 B2W module A - Bit11
Address: 0xC119
Min.: 0
Max. ..... 18
Default: ..... 0
Value Range:
Same as C1-14
Description
Same as C1-14
C1-26 B2W module A - Bit12
Address: 0xC11A
Min.: 0
Max. ..... 18
Default: ..... 0
Value Range:
Same as C1-14
Description
Same as C1-14
C1-27 B2W module A - Bit13
\begin{tabular}{llll} 
Address: & \(0 \times C 11 B\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 18 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Unit:
Data type: Ulnt16
Change: Changeable at any time

\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
Description \\
Same as module A
\end{tabular} & & \\
\hline \multirow[t]{9}{*}{C1-33} & \multicolumn{3}{|l|}{B2W module B-Bit01} \\
\hline & Address: 0xC121 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline \multirow[t]{9}{*}{C1-34} & \multicolumn{3}{|l|}{B2W module B - Bit02} \\
\hline & Address: 0xC122 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{Same as C1-14} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{Same as module A} \\
\hline \multirow[t]{9}{*}{C1-35} & \multicolumn{3}{|l|}{B2W module B-Bit03} \\
\hline & Address: 0xC123 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{Same as C1-14} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{Same as module A} \\
\hline \multirow[t]{9}{*}{C1-36} & \multicolumn{3}{|l|}{B2W module B - Bit04} \\
\hline & Address: 0xC124 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{Same as C1-14} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{Same as module A} \\
\hline \multirow[t]{9}{*}{C1-37} & \multicolumn{3}{|l|}{B2W module B-Bit05} \\
\hline & Address: 0xC125 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{Same as C1-14} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{Same as module A} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{9}{*}{C1-38} & \multicolumn{3}{|l|}{B2W module B-Bit06} \\
\hline & Address: 0xC126 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline \multirow[t]{9}{*}{C1-39} & \multicolumn{3}{|l|}{B2W module B-Bit07} \\
\hline & Address: 0xC127 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline \multirow[t]{9}{*}{C1-40} & \multicolumn{3}{|l|}{B2W module B-Bit08} \\
\hline & Address: 0xC128 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{Same as C1-14} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{Same as module A} \\
\hline \multirow[t]{9}{*}{C1-41} & \multicolumn{3}{|l|}{B2W module B - Bit09} \\
\hline & Address: 0xC129 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{Same as C1-14} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{Same as module A} \\
\hline \multirow[t]{9}{*}{C1-42} & \multicolumn{3}{|l|}{B2W module B-Bit10} \\
\hline & Address: \(0 \times C 12 \mathrm{~A}\) & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{Same as C1-14} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{Same as module A} \\
\hline \multirow[t]{2}{*}{C1-43} & \multicolumn{3}{|l|}{B2W module B-Bit11} \\
\hline & Address: \(0 \times C 12 \mathrm{~B}\) & Effective mode: & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & Same as & & & \\
\hline & Descript & & & \\
\hline & Same as & dule A & & \\
\hline C1-44 & B2W mo & le B - Bit & & \\
\hline & Address: & 0xC12C & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & Same as & & & \\
\hline & Descript & & & \\
\hline & Same as & dule A & & \\
\hline C1-45 & B2W modut & le B-Bit & & \\
\hline & Address: & 0xC12D & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & Same as & & & \\
\hline & Descript & & & \\
\hline & Same as & dule A & & \\
\hline C1-46 & B2W modur & le B-Bit & & \\
\hline & Address: & 0xC12E & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & Same as & & & \\
\hline & Descript & & & \\
\hline & Same as & dule A & & \\
\hline C1-47 & B2W modur & le B-Bit & & \\
\hline & Address: & 0xC12F & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & Same as & & & \\
\hline & Descript & & & \\
\hline & Same as & dule A & & \\
\hline C1-48 & B2W modur & le C enab & & \\
\hline & Address: & 0xC130 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 1 & Data type: & Ulnt16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0 : Disabled & & \\
\hline & 1: Enabled & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline \multirow[t]{9}{*}{C1-49} & Bit inversion flag of B2W module C & & \\
\hline & Address: 0xC131 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 65535 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0 to 65535 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline \multirow[t]{9}{*}{C1-50} & B2W module C-Bit00 & & \\
\hline & Address: 0xC132 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline \multirow[t]{9}{*}{C1-51} & B2W module C-Bit01 & & \\
\hline & Address: 0xC133 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline \multirow[t]{9}{*}{C1-52} & B2W module C - Bit02 & & \\
\hline & Address: 0xC134 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline \multirow[t]{5}{*}{C1-53} & B2W module C-Bit03 & & \\
\hline & Address: 0xC135 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline C1-54 & B2W module C-Bit04 & & \\
\hline & Address: 0xC136 & Effective mode: & \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline C1-55 & B2W module C - Bit05 & & \\
\hline & Address: 0xC137 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline C1-56 & B2W module C - Bit06 & & \\
\hline & Address: 0xC138 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline C1-57 & B2W module C-Bit07 & & \\
\hline & Address: 0xC139 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline C1-58 & B2W module C - Bit08 & & \\
\hline & Address: 0xC13A & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
Description \\
Same as module A
\end{tabular} & & \\
\hline \multirow[t]{9}{*}{C1-59} & B2W module C-Bit09 & & \\
\hline & Address: 0xC13B & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline \multirow[t]{9}{*}{C1-60} & B2W module C-Bit10 & & \\
\hline & Address: 0xC13C & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline \multirow[t]{9}{*}{C1-61} & B2W module C-Bit11 & & \\
\hline & Address: 0xC13D & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline \multirow[t]{9}{*}{C1-62} & B2W module C-Bit12 & & \\
\hline & Address: 0xC13E & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline \multirow[t]{9}{*}{C1-63} & B2W module C - Bit13 & & \\
\hline & Address: 0xC13F & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline
\end{tabular}
C1-64 B2W module C - Bit14
Address: 0xC140 Effective mode: -
Min.: 0Max.: 18Default: 0
Value Range:
Same as C1-14
DescriptionSame as module A
C1-65 B2W module C - Bit15
Address: 0xC141
Min.: 0Max.: 18Default: 0
Value Range:
Same as C1-14
Description
Same as module A
C1-66 B2W module D enable
Address: 0xC142

Effective mode:
Min.: 0
Max.: \(\quad 1\)
Default: ..... 0
Value Range:
Same as C1-12
Description
Same as module A
C1-67 Bit inversion flag of B2W module D
\begin{tabular}{llll} 
Address: & \(0 \times C 143\) & Effective mode: \\
Min.: & 0 & Unit: & - \\
Max.: & 65535 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 to 65535
Description
Same as module A
C1-68 B2W module D - Bit00
Address: 0xC144 Effective mode:
Min.: 0
Max.: 18
Default: ..... 0
Value Range:
Same as C1-14
Description
Same as module A
Unit:
Data type: Ulnt16
Change Changeable at any time
\begin{tabular}{|c|c|c|c|c|}
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value R & & & \\
\hline & Same as & 1-14 & & \\
\hline & Descrip & & & \\
\hline & Same as & odule A & & \\
\hline C1-70 & B2W mod & ule D - Bit & & \\
\hline & Address: & 0xC146 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value R & & & \\
\hline & Same as & 1-14 & & \\
\hline & Descrip & & & \\
\hline & Same as & odule A & & \\
\hline C1-71 & B2W mod & ule D - Bit & & \\
\hline & Address: & \(0 \times C 147\) & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value R & & & \\
\hline & Same as & 1-14 & & \\
\hline & Descrip & & & \\
\hline & Same as & odule A & & \\
\hline C1-72 & B2W mod & ule D - Bit & & \\
\hline & Address: & 0xC148 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value R & & & \\
\hline & Same as & 1-14 & & \\
\hline & Descrip & & & \\
\hline & Same as & odule A & & \\
\hline C1-73 & B2W mod & ule D - Bit & & \\
\hline & Address: & 0xC149 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value R & & & \\
\hline & Same as & 1-14 & & \\
\hline & Descrip & & & \\
\hline & Same as & odule A & & \\
\hline C1-74 & B2W mod & ule D - Bit & & \\
\hline & Address: & \(0 \times C 14 \mathrm{~A}\) & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{} & Default: & 0 & \multirow[t]{5}{*}{Change:} & \multirow[t]{5}{*}{Changeable at any time} \\
\hline & Value Ra & & & \\
\hline & Same as & & & \\
\hline & Descript & & & \\
\hline & Same as & dule A & & \\
\hline \multirow[t]{9}{*}{C1-75} & \multicolumn{4}{|l|}{B2W module D - Bit07} \\
\hline & Address: & \(0 \times C 14 B\) & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{Same as C1-14} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{Same as module A} \\
\hline \multirow[t]{9}{*}{C1-76} & \multicolumn{4}{|l|}{B2W module D - Bit08} \\
\hline & Address: & 0xC14C & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{Same as C1-14} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{Same as module A} \\
\hline \multirow[t]{9}{*}{C1-77} & \multicolumn{4}{|l|}{B2W module D - Bit09} \\
\hline & Address: & 0xC14D & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{Same as C1-14} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{Same as module A} \\
\hline \multirow[t]{9}{*}{C1-78} & \multicolumn{4}{|l|}{B2W module D-Bit10} \\
\hline & Address: & \(0 \times C 14 \mathrm{E}\) & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & Value Ra & & & \\
\hline & Same as & & & \\
\hline & Descript & & & \\
\hline & Same as & dule A & & \\
\hline \multirow[t]{5}{*}{C1-79} & \multicolumn{4}{|l|}{B2W module D - Bit11} \\
\hline & Address: & 0xC14F & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 18 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline
\end{tabular}
Value Range:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{3}{|l|}{Same as C1-14} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{Same as module A} \\
\hline \multirow[t]{9}{*}{C1-80} & \multicolumn{3}{|l|}{B2W module D - Bit12} \\
\hline & Address: 0xC150 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{Same as C1-14} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{Same as module A} \\
\hline \multirow[t]{9}{*}{C1-81} & \multicolumn{3}{|l|}{B2W module D-Bit13} \\
\hline & Address: 0xC151 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{Same as C1-14} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{Same as module A} \\
\hline \multirow[t]{9}{*}{C1-82} & \multicolumn{3}{|l|}{B2W module D - Bit14} \\
\hline & Address: 0xC152 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{Same as C1-14} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{Same as module A} \\
\hline \multirow[t]{9}{*}{C1-83} & \multicolumn{3}{|l|}{B2W module D-Bit15} \\
\hline & Address: 0xC153 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 18 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & Same as C1-14 & & \\
\hline & Description & & \\
\hline & Same as module A & & \\
\hline
\end{tabular}

\subsection*{4.42 C2: W-DW Conversion Parameters}

\section*{C2-00 LOWORD of W-DW conversion A}
\begin{tabular}{llll} 
Address: & \(0 \times C 200\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 0 & Data type: & Ulnt16
\end{tabular}
Default: 0
Change: Changeable at any time

Value Range:
0: 0
Others: K connector
Description
0 : The input is 0 .
Others: When the input source is a word connector, the value of the word connector is used. When the input source is a DWord connector, the high-order 16 bits of the connector is used.

C2-02 Low-order bits of base value of W-DW conversion A
Address: 0xC202
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
This parameter defines the low-order 16 bits of the DWord base value. The DWord output by C2-00 and C2-01 is divided by the base value and then output to the floating-point connector.

\section*{C2-03 High-order bits of base value of W-DW conversion A}

Address: 0xC203
Min.: 0
Max.: 65535
Default: 0

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

\section*{Value Range:}

0 to 65535

\section*{Description}

This parameter defines the high-order 16 bits of the DWord base value. The DWord output by C2-00 and C2-01 is divided by the base value and then output to the floating-point connector.

\section*{C2-04 LOWORD of W-DW conversion B}
\begin{tabular}{llll} 
Address: & \(0 x C 204\) & Effective mode: - \\
Min.: & 0 & Unit: & - \\
Max.: & 0 & Data type: & Ulnt16
\end{tabular}
Default: 0 Change: Changeable at any time
Value Range:
0: 0
Others: K connector
Description
Same as module A
C2-05 HIWORD of W-DW conversion B
```

Address: 0xC205 Effective mode: -

```
Min.: 0 ..... Unit:
Max.: 0
```Data type: Ulnt16Default: 0Change: Changeable at any time
```

Value Range:
0: Disabled
Others: K connector
Description
Same as module A
C2-06 Low-order bits of base value of W-DW conversion B
Address: 0xC206 Effective mode:

```
Min.: 0 Unit:
```

Max.: 65535 Data type: Ulnt16

```Default: 0
```

Change: Changeable at any time
Value Range:
0 to 65535
Description
Same as module A
C2-07 High-order bits of base value of W-DW conversion B

```
Address: 0xC207
```

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
Same as module A
C2-08 LOWORD of W-DW conversion C

```
\begin{tabular}{llll}
Address: & \(0 \times C 208\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 0 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}
```

Value Range:
0: 0
Others: K connector
Description
Same as module A
C2-09 HIWORD of W-DW conversion C

```
\begin{tabular}{lll}
Address: & \(0 \times C 209\) & Effective mode: \\
Min.: & 0 & Unit:
\end{tabular}
```

Max.: $0 \quad$ Data type: Ulnt16
Default: 0Change: Changeable at any time
Value Range:
0 : Disabled
Others: K connector
Description
Same as module A
C2-10 Low-order bits of base value of W-DW conversion C
Address: 0xC20A Effective mode:
Min.: 0 Unit:
Max.: 65535 Data type: Ulnt16
Change: Changeable at any time Default: 0e: -Value Range:
0 to 65535
Description
Same as module A
C2-11 High-order bits of base value of W-DW conversion CAddress: 0xC20B
Min.: 0
Max.: 65535Effective mode:
Default: 0
Unit:Data type: Ulnt16Change: Changeable at any time
Value Range:
0 to 65535
Description
Same as module A
C2-12 LOWORD of W-DW conversion D
Address: 0xC20C Effective mode:
Min.: 0
Max.: 0
Unit:
Default: 0
Data type: Ulnt16Change: Changeable at any time
Value Range:
0: 0
Others: K connector
Description
Same as module A
C2-13 HIWORD of W-DW conversion D

Address:	$0 \times C 20 D$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	0	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Description
Same as module A
C2-14 Low-order bits of base value of W-DW conversion D
Address: 0xC20EEffective mode:

Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 to 65535
Description
Same as module A
C2-15 High-order bits of base value of W-DW conversion D
Address: 0xC20F Effective mode: -
Min.: 0 Unit: -
Max.: 65535 Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0 to 65535
Description
Same as module A
C2-32 DW-W conversion A
Address: 0xC220 Effective mode: -
Min.: $0 \quad$ Unit:
Max.: $0 \quad$ Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
0 : Disabled
Others: K connector

## Description

0 : Disabled. The output is 0 .
Others: When the word connector is selected, the output HIWORD is the value of the word connector, and the output LOWORD is 0 . When the DWord connector is selected, the output HIWORD is the highorder 16 bits of the DWord, and the output LOWORD is the low-order 16 bits of the DWord.
C2-33 Low-order bits of base value of DW-W conversion A

Address: 0xC221
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
This parameter defines the low-order 16 bits of the DWord base value. The DWord input by C2-32 is divided by the base value and then output to the floating-point connector.

C2-34 High-order bits of base value of DW-W conversion A
Address: 0xC222 Effective mode: -
Min.: $0 \quad$ Unit: -

Max.: 65535 Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0 to 65535

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Description

This parameter defines the high-order 16 bits of the DWord base value. The DWord input by C2-32 is divided by the base value and then output to the floating-point connector.

Low-order bits of base value of DW-W conversion B
Address: 0xC224
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
Same as module A

C2-37 High-order bits of base value of DW-W conversion B
Address: 0xC225
Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
Same as module A

C2-38 DW-W conversion C
Address: 0xC226
Min.: 0
Max.: 0
Default: 0
Value Range:
0 : Disabled
Others: K connector
Description
Same as module A

C2-39 Low-order bits of base value of DW-W conversion C
Address: 0xC227
Effective mode: -
Min.: $0 \quad$ Unit: -
Max.: 65535
Default: 0

Data type: Ulnt16
Change: Changeable at any time

C2-40 High-order bits of base value of DW-W conversion C
Address: 0xC228
Min.: 0
Max.: 65535
Effective mode:
Unit:

Default: 0
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 to 65535
Description
Same as module A

C2-41 DW-W conversion D
Address: 0xC229 Effective mode:
Min.: 0 Unit:
Max.: $0 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0: Disabled
Others: K connector

## Description

Same as module A

C2-42 Low-order bits of base value of DW-W conversion D
Address: 0xC22A
Effective mode.
Max.: 65535
Unit:

Default: 0
Value Range:
0 to 65535
Description
Same as module A

C2-43 High-order bits of base value of DW-W conversion D
Address: 0xC22B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
Same as module A

### 4.43 C3: Logical Operation Parameters

C3-00 Function of logic AND-OR module A
Address: 0xC300 Effective mode:

```
Min.: 0
Max.: 2
Default: 0
```

Unit:
Data type: Ulnt16
Change: Changeable at any time

```
Value Range:
0: Disabled
1: AND
2: OR
Description
0 : Disabled. The output is 0 .
1: AND. The inputs \(1,2,3\), and 4 are ANDed and then output.
1 : OR. The inputs \(1,2,3\), and 4 are ORed and then output.
```


## C3-01 Input 1 of logic AND-OR module A

```
Address: 0xC301 Effective mode:
Min.: 0
Max.: 18
Default: 0
Value Range:
0 : Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
0: Input 0
1: Input 1
2: Input 0
3-18: Input of corresponding DI
Others: Input of the connector
C3-02 Input 2 of logic AND-OR module A
Address: 0xC302 Effective mode:
Min.: \(0 \quad\) Unit:
```

Max.: 18
Default: ..... 0
Value Range:
Same as C3-01
Description
Same as C3-01
Data type: ..... UInt16
Change: Changeable at any timeEffective mode:Address: 0xC303
Min.: 0
Max. ..... 18
Default: ..... 0
Value Range:
Same as C3-01
Description
Same as C3-01
C3-04 Input 4 of logic AND-OR module A
Address: 0xC304
Min.: 0
Max. ..... 18
Default: ..... 0
Value Range:
Same as C3-01
Description
Same as C3-01
C3-05 Function of logic AND-OR module B
Address: 0xC305
Min.: $\quad 0$
Max.: 2
Default: ..... 0
Value Range:
0 : Disabled
1: AND
2: OR
Description
Same as module A
C3-06 Input 1 of logic AND-OR module B
Address: 0xC306
Min.: 0
Max.: 18
Default: ..... 0
Value Range:
Same as C3-01
Description
Same as module A
C3-07 Input 2 of logic AND-OR module B
Address: 0xC307
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any timeEffective mode:Unit:Data type: Ulnt16Change: Changeable at any timeEffective mode:Unit:Data type: Ulnt16Change: Changeable at any time

Effective mode:
Unit:

Change: Changeable at any time

Unit:
Data type: Ulnt16
Change: Changeable at any time

	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as			
	Descript			
	Same as	dule A		
C3-08	Input 3	ogic AND		
	Address:	0xC308	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as			
	Descript			
	Same as	dule A		
C3-09	Input 4 O	ogic AND		
	Address:	0xC309	Effective mode:	-
	Min.:	0	Unit:	
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as			
	Descript			
	Same as	dule A		
C3-10	Function	flogic AN		
	Address:	0xC30A	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	2	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as			
	Descript			
	Same as	dule A		
C3-11	Input 1 of	ogic AND		
	Address:	0xC30B	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as			
	Descript			
	Same as	dule A		
C3-12	Input 2 of	ogic AND		
	Address:	0xC30C	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16


	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-13	Input 3 of logic AND-OR module C		
	Address: 0xC30D	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-14	Input 4 of logic AND-OR module C		
	Address: 0xC30E	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-15	Function of logic AND-OR module D		
	Address: 0xC30F	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 2	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-05		
	Description		
	Same as module A		
C3-16	Input 1 of logic AND-OR module D		
	Address: 0xC310	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-17	Input 2 of logic AND-OR module D		
	Address: 0xC311	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		


	Same as C3-01		
	Description		
	Same as module A		
C3-18	Input 3 of logic AND-OR module D		
	Address: 0xC312	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-19	Input 4 of logic AND-OR module D		
	Address: 0xC313	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-20	Function of logic AND-OR module E		
	Address: $0 \times C 314$	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 2	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-05		
	Description		
	Same as module A		
C3-21	Input 1 of logic AND-OR module E		
	Address: 0xC315	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-22	Input 2 of logic AND-OR module E		
	Address: 0xC316	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

	Description   Same as module A		
C3-23	Input 3 of logic AND-OR module E		
	Address: 0xC317	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-24	Function of logic AND-OR module F		
	Address: 0xC318	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 2	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-05		
	Description		
	Same as module A		
C3-25	Input 1 of logic AND-OR module $F$		
	Address: 0xC319	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-26	Input 2 of logic AND-OR module $F$		
	Address: 0xC31A	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-27	Input 3 of logic AND-OR module F		
	Address: 0xC31B	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		

```
C3-28 Function of logic AND-OR module G
 Address: 0xC31C Effective mode:
 Min.: 0
 Max.: 2
 Default: 0
 Value Range:
 Same as C3-05
 Description
 Same as module A
C3-29 Input 1 of logic AND-OR module G
 Address: 0xC31D
 Min.: 0
 Max.: 18
 Default: 0
 Value Range:
 Same as C3-01
 Description
 Same as module A
C3-30 Input 2 of logic AND-OR module G
Address: 0xC31E
 Min.: 0
 Max.: 18
 Default: 0
 Value Range:
 Same as C3-01
 Description
 Same as module A
C3-31 Input 3 of logic AND-OR module G
Address: 0xC31F
Min.: 0
Max.: 18
Default: 0
Value Range:
Same as C3-01
Description
Same as module A
C3-32 Function of logic AND-OR module H
Address: 0xC320
Min.: 0
Max.: 2
Default: 0
Value Range:
Same as C3-05
Description
Same as module A
C3-33 Input 1 of logic AND-OR module H
Address: 0xC321
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Effective mode:
```

	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as	-01		
	Descript			
	Same as	odule A		
C3-34	Input 2	logic AND		
	Address:	0xC322	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as	-01		
	Descript			
	Same as	odule A		
C3-35	Input 3	gic AND		
	Address:	0xC323	Effective mode:	-
	Min.:	0	Unit:	
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as	-01		
	Descript			
	Same as	odule A		
C3-36	Function	f logic AN		
	Address:	0xC324	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	2	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra	ge:		
	Same as	-05		
	Descript			
	Same as	odule A		
C3-37	Input 1	logic AND		
	Address:	0xC325	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as	-01		
	Descript			
	Same as	odule A		
C3-38	Input 2	logic AND		
	Address:	0xC326	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16


	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-39	Input 3 of logic AND-OR module I		
	Address: 0xC327	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-40	Function of logic AND-OR module J		
	Address: 0xC328	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 2	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-05		
	Description		
	Same as module A		
C3-41	Input 1 of logic AND-OR module J		
	Address: 0xC329	Effective mode:	-
	Min.: 0	Unit:	
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-42	Input 2 of logic AND-OR module J		
	Address: 0xC32A	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-43	Input 3 of logic AND-OR module J		
	Address: 0xC32B	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		


	Same as C3-01			
	Description			
	Same as module A			
C3-44	Function of logic AND-OR module K			
	Address:	0xC32C	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	2	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	Same as C3-05			
	Description			
	Same as module A			
C3-45	Input 1 of logic AND-OR module K			
	Address:	0xC32D	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	Same as C3-01			
	Description			
	Same as module A			
C3-46	Input 2 of logic AND-OR module K			
	Address:	0xC32E	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	Same as C3-01			
	Description			
	Same as module A			
C3-47	Input 3 of logic AND-OR module K			
	Address:	0xC32F	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	Same as C3-01			
	Description			
	Same as module A			
C3-48	Function of logic AND-OR module L			
	Address:	0xC330	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	2	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	Same as C3-05			


	Description		
	Same as module A		
C3-49	Input 1 of logic AND-OR module L		
	Address: 0xC331	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-50	Input 2 of logic AND-OR module L		
	Address: 0xC332	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-51	Input 3 of logic AND-OR module L		
	Address: 0xC333	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-56	Input of logic NOT module A		
	Address: 0xC338	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		

0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
The input is NOTed and then output.
0 : Disabled. The output is 0 .
1: Module input 1
2: Module input 0
3-18: Input of corresponding DI
Others: Input of the connector
C3-57 Input of logic NOT module B
Address: 0xC339 Effective mode: -
Min.: 0
Max.: 18
Default: 0
Value Range:
C3-56
Description
Same as module A
C3-58 Input of logic NOT module C
Address: 0xC33A Effective mode:
Min.: 0
Max.: 18
Default: 0
Value Range:
C3-56
Description
Same as module A

```
C3-59 Input of logic NOT module D
 Address: 0xC33B Effective mode:
 Min.: 0
 Max.: 18
 Default: 0
 Value Range:
 C3-56
 Description
 Same as module A
 C3-60 Input of logic NOT module E
 Address: 0xC33C
 Min.: 0
 Max.: 18
 Default: 0
 Value Range:
 C3-56
 Description
 Same as module A
 C3-61 Input of logic NOT module F
 Address: 0xC33D
 Min.: 0
 Max.: 18
 Default: 0
 Value Range:
 C3-56
 Description
 Same as module A
C3-62 Input of logic NOT module G
 Address: 0xC33E
 Min.: 0
 Max.: 18
 Default: 0
 Value Range:
 C3-56
 Description
 Same as module A
C3-63 Input of logic NOT module H
 Address: 0xC33F
 Min.: 0
 Max.: 18
 Default: 0
 Value Range:
 C3-56
 Description
 Same as module A
C3-64 Input of logic NOT module I
 Address: 0xC340
 Effective mode:
 Unit:
 Data type: Ulnt16
 Change: Changeable at any time
 Effective mode:
 Unit:
 Data type: Ulnt16
 Change: Changeable at any time
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

C3-56
Description
Same as module A

C3-62 Input of logic NOT module G
Address: 0xC33E
Min.: 0
Max.: 18
Default: 0
Value Range:
C3-56

Same as module A
module H

8


Address: $0 x$ C340

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	C3-56			
	Descript			
	Same as	dule A		
C3-65	Input of	gic NOT		
	Address:	0xC341	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	C3-56			
	Descript			
	Same as	dule A		
C3-66	Input of	gic NOT		
	Address:	0xC342	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	C3-56			
	Descript			
	Same as	dule A		
C3-67	Input of	gic NOT		
	Address:	0xC343	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	C3-56			
	Descript			
	Same as	dule A		
C3-68	Input of	gic NOT		
	Address:	0xC344	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	C3-56			
	Descript			
	Same as	dule A		
C3-69	Input of	gic NOT		
	Address:	0xC345	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16

Default: 0 Changeable at any time Change:
Value Range:
C3-56
Description
Same as module A
C3-70 Input of logic NOT module 0
Address: 0xC346 Effective mode:
Min.: 0
Max.: 18
Default: 0Unit:
Data type: Ulnt16
Change Changeable at any time
Value Range:
C3-56
Description
Same as module A
C3-71 Input of logic NOT module $P$
Address: 0xC347 Effective mode:
Min.: 0
Max.: 18Unit:
Default: 0
Data type: Ulnt16
Value Range:
C3-56
Description
Same as module A
Change Changeable at any time
C3-72 Function of logic XOR/XNOR module A

Address:	$0 \times C 348$	Effective mode:	
Min.:	0	Unit:	-
Max.:	2	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0: Disabled
1: XOR2: XNOR
Description
0 : Disabled. The output is 0 .
1: XOR. The inputs 1 and 2 are XORed and then output.
2: XNOR. The inputs 1 and 2 are XNORed and then output.
C3-73 Input 1 of logic XOR/XNOR module A

Address:	$0 \times C 349$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
Same as C3-01
Description
Same as C3-01

C3-74	Input 2 of logic XOR/XNOR module $A$		
	Address: $0 \times \mathrm{C} 34 \mathrm{~A}$	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as C3-01		
C3-75	Function of logic XOR/XNOR module B		
	Address: 0xC34B	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 2	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0: Disabled		
	1: XOR		
	2: XNOR		
	Description		
	Same as module A		
C3-76	Input 1 of logic XOR/XNOR module B		
	Address: 0xC34C	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-77	Input 2 of logic XOR/XNOR module B		
	Address: 0xC34D	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 18	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C3-01		
	Description		
	Same as module A		
C3-78	Function of logic XOR/XNOR module C		
	Address: $0 \times C 34 \mathrm{E}$	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 2	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0: Disabled		
	1: XOR		
	2: XNOR		


	Description			
	Same as module A			
C3-79	Input 1 of logic XOR/XNOR module C			
	Address:	0xC34F	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	Same as C3-01			
	Description			
	Same as module A			
C3-80	Input 2 of logic XOR/XNOR module C			
	Address:	0xC350	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	Same as C3-01			
	Description			
	Same as module A			
C3-81	Function of logic XOR/XNOR module D			
	Address:	0xC351	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	2	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0: Disabled			
	1: XOR			
	2: XNOR Description			
	Same as module A			
C3-82	Input 1 of logic XOR/XNOR module D			
	Address:	0xC352	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	Same as C3-01			
	Description			
	Same as module A			
C3-83	Input 2 of logic XOR/XNOR module D			
	Address:	0xC353	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			

```
 Same as C3-01
 Description
 Same as module A
C3-84 Function of logic XOR/XNOR module E
 Address: 0xC354
 Min.: 0
 Max.: 2
 Default: 0
 Value Range:
 0: Disabled
 1: XOR
 2: XNOR
 Description
 Same as module A
 C3-85 Input 1 of logic XOR/XNOR module E
 Address: 0xC355
 Min.: 0
 Max.: 18
 Default: 0
 Value Range:
 Same as C3-01
 Description
 Same as module A
 C3-86 Input 2 of logic XOR/XNOR module E
 Address: 0xC356
 Min.: 0
 Max.: 18
 Default: 0
 Value Range:
 Same as C3-01
 Description
 Same as module A
 C3-87 Function of logic XOR/XNOR module F
 Address: 0xC357
 Min.: 0
 Max.: 2
 Default: 0
 Value Range:
 0: Disabled
 1: XOR
 2: XNOR
 Description
 Same as module A
C3-88 Input 1 of logic XOR/XNOR module F
Address: 0xC358 Effective mode:
```

Max.: $\quad 18$
Default: 0
Value Range:
Same as C3-01
Description
Same as module A

C3-89 Input 2 of logic XOR/XNOR module $F$
Address: 0xC359
Min.: 0
Max.: 18
Default: 0
Value Range:
Same as C3-01
Description
Same as module A

C3-90 Function of logic XOR/XNOR module G
Address: 0xC35A
Min.: $\quad 0$
Max.: 2
Default: 0
Value Range:
0: Disabled
1: XOR
2: XNOR
Description
Same as module A

C3-91 Input 1 of logic XOR/XNOR module G
Address: 0xC35B
Min.: 0
Max.: $\quad 18$
Default: 0
Value Range:
Same as C3-01
Description
Same as module A

C3-92 Input 2 of logic XOR/XNOR module G
Address: 0xC35C
Min.: 0
Max.: $\quad 18$
Default: 0
Value Range:
Same as C3-01
Description
Same as module A

C3-93 Function of logic XOR/XNOR module H
Address: 0xC35D

Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Min.: $\quad 0$
Max.: 2
Default: 0
Value Range:
0: Disabled
1: XOR
2: XNOR
Description
Same as module A

C3-94 Input 1 of logic XOR/XNOR module H
Address: 0xC35E
Min.: 0
Max.: 18
Default: 0
Value Range:
Same as C3-01
Description
Same as module A

C3-95 Input 2 of logic XOR/XNOR module H
Address: 0xC35F
Min.: 0
Max.: $\quad 18$
Default: 0
Value Range:
Same as C3-01
Description
Same as module A

Unit:
Data type: Ulnt16
Change:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

### 4.44 C4: Arithmetic Operation Parameters

C4-00 Input of floating-point absolute value module A

Address:	$0 \times C 400$	Effective mode:
Min.:	0	Unit:

Max.: $8 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0: Disabled
1: AI1
2: Al2
3: Al3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

```
Description
C4-01 Input of floating-point absolute value module B
Address: 0xC401 Effective mode:
Min.: 0 Unit:
Max.: 8 Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
Same as C4-00
Description
C4-02 Input of floating-point absolute value module C
\begin{tabular}{lll}
Address: & \(0 \times C 402\) & Effective mode: \\
Min.: & 0 & Unit:
\end{tabular}
Max.: \(8 \quad\) Data type: Ulnt16
Default: \(0 \quad\) Change: Changeable at any time
```


## Value Range:

```
Same as C4-00
Description
C4-03 Input of floating-point absolute value module D
\begin{tabular}{llll}
Address: & \(0 x C 403\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 8 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}
Value Range:
Same as C4-00
Description
C4-04 Input of floating-point absolute value module E
Address: 0xC404
Effective mode: -
Min.: \(\quad 0\)
Unit:
Max.: 8
Default: 0
Data type: Ulnt16
Value Range:
Same as C4-00
Description
C4-05 Input of fixed-point absolute value module F
Address: 0xC405 Effective mode: -
Min.: 0 Unit: -
Max.: \(0 \quad\) Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
0: Disabled
Others: K connector
```

	Description			
C4-06	Input of fixed-point absolute value module G			
	Address:	0xC406	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0: Disabled			
	Others: K connector Description			
C4-07	Input of fixed-point absolute value module H			
	Address:	0xC407	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0: Disabled			
	Others: K connector Description			
C4-08	Input 1 of floating-point ADD/SUBTRACT module A			
	Address:	0xC408	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	8	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0: Disabled			
	1: Al1			
	2: Al2			
	3: AI3			
	4: HDI			
	5: Aim			
	6: Multi-reference			
	7: Motor-driven potentiometer			
	8: PID			
	Others: F connector Description			
C4-09	Input 2 of ADD/SUBTRACT module A (ADD)			
	Address:	0xC409	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	8	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			

0: 0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C4-10 Input 3 of ADD/SUBTRACT module A (ADD)
Address: 0xC40A Effective mode:
Min.: 0 Unit: -
Max.: $8 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time

## Value Range:

Same as C4-09
Description

## C4-11 Input 4 of ADD/SUBTRACT module A (SUBTRACT)

Address: 0xC40B
Effective mode:
Min.: 0
Max.: 8
Default: 0
Unit:
Value Range:
Same as C4-09
Description
C4-12 Input 1 of floating-point ADD/SUBTRACT module B
Address: $0 x C 40 \mathrm{C}$
Min.: 0
Max.: 8
Default: 0
Value Range:
Same as C4-09
Description
C4-13 Input 2 of ADD/SUBTRACT module B (ADD)
Address: 0xC40D Effective mode: -
Min.: 0 Unit: -
Max.: $8 \quad$ Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
Same as C4-09

	Description		
C4-14	Input 3 of ADD/SUBTRACT module B (ADD)		
	Address: $0 \times C 40 \mathrm{E}$	Effective mode:	
	Min.: 0	Unit:	-
	Max.: 8	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C4-09		
	Description		
	-		
C4-15	Input 4 of ADD/SUBTRACT module B (SUBTRACT)		
	Address: 0xC40F	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 8	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C4-09		
	Description		
C4-16	Input 1 of floating-point ADD/SUBTRACT module C		
	Address: 0xC410	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 8	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C4-09		
	Description		
C4-17	Input 2 of ADD/SUBTRACT module C (ADD)		
	Address: 0xC411	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 8	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C4-09		
	Description		
C4-18	Input 3 of ADD/SUBTRACT module C (ADD)		
	Address: $0 \times C 412$	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 8	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	Same as C4-09		
	Description		

```
C4-19 Input 4 of ADD/SUBTRACT module C (SUBTRACT)
 Address: 0xC413 Effective mode: -
 Min.: 0 Unit:
 Max.: 8
 Default: 0
 Value Range:
 Same as C4-09
 Description
C4-20 Input 1 of floating-point ADD/SUBTRACT module D
 Address: 0xC414 Effective mode:
 Min.: 0 Unit:
 Max.: 8 Data type: Ulnt16
 Default: 0
 Change: Changeable at any time
 Value Range:
 Same as C4-09
 Description
C4-21 Input 2 of ADD/SUBTRACT module D (ADD)
 Address: 0xC415 Effective mode:
 Min.: 0 Unit:
 Max.: 8 Data type: Ulnt16
 Default: 0
 Value Range:
 Same as C4-09
 Description
C4-22 Input 3 of ADD/SUBTRACT module D (ADD)
 Address: 0xC416 Effective mode:
 Min.: 0 Unit:
 Max.: 8 Data type: Ulnt16
 Default: 0
```


## Value Range:

```
Same as C4-09
Description
C4-23 Input 4 of ADD/SUBTRACT module D (SUBTRACT)
Address: 0xC417
Min.: 0
Max.: 8
Default: 0
```


## Value Range:

```
Same as C4-09
Description
C4-24 Input 1 of floating-point ADD/SUBTRACT module E
Address: 0xC418 Effective mode:
```

	Min.:	0	Unit:	-
	Max.:	8	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as			
	Descript			
	-			
C4-25	Input 2	ADD/SUBT		
	Address:	0xC419	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	8	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as	-09		
	Descript			
	-			
C4-26	Input 3	ADD/SUBT		
	Address:	0xC41A	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	8	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as	-09		
	Descript			
	-			
C4-27	Input 4	ADD/SUBT	ACT)	
	Address:	0xC41B	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	8	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as	-09		
	Descript			
	-			
C4-28	Input 1	fixed-poin		
	Address:	0xC41C	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	0 : Disable			
	Others: Descript	onnector   n		
C4-29	Input 2	ADD/SUBT		
	Address:	0xC41D	Effective mode:	-
	Min.:	0	Unit:	-


	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as			
	Descript			
	-			
C4-30	Input 3	ADD/SUB		
	Address:	0xC41E	Effective m	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as			
	Descript			
C4-31	Input 4	ADD/SUB	ACT)	
	Address:	0xC41F	Effective m	-
	Min.:	0	Unit:	
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as			
	Descript			
	-			
C4-32	Input 1	fixed-poi	e G	
	Address:	0xC420	Effective mod	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as			
	Descript			
	des			
C4-33	Input 2	ADD/SUB		
	Address:	0xC421	Effective m	-
	Min.:	0	Unit:	
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	Same as			
	Descript			
	-			
C4-34	Input 3	ADD/SUB		
	Address:	0xC422	Effective m	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time

## Value Range:

Same as C4-28
Description

C4-35 Input 4 of ADD/SUBTRACT module G (SUBTRACT)
Address: 0xC423 Effective mode:
Min.: 0
Max.: $0 \quad$ Data type: Ulnt16
Default: 0
Change: Changeable at any time
Value Range:
Same as C4-28
Description

C4-36 Input 1 of fixed-point ADD/SUBTRACT module H

Address:	$0 \times C 424$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	0	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

## Value Range:

Same as C4-28
Description

C4-37 Input 2 of ADD/SUBTRACT module H (ADD)
Address: 0xC425 Effective mode:
Min.: 0 Unit:
Max.: $0 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time

## Value Range:

Same as C4-28
Description

C4-38 Input 3 of ADD/SUBTRACT module H (ADD)
Address: 0xC426 Effective mode: -
Min.: 0 Unit: -
Max.: $0 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time

## Value Range:

Same as C4-28
Description

C4-39 Input 4 of ADD/SUBTRACT module H (SUBTRACT)
Address: $0 \times C 427$
Min.: $\quad 0$
Max.: 0
Default: 0
Value Range:
Same as C4-28

	Description			
C4-40	Input 1 of floating-point MULTIPLY/DIVIDE module A			
	Address:	0xC428	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	8	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	C4-08			
	Description			
C4-41	Input 2 of MULTIPLY/DIVIDE module A (MULTIPLY)			
	Address:	0xC429	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	8	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0: 1			
	1: Al1			
	2: AI2			
	3: Al3			
	4: HDI			
	5: Aim			
	6: Multi-reference			
	7: Motor-driven potentiometer			
	8: PID			
	Others: F connector Description			
C4-42	Input 3 of MULTIPLY/DIVIDE module A (DIVIDE)			
	Address:	0xC42A	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	8	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ran			
	Same as C			
	Descriptio			
	-			
C4-43	Input 1 of floating-point MULTIPLY/DIVIDE module B			
	Address:	0xC42B	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	8	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			

0: Disabled
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C4-44 Input 2 of MULTIPLY/DIVIDE module B (MULTIPLY)
Address: 0xC42C
Min.: 0
Max.: 8
Default: 0
Effective mode:

## Value Range:

Same as C4-41
Description

C4-45 Input 3 of MULTIPLY/DIVIDE module B (DIVIDE)
Address: 0xC42D Effective mode: -
Min.: 0 Unit: -
Max.: $8 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
Same as C4-41
Description

C4-46 Input 1 of floating-point MULTIPLY/DIVIDE module C
Address: 0xC42E Effective mode: -
Min.: 0
Max.: $8 \quad$ Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
0 : Disabled
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

```
Description
C4-47 Input 2 of MULTIPLY/DIVIDE module C (MULTIPLY)
Address: 0xC42F Effective mode:
Min.: 0 Unit:
Max.: 8 Data type: Ulnt16
Default: 0
Value Range:
Same as C4-41
Description
C4-48 Input 3 of MULTIPLY/DIVIDE module C (DIVIDE)
Address: 0xC430 Effective mode:
Min.: 0 Unit:
Max.: 8 Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
Same as C4-41
Description
C4-49 Input 1 of floating-point MULTIPLY/DIVIDE module D
Address: 0xC431 Effective mode:
Min.: 0 Unit:
Max.: 8 Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
0: Disabled
1: AI1
2: Al2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C4-50 Input 2 of MULTIPLY/DIVIDE module D (MULTIPLY)
Address: 0xC432 Effective mode: -
Min.: 0
Max.: 8
Default: 0
Value Range:
Same as C4-41
```

```
 Description
C4-51 Input 3 of MULTIPLY/DIVIDE module D (DIVIDE)
 Address: 0xC433 Effective mode:
 Min.: 0 Unit:
 Max.: 8 Data type: Ulnt16
 Default: 0
 Value Range:
 Same as C4-41
 Description
C4-52 Input 1 of floating-point MULTIPLY/DIVIDE module E
 Address: 0xC434 Effective mode:
 Min.: 0 Unit:
 Max.: 8 Data type: Ulnt16
 Default: 0 Change: Changeable at any time
```


## Value Range:

```
0: Disabled
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C4-53 Input 2 of MULTIPLY/DIVIDE module E (MULTIPLY)
Address: 0xC435 Effective mode:
Min.: 0 Unit: -
Max.: \(8 \quad\) Data type: Ulnt16
Default: \(0 \quad\) Change: Changeable at any time
Value Range:
Same as C4-41
Description
C4-54 Input 3 of MULTIPLY/DIVIDE module E (DIVIDE)
Address: 0xC436 Effective mode: -
Min.: 0
Max.: 8
Default: 0
Value Range:
Same as C4-41
```

	Descriptio			
C4-55	Input 1 of fixed-point MULTIPLY/DIVIDE module F			
	Address:	0xC437	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ran			
	0: Disabled			
	Others: K con	nnector		
	Descriptio			
	-			
C4-56	Input 2 of MULTIPLY/DIVIDE module F (MULTIPLY)			
	Address:	0xC438	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ran			
	Same as C			
	Descriptio			
	-			
C4-57	Input 3 of MULTIPLY/DIVIDE module F (DIVIDE)			
	Address:	0xC439	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ran			
	Same as C			
	Descriptio			
	-			
C4-58	Input 1 of fixed-point MULTIPLY/DIVIDE module G			
	Address:	$0 \times C 43 A$	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ran			
	Same as C			
	Descriptio			
	-			
C4-59	Input 2 of MULTIPLY/DIVIDE module G (MULTIPLY)			
	Address:	0xC43B	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ran			
	Same as C			

[^2]|  | Description |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| C4-60 | Input 3 of MULTIPLY/DIVIDE module G (DIVIDE) |  |  |  |
|  | Address: | 0xC43C | Effective mode: | - |
|  | Min.: | 0 | Unit: | - |
|  | Max.: | 0 | Data type: | Ulnt16 |
|  | Default: | 0 | Change: | Changeable at any time |
|  | Value Ra |  |  |  |
|  | Same as | -55 |  |  |
|  | Descript |  |  |  |
|  |  |  |  |  |
| C4-61 | Input 1 of fixed-point MULTIPLY/DIVIDE module H |  |  |  |
|  | Address: | 0xC43D | Effective mode: | - |
|  | Min.: | 0 | Unit: | - |
|  | Max.: | 0 | Data type: | Ulnt16 |
|  | Default: | 0 | Change: | Changeable at any time |
|  | Value Range: |  |  |  |
|  | Same as C4-55 |  |  |  |
|  | Description |  |  |  |
|  |  |  |  |  |
| C4-62 | Input 2 of MULTIPLY/DIVIDE module H (MULTIPLY) |  |  |  |
|  | Address: | 0xC43E | Effective mode: | - |
|  | Min.: | 0 | Unit: | - |
|  | Max.: | 0 | Data type: | Ulnt16 |
|  | Default: | 0 | Change: | Changeable at any time |
|  | Value Range: |  |  |  |
|  | Same as C4-55 |  |  |  |
|  | Description |  |  |  |
|  |  |  |  |  |
| C4-63 | Input 3 of MULTIPLY/DIVIDE module H (DIVIDE) |  |  |  |
|  | Address: | 0xC43F | Effective mode: | - |
|  | Min.: | 0 | Unit: | - |
|  | Max.: | 0 | Data type: | Ulnt16 |
|  | Default: | 0 | Change: | Changeable at any time |
|  | Value Range: |  |  |  |
|  | Same as C4-55 |  |  |  |
|  | Description |  |  |  |
| C4-64 | Function of floating-point comparison module $A$ |  |  |  |
|  | Address: | 0xC440 | Effective mode: | - |
|  | Min.: | 0 | Unit: | - |
|  | Max.: | 3 | Data type: | Ulnt16 |
|  | Default: | 0 | Change: | Changeable at any time |
|  | Value Ra |  |  |  |

0: Module disabled
1: Input $1>$ Input 2
2: Input $1<$ Input 2
3: Input 1 = Input 2
Description
C4-65 Input 1 of floating-point comparison module A
Address: 0xC44
Effective mode:
Max: 8
Max:
Default: 0
Unit:
Data type: Ulnt16
Value Range:
0: 0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C4-66 Input 2 of floating-point comparison module A

Address:	$0 x C 442$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	8	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0: 0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C4-67 Hysteresis input of floating-point comparison module $A$

Address:	$0 \times C 443$	Effective mode: -
Min.:	0.00	Unit:
Max.:	655.35	Data type:

Default: $0.00 \quad$ Change: Changeable at any time

Value Range:
0.00\% to 655.35\%

## Description

C4-68 Function of floating-point comparison module B

Address:	$0 \times C 444$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

## Value Range:

0 : Module disabled
1: Input $1>$ Input 2
2: Input $1<$ Input 2
3: Input 1 = Input 2
Description

C4-69 Input 1 of floating-point comparison module B
Address: 0xC445

Effective mode:
Min.: 0
Max.: 8
Default: 0
Unit:

Value Range:
0: 0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C4-70 Input 2 of floating-point comparison module B

Address:	$0 \times C 446$	Effective mode:
Min.:	0	Unit:

Max.: $8 \quad$ Data type: Ulnt16

Default: $0 \quad$ Change: Changeable at any time

## Value Range:

0: 0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C4-71 Hysteresis input of floating-point comparison module B

Address:	$0 x C 447$	Effective mode:	
Min.:	0.00	Unit:	$\%$
Max.:	655.35	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:
0.00\% to 655.35\%

Description

C4-72 Function of floating-point comparison module C

Address: 0xC448
Min.: $\quad 0$
Max.: 3
Default: 0
Value Range:
0 : Module disabled
1: Input $1>$ Input 2
2: Input $1<$ Input 2
3: Input 1 = Input 2
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
,

Changeable at any time -

C4-73 Input 1 of floating-point comparison module C
Address: 0xC449
Min.: $\quad 0$
Max.: 8
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:

0: 0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C4-74 Input 2 of floating-point comparison module C

Address:	$0 \times C 44 A$	Effective mode:
Min.:	0	Unit:
Max.:	8	Data type:
Default:	0	Change:

## Value Range:

0: 0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C4-75 Hysteresis input of floating-point comparison module C

Address:	$0 x C 44 B$	Effective mode: -	
Min.:	0.00	Unit:	$\%$
Max.:	655.35	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:
0.00\% to 655.35\%

Description

C4-76 Function of floating-point comparison module D
Address: $0 \times C 44 C$
Effective mode: -
Min.: $\quad 0$
Unit:
Max.: 3
Default: 0
Data type: Ulnt16
Change: Changeable at any time
Value Range:

```
0: Module disabled
1: Input 1 > Input 2
2: Input 1 < Input 2
3: Input 1 = Input 2
Description
C4-77 Input 1 of floating-point comparison module D
Address: 0xC44D Effective mode: -
Min.: 0 Unit:
Max.: 8 Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
0:0
1: AI1
2: Al2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7:Motor-driven potentiometer
8: PID
Others: F connector
Description
C4-78 Input 2 of floating-point comparison module D
\begin{tabular}{llll}
Address: & \(0 x C 44 E\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 8 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}
Value Range:
0: 0
1: AI1
2: Al2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C4-79 Hysteresis input of floating-point comparison module D
\begin{tabular}{lll}
Address: & \(0 x C 44 F\) & Effective mode: - \\
Min.: & 0.00 & Unit: \\
Max.: & 655.35 & Data type:
\end{tabular}
```

Default: 0.00
Change:
Changeable at any time

Value Range:
0.00\% to 655.35\%

Description

C4-80 Function of fixed-point comparison module E

Address:	$0 \times C 450$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 : Module disabled
1: Input $1>$ Input 2
2: Input $1<$ Input 2
3: Input 1 = Input 2
Description

C4-81 Input 1 of fixed-point comparison module E
Address: 0xC451 Effective mode: -

Min.: 0
Max.: 0
Unit:

Default: 0
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0: 0
Others: K connector
Description

C4-82 Input 2 of fixed-point comparison module E
Address: 0xC452 Effective mode: -

Min.: 0
Max.: 0
Unit:

Default: 0
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0: 0
Others: K connector
Description

C4-83 Hysteresis input of fixed-point comparison module $E$
Address: 0xC453
Min.: 0.00
Max.: 655.35
Default: 0.00
Value Range:
0.00\% to 655.35\%

Description

```
C4-84 Function of fixed-point comparison module F
 Address: 0xC454 Effective mode: -
 Min.: 0 Unit
 Max.: 3 Data type: Ulnt16
 Default: 0 Change: Changeable at any time
 Value Range:
 0: Module disabled
 1: Input 1 > Input 2
 2: Input 1 < Input 2
 3: Input 1 = Input 2
 Description
C4-85 Input 1 of fixed-point comparison module F
 Address: 0xC455 Effective mode:
 Min.: 0 Unit
 Max.: 0 Data type: Ulnt16
 Default: 0 Change: Changeable at any time
 Value Range:
 0:0
 Others: K connector
 Description
C4-86 Input 2 of fixed-point comparison module F
 Address: 0xC456 Effective mode:
 Min.: 0 Unit
 Max.: 0 Data type: Ulnt16
 Default: 0 Change: Changeable at any time
 Value Range:
 0:0
 Others: K connector
 Description
C4-87 Hysteresis input of fixed-point comparison module F
 Address: 0xC457
 Min.: 0.00
 Max.: 655.35
 Default: 0.00
 Value Range:
 0.00% to 655.35%
 Description
C4-88 Function of fixed-point comparison module G
 Address: 0xC458 Effective mode:
 Min.: 0 Unit
 Max.: 3 Data type: Ulnt16
 Default: 0
 Value Range:
```

	0 : Module disabled			
	1: Input $1>$ Input 2			
	2: Input $1<$ Input 2			
	3: Input 1 = Input 2			
	Description			
	-			
C4-89	Input 1 of fixed-point comparison module G			
	Address	0xC459	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0:0			
	Others: K connector Description			
	-			
C4-90	Input 2 of fixed-point comparison module G			
	Address	$0 \times C 45 A$	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0: 0			
	Others: K connector Description			
C4-91	Hysteresis input of fixed-point comparison module G			
	Address	0xC45B	Effective mode:	-
	Min.:	0.00	Unit:	\%
	Max.:	655.35	Data type:	Ulnt16
	Default:	0.00	Change:	Changeable at any time
	Value Range:			
	0.00\% to 655.35\%			
	Description			
	-			
C4-92	Function of fixed-point comparison module H			
	Address	0xC45C	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	3	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0 : Module disabled			
	1 : Input $1>$ Input 2			
	2: Input $1<$ Input 2			
	3: Input 1 = Input 2			
	Description			

```
C4-93 Input 1 of fixed-point comparison module H
 Address: 0xC45D Effective mode: -
 Min.: 0 Unit:
 Max.: 0 Data type: Ulnt16
 Default: 0
 Value Range:
 0: 0
 Others: K connector
 Description
C4-94 Input 2 of fixed-point comparison module H
 Address: 0xC45E Effective mode: -
 Min.: 0 Unit:
 Max.: 0 Data type: Ulnt16
 Default: 0
 Value Range:
 0: 0
 Others: K connector
 Description
```

C4-95 Hysteresis input of fixed-point comparison module $\mathbf{H}$
Address: 0xC45F Effective mode: -
Min.: 0.00 Unit:
Max.: $655.35 \quad$ Data type: Ulnt16
Default: 0.00
Value Range:
0.00\% to 655.35\%
Description

### 4.45 C5: Switch Function Parameters

C5-00 Input source of binary selector module A
Address: 0xC500 Effective mode:

Min.: 0
Max.: 18
Default: 0

Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-01 Input 1 of binary selector module A
Address: 0xC501
Min.: 0
Max.: 18
Default: 0
Value Range:

0: Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-02 Input 2 of binary selector module A
Address: 0xC502 Effective mode:
Min.: 0
Max.: 18
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
Same as C5-01
Description

C5-03 Input source of binary selector module B
Address: 0xC503 Effective mode: -

Min.: 0
Max.: 18
Default: 0
Value Range:
Same as C5-01
Description

C5-04 Input 1 of binary selector module B
Address: 0xC504
Min.: 0
Max.: 18
Default: 0
Value Range:

Same as C5-01
Description

C5-05 Input 2 of binary selector module B

Address:	$0 \times C 505$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
Same as C5-01			
Description			

C5-06 Input source of binary selector module C
Address: 0xC506
Min.: 0
Max.: 18
Default: 0

## Value Range:

0 : Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-07 Input 1 of binary selector module C
Address: 0xC507
Min.: 0
Max.: 18
Default: 0
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:

0: Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-08 Input 2 of binary selector module C
Address: 0xC508
Effective mode:
Min.: 0
Max.: 18
Default: 0
Value Range:
Same as C5-01
Description

C5-09 Input source of binary selector module D
Address: 0xC509 Effective mode: -

Min.: 0
Max.: 18
Default: 0
Value Range:

0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-10 Input 1 of binary selector module D
Address: 0xC50A
Min.: 0
Max.: 18
Default: 0
Value Range:

0: Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-11 Input 2 of binary selector module D
Address: 0xC50B
Effective mode: -
Min.: 0
Max.: 18
Default: 0
Value Range:

0 : Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI21
Others: B connector
Description

C5-12 Input source of binary selector module E
Address: 0xC50C Effective mode: -
Min.: 0
Max.: 18
Default: 0
Value Range:

0 : Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-13 Input 1 of binary selector module E
Address: 0xC50D
Min.: 0
Max.: 18
Default: 0
Value Range:

0: Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-14 Input 2 of binary selector module E
Address: 0xC50E
Min.: 0
Max.: 18
Default: 0
Value Range:
Same as C5-01
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

C5-15 Input source of binary selector module $F$
Address: 0xC50F
Min.: 0
Max.: 18
Default: 0
Value Range:

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

0 : Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-16 Input 1 of binary selector module $F$
Address: 0xC510
Effective mode: -
Min.: 0
Max.: 18
Default: 0
Value Range:

0 : Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-17 Input 2 of binary selector module $F$
Address: 0xC511
Effective mode: -
Min.: 0
Max.: 18
Default: 0
Value Range:

0 : Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI21
Others: B connector
Description

C5-18 Input source of binary selector module G
Address: 0xC512 Effective mode: -
Min.: 0
Max.: 18
Default: 0
Value Range:

Unit:
Data type: Ulnt16
Change: Changeable at any time

0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-19 Input 1 of binary selector module G
Address: 0xC513
Min.: 0
Max.: 18
Default: 0
Value Range:

0: Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-20 Input 2 of binary selector module G
Address: 0xC514 Effective mode:
Min.: 0
Max.: 18
Default: 0
Value Range:

Unit:
Data type: Ulnt16
Change: Changeable at any time

0 : Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI21
Others: B connector
Description

C5-21 Input source of binary selector module H
Address: 0xC515 Effective mode: -
Min.: 0
Max.: 18
Default: 0
Value Range:

0 : Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-22 Input 1 of binary selector module H
Address: 0xC516
Min.: 0
Max.: 18
Default: 0
Value Range:

0 : Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-23 Input 2 of binary selector module H
Address: 0xC517
Effective mode: -
Min.: 0
Max.: 18
Default: 0
Value Range:

0 : Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: D19
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI21
Others: B connector
Description

C5-24 Input source of word selector module A
Address: 0xC518 Effective mode: -
Min.: 0
Max.: 18
Default: 0
Value Range:

0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-25 Input 1 of word selector module A
Address: 0xC519 Effective mode:
Min.: 0
Max.: 0
Default: 0
Value Range:
0: 0
Others: K connector
Description

C5-26 Input 2 of word selector module A
Address: 0xC51A Effective mode: -
Min.: 0
Max.: 0
Default: 0
Value Range:
0: 0
Others: K connector
Description

C5-27 Input source of word selector module B
Address: 0xC51B Effective mode: -
Min.: 0
Max.: 18

Unit:
Data type: Ulnt16

Unit:
Data type: Ulnt16
Change: Changeable at any time

Unit:
Data type: Ulnt16
Change: Changeable at any time

Default: 0
Value Range:
0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DII0
13: DI11
14: DI12
15: DII3
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-28 Input 1 of word selector module B
Address: 0xC51C Effective mode: -
Min.: 0
Max.: 0
Default: 0
Value Range:
0: 0
Others: K connector
Description

C5-29 Input 2 of word selector module $B$
Address: 0xC51D
Min.: 0
Max.: 0
Default: 0
Value Range:
0: 0
Others: K connector
Description

C5-30 Input source of word selector module C
Address: 0xC51E

Change:
Changeable at any time

## Unit:

Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Min.:	0
Max.:	18
Default:	0

Value Range:
0 : Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-31 Input 1 of word selector module C
Address: 0xC51F
Min.: 0
Max.: 0
Default: 0
Value Range:
0: 0
Others: K connector
Description

C5-32 Input 2 of word selector module C
Address: 0xC520
Min.: 0
Max.: 0
Default: 0
Value Range:
0: 0
Others: K connector
Description

Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time


## Description

C5-36 Input source of DWord selector module A
Address: 0xC524 Effective mode: -
Min.: 0
Max.: 18
Default: 0
Value Range:
0 : Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-37 Input 1 of DWord selector module A
Address: 0xC525 Effective mode: -
Min.: 0
Max.: 0
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0: 0
Others: K connector
Description

C5-38 Input 2 of DWord selector module A
Address: 0xC526
Min.: 0
Max.: 0
Default: 0
Value Range:

	0: 0			
	Others: K connector Description			
C5-39	Input source of DWord selector module B			
	Address:	0xC527	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	18	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0 : Disabled			
	1: Logic 1			
	2: Logic 0			
	3: DII			
	4: DI2			
	5: DI3			
	6: DI4			
	7: DI5			
	8: DI6			
	9: DI7			
	10: DI8			
	11: DI9			
	12: DI10			
	13: DI11			
	14: DI12			
	15: DI13			
	16: DI14			
	17: DI15			
	18: DI16			
	Others: B connector Description			
C5-40	Input 1 of DWord selector module B			
	Address:	0xC528	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0: 0			
	Others: K connector Description			
C5-41	Input 2 of DWord selector module B			
	Address:	0xC529	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	0	Data type:	Ulnt16



Min.:	0	Unit:	-
Max.:	0	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
0: 0			
Others: K connector			
Description			

C5-45 Input source of DWord selector module D
Address: 0xC52D Effective mode:

Min.: 0
Max.: 18
Default: 0
Value Range:
0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-46 Input 1 of DWord selector module D
Address: 0xC52E
Min.: 0
Max.: 0
Default: 0
Value Range:
0: 0
Others: K connector
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```
C5-47 Input 2 of DWord selector module D
 Address: 0xC52F Effective mode: -
 Min.: 0 Unit
 Max.: 0 Data type: Ulnt16
 Default: 0 Change: Changeable at any time
 Value Range:
 0:0
 Others: K connector
 Description
```

C5-48 Input source of floating-point number selector module A
Address: 0xC530
Min.: 0
Max.: 18
Default: 0
Value Range:
0 : Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
C5-49 Input 1 of floating-point number selector module A
Address: 0xC531
Effective mode: -
Min.: 0
Max.: 8
Default: 0
Value Range:

```
0:0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C5-50 Input 2 of floating-point number selector module A
Address: 0xC532 Effective mode:
Min.: 0 Unit:
Max.: 8 Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
0: 0
1: AI1
2: Al2
3: Al3
4: HDI
5: Aim
6: Multi-reference
7:Motor-driven potentiometer
8: PID
Others: F connector
Description
C5-51 Input source of floating-point number selector module B
Address: 0xC533 Effective mode:
Min.: \(0 \quad\) Unit: -
Max.: \(18 \quad\) Data type: Ulnt16
Default: \(0 \quad\) Change: Changeable at any time
Value Range:
```

0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-52 Input 1 of floating-point number selector module B
Address: 0xC534 Effective mode: -
Min.: $0 \quad$ Unit:
Max.: $8 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0: 0
1: AI1
2: Al2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C5-53 Input 2 of floating-point number selector module B

Address:	$0 \times C 535$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	8	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

## Value Range:

```
0:0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6:Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C5-54 Input source of floating-point number selector module C
Address: 0xC536 Effective mode:
Min.: 0 Unit: -
Max.: 18 Data type: Ulnt16
Default: 0
Value Range:
0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
C5-55 Input 1 of floating-point number selector module C
Address: 0xC537 Effective mode: -
Min.: 0 Unit:
Max.: 8 Data type: Ulnt16
Default: 0 Change: Changeable at any time
```


## Value Range:

```
0:0
1: AI1
2: Al2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C5-56 Input 2 of floating-point number selector module C
Address: 0xC538 Effective mode: -
Min.: 0 Unit:
Max.: 8 Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
0: 0
1: AI1
2: Al2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7:Motor-driven potentiometer
8: PID
Others: F connector
Description
C5-57 Input source of floating-point number selector module D
Address: 0xC539 Effective mode
Min.: \(0 \quad\) Unit: -
Max.: \(18 \quad\) Data type: Ulnt16
Default: \(0 \quad\) Change: Changeable at any time
Value Range:
```

```
 0: Disabled
 1: Logic 1
 2: Logic 0
 3: DI1
 4: DI2
 5: DI3
 6: DI4
 7: DI5
 8: DI6
 9: DI7
 10: DI8
 11: DI9
 12: DI10
 13: DI11
 14: DI12
 15: DI13
 16: DI14
 17: DI15
 18: DI16
 Others: B connector
 Description
C5-58 Input 1 of floating-point number selector module D
 Address: 0xC53A Effective mode: -
 Min.: 0 Unit:
 Max.: 8 Data type: Ulnt16
 Default: 0 Change: Changeable at any time
 Value Range:
 0:0
 1: AI1
 2: AI2
 3: Al3
 4: HDI
 5: Aim
 6:Multi-reference
 7: Motor-driven potentiometer
 8: PID
 Others: F connector
 Description
C5-59 Input 2 of floating-point number selector module D
Address: 0xC53B Effective mode:
Min.: 0 Unit:
Max.: 8 Data type: Ulnt16
Default: 0 Change: Changeable at any time
```

Value Range:

```
0:0
1: Al1
2: Al2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C5-60 Input source of floating-point number selector module E
Address: 0xC53C Effective mode:
Min.: 0 Unit
Max.: 18 Data type: Ulnt16
Default: 0
Value Range:
0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
C5-61 Input 1 of floating-point number selector module E
\begin{tabular}{llll}
Address: & 0xC53D & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 8 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}
```

Value Range:

```
0:0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6:Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C5-62 Input 2 of floating-point number selector module E
Address: 0xC53E Effective mode: -
Min.: 0 Unit:
Max.: 8 Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
0: 0
1: AI1
2: Al2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7:Motor-driven potentiometer
8: PID
Others: F connector
Description
C5-63 Input source of floating-point number selector module \(F\)
Address: 0xC53F Effective mode:
Min.: \(0 \quad\) Unit: -
Max.: \(18 \quad\) Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
```

0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C5-64 Input 1 of floating-point number selector module $F$
Address: 0xC540
Effective mode: -
Min.: $0 \quad$ Unit:
Max.: $8 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0: 0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C5-65 Input 2 of floating-point number selector module $F$
Address: 0xC541
Min.: 0
Max.: $8 \quad$ Data type: Ulnt16
Default: 0
Value Range:

```
0:0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6:Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C5-66 Input source of floating-point number selector module G
Address: 0xC542 Effective mode:
Min.: 0 Unit:
Max.: 18 Data type: Ulnt16
Default: 0
Value Range:
0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description
C5-67 Input 1 of floating-point number selector module G
\begin{tabular}{llll}
Address: & \(0 \times C 543\) & Effective mode: \\
Min.: & 0 & Unit: & - \\
Max.: & 8 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}
```

Value Range:

```
0:0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C5-68 Input 2 of floating-point number selector module G
Address: 0xC544 Effective mode: -
Min.: 0 Unit:
Max.: 8 Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
0: 0
1: AI1
2: Al2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7:Motor-driven potentiometer
8: PID
Others: F connector
Description
C5-69 Input source of floating-point number selector module H
Address: 0xC545 Effective mode:
Min.: \(0 \quad\) Unit: -
Max.: \(18 \quad\) Data type: Ulnt16
Default: \(0 \quad\) Change: Changeable at any time
Value Range:
```

```
 0: Disabled
 1: Logic 1
 2: Logic 0
 3: DI1
 4: DI2
 5: DI3
 6: DI4
 7: DI5
 8: DI6
 9: DI7
 10: DI8
 11: DI9
 12: DI10
 13: DI11
 14: DI12
 15: DI13
 16: DI14
 17: DI15
 18: DI16
 Others: B connector
 Description
C5-70 Input 1 of floating-point number selector module H
 Address: 0xC546 Effective mode: -
 Min.: 0 Unit:
Max.: 8 Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
0:0
1: AI1
2: AI2
3: Al3
4: HDI
5: Aim
6:Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
C5-71 Input 2 of floating-point number selector module H
Address: 0xC547 Effective mode:
Min.: 0 Unit:
Max.: 8 Data type: Ulnt16
Default: 0 Change: Changeable at any time
```

Value Range:

0: 0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

### 4.46 C6: Control Function Parameters

C6-00 Floating-point filter module A enable
Address: 0xC600 Effective mode: -
Min.: 0
Max.: $\quad 18$
Default: 0
Value Range:
0 : Module disabled
1: Filter disabled
2: Filter enabled
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C6-01 Input of floating-point filter module A
Address: 0xC601
Effective mode:
Min.: $\quad 0$
Max.: $\quad 8$
Default: $\quad 0$
Value Range:
0: 0
1: AI1
2: Al2
3: Al3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

Unit:
Data type: Ulnt16
Change: Changeable at any time

C6-02 Filter time of filter module A

Address:	$0 \times C 602$	Effective mode:	-
Min.:	0.000	Unit:	s
Max.:	65.535	Data type:	Ulnt16
Default:	0.000	Change:	Changeable at any time

## Value Range:

0.000s to 65.535 s

## Description

C6-03 Floating-point filter module $B$ enable
Address: 0xC603

Min.: 0
Max.: 18
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

0 : Module disabled
1: Filter disabled
2: Filter enabled
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C6-04 Input of floating-point filter module B
Address: 0xC604
Min.: 0
Max.: 8
Default: 0
Value Range:
0: 0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

C6-05 Filter time of filter module B

Address:	$0 \times C 605$	Effective mode:	-
Min.:	0.000	Unit:	S
Max.:	65.535	Data type:	Ulnt16
Default:	0.000	Change:	Changeable at any time

Value Range:

### 0.000 s to 65.535 s

## Description

## C6-06 Floating-point filter module C enable

Address: 0xC606
Min.: 0
Max.: 18
Default: 0
Value Range:
0 : Module disabled
1: Filter disabled
2: Filter enabled
3: DI1
4: DI2
5: DI3
6: DI4
7: D15
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C6-07 Input of floating-point filter module C
Address: 0xC607
Min.: 0
Max.: 8
Default: 0
Value Range:
0: 0
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Description

C6-08

C6-09 Floating-point filter module $D$ enable
Address: 0xC609
Min.: 0
Max.: 18
Default: 0
Value Range:
0 : Module disabled
1: Filter disabled
2: Filter enabled
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: D19
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C6-10 Input of floating-point filter module D
Address: 0xC60A
Min.: 0
Max.: 8
Default: 0

```
Effective mode: -
Unit: s
Data type: Ulnt16
Change: Changeable at any time
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

0: 0
1: AI1
2: Al2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C6-11 Filter time of filter module $D$

Address:	0xC60B	Effective mode:	
Min.:	0.000	Unit:	S
Max.:	65.535	Data type:	Ulnt16
Default:	0.000	Change:	Changeable at any time

Value Range:
0.000s to 65.535 s

## Description

C6-12 Fixed-point filter module E enable
Address: 0xC60C
Min.: 0
Max.: 18
Default: 0
Value Range:
0 : Module disabled
1: Filter disabled
2: Filter enabled
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Description

C6-13 Input of fixed-point filter module E
Address: 0xC60D

Min.: 0
Max.: 0
Default: 0
Value Range:
0: 0
Others: K connector
Description

C6-14 Filter time of fixed-point filter module $E$

Address:	$0 \times C 60 E$	Effective mode:	
Min.:	0.000	Unit:	S
Max.:	65.535	Data type:	Ulnt16
Default:	0.000	Change:	Changeable at any time

## Value Range:

0.000s to 65.535s

## Description

C6-15 Fixed-point filter module $F$ enable
Address: 0xC60F
Min.: 0
Max.: 18
Default: 0

## Value Range:

0 : Module disabled
1: Filter disabled
2: Filter enabled
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Change: Changeable at any time

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Description

C6-16 Input of fixed-point filter module F
Address: 0xC610 Effective mode: -
Min.: 0
Max.: 0
Unit:

Default: 0
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0: 0
Others: K connector
Description

C6-17 Filter time of fixed-point filter module $F$

Address:	$0 \times C 611$	Effective mode:	-
Min.:	0.000	Unit:	S
Max.:	65.535	Data type:	Ulnt16
Default:	0.000	Change:	Changeable at any time

Value Range:
0.000 s to 65.535 s

Description

C6-24 Function of level-to-pulse conversion module A

Address:	$0 \times C 618$	Effective mode:
Min.:	0	Unit:
Max.:	2	Data type:
Default:	0	Change:

Value Range:
0: Disabled
1: Conversion from level to pulse
2: Conversion from pulse to level
Description

C6-25 Input of level-to-pulse conversion module A

Address:	$0 x C 619$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

0: Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C6-26 Pulse width of level-to-pulse conversion module A

Address:	$0 \times C 61 A$	Effective mode:	-
Min.:	0.00	Unit:	s
Max.:	655.35	Data type:	Ulnt16
Default: 0.00	Change:	Changeable at any time	
Value Range:			
0.00s to 655.35 s			
Description			

C6-27 Function of level-to-pulse conversion module B
Address: 0xC61B
Effective mode:
Min.: 0
Max.: 2
Default: 0
Value Range:
0: Disabled
1: Conversion from level to pulse
2: Conversion from pulse to level
Description

C6-28 Input of level-to-pulse conversion module B

Address:	$0 x C 61 C$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16

Default: $0 \quad$ Change: Changeable at any time
Value Range:
0 : Logic 0
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C6-29 Pulse width of level-to-pulse conversion module B
Address: 0xC61D
Effective mode:
Min.: 0.00
Unit: s
Max.: $\quad 655.35$
Data type: Ulnt16
Default: 0.00
Value Range:
0.00 s to 655.35s

Description

C6-30 Function of level-to-pulse conversion module C
Address: 0xC61E
Effective mode:
Min.: 0
Max.: 2
Default: 0
Unit:
Data type: Ulnt16

Value Range:
0: Disabled
1: Conversion from level to pulse
2: Conversion from pulse to level
Description

C6-31 Input of level-to-pulse conversion module C
Address: 0xC61F
Effective mode:

Min.:	0	Unit:	-
Max.:	18	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time
Value Ra			
0 : Logic			
1: Logic			
2: Logic			
3: DI1			
4: DI2			
5: DI3			
6: DI4			
7: DI5			
8: DI6			
9: DI7			
10: DI8			
11: DI9			
12: DI10			
13: DI11			
14: DI12			
15: DI13			
16: DI14			
17: DI15			
18: DI16			
Others: Descrip	nne		

## C6-32 Pulse width of level-to-pulse conversion module C

Address:	$0 x C 620$
Min.:	0.00
Max.:	655.35
Default:	0.00

Effective mode:
Unit: S
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.00s to 655.35s

Description

C6-33 Function of level-to-pulse conversion module D
Address: 0xC621
Effective mode:
Min.: 0
Max.: 2
Default: 0
Value Range:
0: Disabled
1: Conversion from level to pulse
2: Conversion from pulse to level

## Description

Unit:
Data type: Ulnt16
Change: Changeable at any time
-

```
C6-34 Input of level-to-pulse conversion module D
 Address: 0xC622 Effective mode:
 Min.: 0 Unit
 Max.: 18 Data type: Ulnt16
 Default: 0
 Value Range:
 0: Logic 0
 1: Logic 1
 2: Logic 0
 3: DI1
 4: DI2
 5: DI3
 6: DI4
 7: DI5
 8: DI6
 9: DI7
 10: DI8
 11: DI9
 12: DI10
 13: DI11
 14: DI12
 15: DI13
 16: DI14
 17: DI15
 18: DI16
 Others: B connector
 Description
```

C6-35 Pulse width of level-to-pulse conversion module D
Address: 0xC623
Effective mode: -
Min.: 0.00
Unit: s
Max.: 655.35
Default: 0.00
Value Range:
0.00 s to 655.35s
Description
C6-36 Input of floating-point limiting module A
Address: 0xC624 Effective mode: -
Min.: 0
Max.: 8
Default: 0
Value Range:

0: Disabled
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

## Description

C6-37 Upper limit of floating-point limiting module A

Address: 0xC625
Min.: 0
Max.: 8
Default: 0
Value Range:
0 : Inactive
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time
-

C6-38 Lower limit of floating-point limiting module $A$

Address: 0xC626
Min.: $\quad 0$
Max.: 8
Default: 0

0 : Inactive
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

## Description

C6-39 Input of floating-point limiting module B

Address:	$0 \times C 627$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	8	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0: Disabled
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C6-40 Upper limit of floating-point limiting module B
Address: 0xC628
Min.: 0
Max.: 8
Default: 0
ective mode:

Value Range:
0 : Inactive
1: AI1
2: AI2
3: Al3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C6-41 Lower limit of floating-point limiting module B

Address:	$0 \times C 629$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	8	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time
Value Range:			

Value Range:

0 : Inactive
1: Al1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C6-42 Input of floating-point limiting module C

Address: 0xC62A
Min.: 0
Max.: 8
Default: 0
Value Range:
0 : Disabled
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time
-

C6-43 Upper limit of floating-point limiting module C
Address: 0xC62B
Min.: $\quad 0$
Max.: 8
Default: 0
Effective mode: -

Value Range:
0 : Inactive
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

## Description

C6-44 Lower limit of floating-point limiting module C
Address: 0xC62C
Min.: 0
Max.: 8
Default: 0
Value Range:
0 : Inactive
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C6-45 Input of floating-point limiting module $D$
Address: 0xC62D
Effective mode: -
Min.: 0
Max.: 8
Default: 0

Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:
0: Disabled
1: AI1
2: AI2
3: Al3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C6-46 Upper limit of floating-point limiting module D

Address:	$0 x C 62 E$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	8	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:

0 : Inactive
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C6-47 Lower limit of floating-point limiting module D

Address:	$0 \times C 62 F$	Effective mode:
Min.:	0	Unit:
Max.:	8	Data type:
Default:	0	Change:

## Value Range:

0 : Inactive
1: AI1
2: AI2
3: AI3
4: HDI
5: Aim
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

C6-48 Input of fixed-point limiting module E
Address: 0xC630
Effective mode: -
Min.: $\quad 0$
Unit:
Max.: 0
Default: 0
Data type: Ulnt16

Value Range:
0 : Disabled
Others: K connector
Description

C6-49 Upper limit of fixed-point limiting module E
Address: 0xC631 Effective mode: -
Min.: $0 \quad$ Unit: -
Max.: $0 \quad$ Data type: Ulnt16

Default: 0 Change: Changeable at any time
Value Range:
0 : Inactive
Others: K connector
Description
C6-50 Lower limit of fixed-point limiting module E
Address: 0xC632 Effective mode:Unit:
Max.: 0 Data type: Ulnt16Default: 0Change: Changeable at any time
Value Range:
0 : Inactive
Others: K connector
Description
C6-51 Input of fixed-point limiting module $F$

Address:	$0 \times C 633$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	0	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0: Disabled
Others: K connector

## Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
C6-52 Upper limit of fixed-point limiting module $F$
Address: 0xC634

Min.: 0
Max.: 0
Default: 0

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 : Inactive
Others: K connector
Description
C6-53 Lower limit of fixed-point limiting module $F$
Address: 0xC635
Min.: $\quad 0$
Max.: 0
Default: 0

## Value Range:

0 : Inactive
Others: K connector

## Description

C6-54 Input of logic delay module A

Address:	$0 x C 636$	Effective mode:
Min.:	0	Unit:


Max.:	18
Default:	0

Value Range:
0 : Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C6-55 Switch-on delay of logic delay module A
Address: 0xC637 Effective mode:

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C6-56 Switch-off delay of logic delay module A
Address: 0xC638
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

C6-57 Delay time unit of logic delay module $A$
Address: 0xC639

Effective mode:
Min.: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time
Max.: $\quad 12000$

Default: 1
Value Range:
0 : No delay
1: 10 ms
10: 100 ms
100: 1s
1000: 10s
6000: 1 min
12000: 2 min
0 : Added at the background
Description

C6-58 Input of logic delay module B
Address: 0xC63A
Min.: 0
Max.: 18
Default: 0
Value Range:
0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DII0
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

C6-59 Switch-on delay of logic delay module B
Address: 0xC63B
Min.: 0
Max.: 65535
Default: 0
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0 to 65535
Description

C6-60 Switch-off delay of logic delay module B

Address: 0xC63C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C6-61 Delay time unit of logic delay module $B$
Address: 0xC63D
Min.: 0
Max.: 12000
Default: 1
Value Range:
0 : No delay
1: 10 ms
10: 100 ms
100: 1s
1000: 10s
6000: 1 min
12000: 2 min
0 : Added at the background

## Description

## C6-62 Input of logic delay module C

Address: 0xC63E
Min.: 0
Max.: 18
Default: 0

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:

0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C6-63 Switch-on delay of logic delay module C
Address: 0xC63F

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C6-64 Switch-off delay of logic delay module C
Address: 0xC640

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C6-65 Delay time unit of logic delay module C
Address: 0xC641
Min.: 0
Max.: 12000
Default: 1

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:

0 : No delay
1: 10 ms
10: 100 ms
100: 1s
1000: 10s
6000: 1 min
12000: 2 min
0 : Added at the background
Description

C6-66 Input of logic delay module D
Address: 0xC642
Min.: 0
Max.: 18
Default: 0
Value Range:
0 : Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DII0
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C6-67 Switch-on delay of logic delay module D
Address: 0xC643
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

## Description

C6-68 Switch-off delay of logic delay module D

Address: 0xC644
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C6-69 Delay time unit of logic delay module D
Address: 0xC645
Min.: 0
Max.: 12000
Default: 1
Value Range:
0 : No delay
1: 10 ms
10: 100 ms
100: 1s
1000: 10s
6000: 1 min
12000: 2 min
0 : Added at the background

## Description

## C6-70 Input of logic delay module E

Address: 0xC646
Min.: 0
Max.: 18
Default: 0

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C6-71 Switch-on delay of logic delay module E
Address: 0xC647 Effective mode: -
Min.: $0 \quad$ Unit:

Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C6-72 Switch-off delay of logic delay module E
Address: 0xC648

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C6-73 Delay time unit of logic delay module E
Address: 0xC649

Min.: 0
Max.: 12000
Default: 1

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

0 : No delay
1: 10 ms
10: 100 ms
100: 1 s
1000: 10s
6000: 1 min
12000: 2 min
0 : Added at the background
Description

C6-74 Input of logic delay module $F$
Address: 0xC64A
Min.: 0
Max.: 18
Default: 0
Value Range:
0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DII3
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C6-75 Switch-on delay of logic delay module F
Address: 0xC64B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Description

C6-76 Switch-off delay of logic delay module $F$

Address: 0xC64C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C6-77 Delay time unit of logic delay module F
Address: 0xC64D
Min.: 0
Max.: 12000
Default: 1
Value Range:
0 : No delay
1: 10 ms
10: 100 ms
100: 1s
1000: 10s
6000: 1 min
12000: 2 min
0 : Added at the background

## Description

## C6-78 Input of logic delay module G

Address: 0xC64E
Min.: 0
Max.: 18
Default: 0

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0: Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C6-79 Switch-on delay of logic delay module G
Address: 0xC64
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C6-80 Switch-off delay of logic delay module G
Address: 0xC650
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C6-81 Delay time unit of logic delay module G
Address: 0xC651

Min.: 0
Max.: 12000
Default: 1

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

0 : No delay
1: 10 ms
10: 100 ms
100: 1s
1000: 10s
6000: 1 min
12000: 2 min
0 : Added at the background
Description

C6-82 Input of logic delay module $\mathbf{H}$
Address: 0xC652
Min.: 0
Max.: 18
Default: 0
Value Range:
0 : Disabled
1: Logic 1
2: Logic 0
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DII0
13: DI11
14: DI12
15: DII3
16: DI14
17: DI15
18: DI16
Others: B connector
Description

C6-83 Switch-on delay of logic delay module H
Address: 0xC653
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

## Description

C6-84 Switch-off delay of logic delay module H

Address: 0xC654
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C6-85 Delay time unit of logic delay module $\mathbf{H}$
Address: 0xC655
Min.: 0
Max.: 12000
Default: 1
Value Range:
0 : No delay
1: 10 ms
10: 100 ms
100: 1s
1000: 10s
6000: 1 min
12000: 2 min
0 : Added at the background

## Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

### 4.47 C7: Multi-point Curve Parameters

## C7-00 Input of multi-point curve module A

Address: 0xC700 Effective mode: -

Min.: 0
Max.: 0
Default: 0
Value Range:
0: Disabled
Others: F connector
Description

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

C7-01 Setpoint X1 of multi-point curve module A

Address:	$0 x C 701$	Effective mode:	-
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default:	0.0	Change:	Changeable at any time

Value Range:

## -600\% to +600.0\%

## Description

C7-02 Setpoint X2 of multi-point curve module A

Address:	$0 \times C 702$	Effective mode:	-
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
-600\% to $+600.0 \%$			
Description			

C7-03 Setpoint X3 of multi-point curve module $A$

Address:	$0 x C 703$
Min.:	-600
Max.:	600.0
Default:	0.0

## Value Range:

-600\% to +600.0\%

## Description

C7-04 Setpoint X4 of multi-point curve module A

Address:	$0 x C 704$
Min.:	-600
Max.:	600.0
Default:	0.0

## Value Range:

-600\% to +600.0\%

## Description

C7-05 Setpoint X5 of multi-point curve module A

Address:	0xC705	Effective mode:	-
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
-600\% to +600.0\%			
Description			

## C7-06 Setpoint X6 of multi-point curve module A

Address:	$0 \times C 706$	Effective mode:	-
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default:	0.0	Change:	Changeable at any time

## Value Range:

$-600 \%$ to $+600.0 \%$

## Description

C7-07 Setpoint X7 of multi-point curve module $A$
Address: 0xC707
Min.: $\quad-600$
Max.: 600.0
Default: 0.0
Value Range:
-600\% to +600.0\%
Description
C7-08 Setpoint X8 of multi-point curve module A

Address:	$0 \times C 708$	Effective mode:	-
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default:	0.0	Change:	Changeable at any time

Value Range:
-600\% to +600.0\%

## Description

C7-09 Setpoint X9 of multi-point curve module $A$

Address:	$0 x C 70$
Min.:	-600

Max.: 600.0
Default: 0.0

## Value Range:

-600\% to +600.0\%

## Description <br> Description

## C7-10 Setpoint X10 of multi-point curve module A

Address:	$0 x C 70 A$
Min.:	-600

Max.: 600.0
Default: 0.0
Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

Change: Changeable at any time
Address: 0xC709
路

C7-12 Setpoint Y2 of multi-point curve module A

Address:	$0 x C 70 C$	Effective mode:	-
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
-600\% to +600.0\%			
Description			

C7-13 Setpoint Y3 of multi-point curve module A

Address:	$0 x C 70 D$	Effective mode: -	
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
-600\% to +600.0\%			
Description			

C7-14 Setpoint Y4 of multi-point curve module $A$

Address:	$0 x C 70 E$
Min.:	-600
Max.:	600.0
Default:	0.0

Value Range:
-600\% to +600.0\%
Description

C7-15 Setpoint Y5 of multi-point curve module $A$

Address:	$0 x C 70 F$
Min.:	-600
Max.:	600.0
Default:	0.0

## Value Range:

-600\% to +600.0\%

## Description

C7-16 Setpoint Y6 of multi-point curve module $A$

Address:	$0 x C 710$
Min.:	-600
Max.:	600.0
Default:	0.0

Effective mode:
Unit: $\%$
Data type: Int16
Change: Changeable at any time

## Value Range:

-600\% to +600.0\%

## Description

\%
Int16
Changeable at any time

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

Change:
-

C7-17 Setpoint Y7 of multi-point curve module $A$
Address: 0xC711
Effective mode:

Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
-600\% to +600.0\%			
Description			

C7-18 Setpoint Y8 of multi-point curve module $A$

Address:	$0 x C 712$	Effective mode:	-
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
$-600 \%$ to $+600.0 \%$			
Description			

C7-19 Setpoint Y9 of multi-point curve module $A$
Address: 0xC713
Min.: -600
Max.: 600.0
Default: 0.0
Value Range:
-600\% to +600.0\%
Description

C7-20 Setpoint Y10 of multi-point curve module A

Address:	$0 x C 714$
Min.:	-600
Max.:	600.0
Default:	0.0

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time
Value Range:
-600\% to +600.0\%
Description

C7-21 Input of multi-point curve module B

Address:	$0 \times C 715$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	0	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

## Value Range:

0: Disabled
Others: F connector
Description

C7-22 Setpoint X1 of multi-point curve module B

Address:	$0 \times C 716$	Effective mode:	
Min.:	-600	Unit:	$\%$


Max.: 600.0	Data type:	Int16
Default: 0.0	Change:	Changeable at any time
Value Range:		
$-600 \%$ to $+600.0 \%$		
Description		

C7-23 Setpoint X2 of multi-point curve module B

Address: 0xC717
Min.: -600
Max.: $\quad 600.0$
Default: 0.0
Value Range:
-600\% to +600.0\%
Description

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: \%
Data type: Int16
Change:
Changeable at any time

Value Range:
-600\% to +600.0\%
Description

C7-25 Setpoint X4 of multi-point curve module B

Address:	$0 \times C 719$
Min.:	-600
Max.:	600.0
Default:	0.0

## Value Range:

$-600 \%$ to $+600.0 \%$
Description

C7-26 Setpoint X5 of multi-point curve module B

Address:	$0 x C 71 A$
Min.:	-600
Max.:	600.0
Default:	0.0

## Value Range:

-600\% to +600.0\%

## Description

C7-27 Setpoint X6 of multi-point curve module B

Address:	$0 x C 71 B$
Min.:	-600
Max.:	600.0
Default:	0.0

Effective mode: -
Unit: $\%$
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: $\%$
Data type: Int16
Change:
Changeable at any time

Description

Effective mode: -
Unit: \%
Data type: Int16
Change: Changeable at any time

## Value Range:

-600\% to +600.0\%

## Description

C7-28 Setpoint X7 of multi-point curve module B

Address:	$0 x C 71 C$	Effective mode:	-
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
-600\% to +600.0\%			
Description			

C7-29 Setpoint X8 of multi-point curve module B

Address:	$0 x C 71 D$
Min.:	-600
Max.:	600.0
Default:	0.0

Value Range:
-600\% to +600.0\%
Description

C7-30 Setpoint X9 of multi-point curve module B

Address:	$0 \times C 71 E$
Min.:	-600
Max.:	600.0
Default:	0.0

## Value Range:

-600\% to +600.0\%

## Description

C7-31 Setpoint X10 of multi-point curve module B

Address:	$0 x C 71$
Min.:	-600

Max.: $\quad 600.0$
Default: 0.0
Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

Value Range:
-600\% to +600.0\%
Description

Value Range:
$-600 \%$ to $+600.0 \%$

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

C7-32 Setpoint Y1 of multi-point curve module B
Address: 0xC720
Min.: -600
Max.: $\quad 600.0$
Default: 0.0

Address:	$0 x C 720$
Min.:	-600
Max.:	600.0
Default:	0.0

Effective mode:
Unit: $\%$
Data type: Int16
Change: Changeable at any time

## Description

C7-33 Setpoint Y2 of multi-point curve module B

Address: 0xC721
Min.: -600
Max.: $\quad 600.0$
Default: 0.0
Value Range:
-600\% to +600.0\%
Description

Effective mode: -
Unit: \%
Data type: Int16
Change: Changeable at any time

C7-34 Setpoint Y3 of multi-point curve module B

Address:	$0 \times C 722$
Min.:	-600
Max.:	600.0
Default:	0.0

Effective mode:
Unit: $\%$
Data type: Int16
Change: Changeable at any time

## Value Range:

-600\% to +600.0\%

## Description

C7-35 Setpoint Y4 of multi-point curve module B

Address:	$0 x C 723$
Min.:	-600
Max.:	600.0
Default:	0.0

## Value Range:

-600\% to +600.0\%

## Description

## C7-36 Setpoint Y5 of multi-point curve module B

Address:	$0 x C 724$
Min.:	-600
Max.:	600.0
Default:	0.0

Effective mode: -
Unit: $\%$
Data type: Int16
Change: Changeable at any time
Value Range:
-600\% to +600.0\%
Description

C7-37 Setpoint Y6 of multi-point curve module B

Address:	$0 \times C 725$	Effective mode:	-
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default:	0.0	Change:	Changeable at any time

Value Range:
$-600 \%$ to $+600.0 \%$
Description

Effective mode: -
Unit: \%
Data type: Int16
Change: Changeable at any time

Changeable at any time

C7-38 Setpoint Y7 of multi-point curve module B

Address:	$0 x C 726$	Effective mode: -	
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
-600\% to +600.0\%			
Description			

C7-39 Setpoint Y8 of multi-point curve module B

Address:	$0 x C 727$	Effective mode:	-
Min.:	-600	Unit:	$\%$
Max.:	600.0	Data type:	Int16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
-600\% to +600.0\%			
Description			

C7-40 $\quad$ Setpoint $Y 9$ of multi-point curve module $B$

Address:	$0 \times C 728$
Min.:	-600
Max.:	600.0
Default:	0.0

Value Range:
-600\% to +600.0\%
Description

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

C7-41 Setpoint Y10 of multi-point curve module B
Address: 0xC729

Min.: -600
Max.: $\quad 600.0$
Default: 0.0
Value Range:
-600\% to +600.0\%
Description

### 4.48 C8: Constant Parameters

C8-00 Constant setpoint 1
Address: 0xC800
Min.: $\quad-300$
Max.: $\quad 300.00$
Default: 0.00
Value Range:
$-300 \%$ to $+300.00 \%$

Effective mode:
Unit: \%
Data type: Int16
Change:
Changeable at any time
-

## Description

C8-01 Constant setpoint 2
Address: 0xC801
Min.: -300
Max.: 300.00
Default: 100.00
Value Range:
-300\% to +300.00\%
Description
C8-02 Constant setpoint 3
Address: 0xC802
Min.: $\quad-300$
Max.: $\quad 300.00$
Default: -100
Value Range:
-300\% to +300.00\%
Description

## C8-03 Constant setpoint 4

Address: 0xC803
Min.: -300
Max.: $\quad 300.00$
Default: 200.00

## Value Range:

-300\% to +300.00\%

## Description

## C8-04 Constant setpoint 5

Address: 0xC804
Min.: $\quad-300$
Max.: 300.00
Default: -200
Value Range:
-300\% to +300.00\%
Description

## C8-05 Constant setpoint 6

Address: 0xC805
Min.: -3000
Max.: 3000.0
Default: 0.0

## Value Range: <br> -3000\% to +3000.0\% <br> Description

Effective mode: -
Unit: \%
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: $\%$
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time
C8-06 Constant setpoint 7Address: 0xC806
Min: -3000Max.: 3000.0Default: 0.0
Value Range:-3000\% to +3000.0\%
Description

Effective mode:
Unit: \%Data type: Int16Change: Changeable at any time
C8-07 Constant setpoint 8Address: 0xC807Min.: -3000Max.: 3000.0Default: 0.0
Value Range:-3000\% to +3000.0\%
Description
C8-08 Constant setpoint 9
Address: 0xC808Min.: -3000Max.: 3000.0
Default: ..... 0.0
Value Range:-3000\% to +3000.0\%
Description
C8-09 Constant setpoint 10
Address: 0xC809
Min.: -3000
Max. ..... 3000.0
Default: ..... 0.0
Value Range:
-3000\% to +3000.0\%
Description
C8-10 Constant setpoint 11

Address:	$0 x C 80 A$
Min.:	-3000
Max.:	3000.0
Default:	0.0

Value Range:-3000\% to +3000.0\%
C8-11Address: 0xC80B

Effective mode: -	
Unit:	$\%$
Data type:	Int16
Change:	Changeable at any time


Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Changeable at any time

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time
Description

Destiption

Min.:	-3000	Unit:	$\%$
Max.:	3000.0	Data type:	Int16
Default: 0.0	Change:	Changeable at any time	
Value Range:			
$-3000 \%$ to $+3000.0 \%$			
Description			

C8-12 Constant setpoint 13
Address: 0xC80C
Min.: -3000
Max.: 3000.0
Default: 0.0
Value Range:
-3000\% to +3000.0\%
Description

C8-13 Constant setpoint 14
Address: 0xC80D
Min.: -3000
Max.: $\quad 3000.0$
Default: 0.0
Value Range:
-3000\% to +3000.0\%
Description

C8-14 Constant setpoint 15
Address: 0xC80E
Min.: -3000
Max.: $\quad 3000.0$
Default: 0.0
Value Range:
-3000\% to +3000.0\%
Description

C8-15 Constant setpoint 16

Address:	$0 x C 80 F$
Min.:	-3000
Max.:	3000.0
Default:	0.0

Value Range:
-3000\% to +3000.0\%

## Description

C8-16 Constant setpoint 17
Address: 0xC810
Min.: -3000
Max.: 3000.0

Effective mode:	-
Unit:	$\%$
Data type:	Int16

## Default: 0.0

Value Range:
-3000\% to +3000.0\%
Description

C8-17 Constant setpoint 18
Address: 0xC811
Min.: -3000
Max.: 3000.0
Default: 0.0
Value Range:
-3000\% to +3000.0\%
Description

C8-18 Constant setpoint 19
Address: 0xC812
Min.: -3000
Max.: 3000.0
Default: 0.0
Value Range:
-3000\% to +3000.0\%

## Description

## C8-19 Constant setpoint 20

Address: 0xC813

Min.: -3000
Max.: 3000.0
Default: 0.0
Value Range:
-3000\% to +3000.0\%
Description

C8-20 Constant setpoint 21
Address: 0xC814
Min.: $\quad-3000$
Max.: $\quad 3000.0$
Default: 0.0
Value Range:
-3000\% to +3000.0\%
Description

C8-21 Constant setpoint 22
Address: 0xC815
Min.: -300
Max.: $\quad 300.00$
Default: 0.00
Value Range:

Change: Changeable at any time

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit: $\%$
Data type: Int16
Change: Changeable at any time

## -300\% to +300.00\%

## Description

C8-22 Constant setpoint 23
Address: 0xC816

Min.: $\quad-300$
Max.: 300.00
Default: 100.00
Value Range:
-300\% to +300.00\%
Description

C8-23 Constant setpoint 24
Address: 0xC817
Min.: -300
Max.: $\quad 300.00$
Default: -100
Value Range:
-300\% to +300.00\%
Description

C8-24 Constant setpoint 25

Address:	$0 x C 818$
Min.:	-300
Max.:	300.00
Default:	200.00

## Value Range:

$-300 \%$ to $+300.00 \%$

## Description

C8-25 Constant setpoint 26
Address: 0xC819
Min.: -300
Max.: $\quad 300.00$
Default: -200
Value Range:
-300\% to +300.00\%

## Description

C8-26 Constant setpoint 27
Address: 0xC81A
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

```
Effective mode: -
Unit: \(\%\)
Data type: Int16
Change: Changeable at any time
```

Effective mode:
Unit: $\%$
Data type: Int16
Change: Changeable at any time
Effective mode:
Unit: \%
Data type: Int16
Change: Changeable at any time
Effective mode:
Unit: $\%$
Data type: Int16
Change: Changeable at any time
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Description

C8-27 Constant setpoint 28
Address: 0xC81B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C8-28 Constant setpoint 29
Address: 0xC81C
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

C8-29 Constant setpoint 30
Address: 0xC81D

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## C8-30 Constant setpoint 31

Address: 0xC81E
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

C8-31 Constant setpoint 32
Address: 0xC81F
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

C8-32 Constant setpoint 33

Address: 0xC820
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C8-33 Constant setpoint 34
Address: 0xC821
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C8-34 Constant setpoint 35
Address: 0xC822
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C8-35 Constant setpoint 36
Address: 0xC823
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C8-36 Constant setpoint 37
Address: 0xC824
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Changeable at any time

Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

C8-37 Constant setpoint 38
Address: 0xC825

Effective mode:

Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535
Description

## C8-38 Constant setpoint 39

Address: 0xC826
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C8-39 Constant setpoint 40
Address: 0xC827
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C8-40 Constant setpoint 41

Address:	$0 x C 828$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

C8-41 Constant setpoint 42
Address: 0xC829
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time


	Value Range:		
	0x0 to 0xFFFF		
	Description		
	Same as C9-00		
C9-05	HIWORD of 16-bit data RAM address 3		
	Address: 0xC905	Effective mode:	-
	Min.: $0 \times 0$	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: 0x0	Change:	Changeable at any time
	Value Range:		
	0x0 to 0xFFFF		
	Description		
	Same as C9-01		
C9-06	LOWORD of 16-bit data RAM address 4		
	Address: 0xC906	Effective mode:	-
	Min.: 0x0	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: 0x0	Change:	Changeable at any time
	Value Range:		
	0x0 to 0xFFFF		
	Description		
	Same as C9-00		
C9-07	HIWORD of 16-bit data RAM address 4		
	Address: 0xC907	Effective mode:	-
	Min.: $0 \times 0$	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: $0 \times 0$	Change:	Changeable at any time
	Value Range:		
	0x0 to 0xFFFF		
	Description		
	Same as C9-01		
C9-08	LOWORD of 16-bit data RAM address 5		
	Address: 0xC908	Effective mode:	-
	Min.: $0 \times 0$	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: $0 \times 0$	Change:	Changeable at any time
	Value Range:		
	0x0 to 0xFFFF		
	Description		
	Same as C9-00		
C9-09	HIWORD of 16-bit data RAM address 5		
	Address: 0xC909	Effective mode:	-
	Min.: 0x0	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: $0 \times 0$	Change:	Changeable at any time
	Value Range:		
	0x0 to 0xFFFF		

## C9-10 32-bit data type selection 1

Address:	$0 \times C 90 A$	Effective mode:	
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 to 1
Description
This parameter defines the type of data to which the 32-bit address is pointed. 0 indicates u32 data, and 1 indicates f32 data.

C9-11 32-bit data amplification coefficient 1

Address:	$0 \times C 90 B$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	10000	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

## Value Range:

0 to 10000

## Description

This parameter defines the data amplification coefficient when the data type is $\mathfrak{f} 32$. The data is amplified and then output.

C9-12 LOWORD of 32-bit data RAM address 1

Address:	$0 \times C 90 C$	Effective mode:	-
Min.:	$0 \times 0$	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	$0 \times 0$	Change:	Changeable at any time

Value Range:
0x0 to 0xFFFF

## Description

This parameter defines the low-order 16 bits of the 32-bit address. You can find the corresponding u32 data output by using this address.

## C9-13 HIWORD of 32-bit data RAM address 1

Address: 0xC90D
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
$0 \times 0$ to 0xFFFF

## Description

This parameter defines the high-order 16 bits of the 32-bit address. You can find the corresponding u32 data output by using this address.

## C9-14 32-bit data type selection 2

Address:	$0 x C 90 E$	Effective mode:	
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16

Default: 0 Change: Changeable at any time
Value Range:
0 to 1
Description
Same as C9-10
C9-15 32-bit data amplification coefficient 2Address: 0xC90F
Min.: 0
Max.: 10000
Default: ..... 0
Value Range:
0 to 10000
Description
Same as C9-11
C9-16 LOWORD of 32-bit data RAM address 2
Address: 0xC910
Min.: 0x0
Max. ..... 0xFFFF
Default: ..... $0 \times 0$
Value Range:
0x0 to 0xFFFF
Description
Same as C9-12
C9-17 HIWORD of 32-bit data RAM address 2
Address: 0xC911
Min.: 0x0
Max.: 0xFFFF
Default: ..... $0 \times 0$
Value Range:
0x0 to 0xFFFF
Description
Same as C9-13
C9-18 32-bit data type selection 3
Address: 0xC912
Min.: 0
Max.: 1 ..... 1
Default
Value Range:
0 to 1
Description
Same as C9-10
C9-19 32-bit data amplification coefficient 3

Address:	$0 x C 913$
Min.:	0
Max.:	10000
Default:	0

Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```Effective mode:Unit:Data type: Ulnt16Change: Changeable at any time
```

```Effective mode:Unit:Data type: Ulnt16Change: Changeable at any time
```

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

	0 to 10000			
	Description			
	Same as C9-11			
C9-20	LOWORD of 32-bit data RAM address 3			
	Address:	0xC914	Effective mode:	-
	Min.:	0x0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value Range:			
	0x0 to 0xFFFF			
	Description			
	Same as C9-12			
C9-21	HIWORD of 32-bit data RAM address 3			
	Address:	0xC915	Effective mode:	-
	Min.:	0x0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value Range:			
	0x0 to 0xFFFF			
	Description			
	Same as C9-13			
C9-22	32-bit data type selection 4			
	Address:	0xC916	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	1	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0 to 1			
	Description			
	Same as C9-10			
C9-23	32-bit data amplification coefficient 4			
	Address:	0xC917	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	10000	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0 to 10000			
	Description			
	Same as C9-11			
C9-24	LOWORD of 32-bit data RAM address 4			
	Address:	0xC918	Effective mode:	-
	Min.:	0x0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Changeable at any time
	Value Range:			
	0x0 to 0xFFFF			


	Description   Same as C9-12		
C9-25	HIWORD of 32-bit data RAM address 4		
	Address: 0xC919	Effective mode:	-
	Min.: $0 \times 0$	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: 0x0	Change:	Changeable at any time
	Value Range:		
	0x0 to 0xFFFF		
	Description		
	Same as C9-13		
C9-26	32-bit data type selection 5		
	Address: 0xC91A	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 1	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0 to 1		
	Description		
	Same as C9-10		
C9-27	32-bit data amplification coefficient 5		
	Address: 0xC91B	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 10000	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0 to 10000		
	Description		
	Same as C9-11		
C9-28	LOWORD of 32-bit data RAM address 5		
	Address: 0xC91C	Effective mode:	-
	Min.: $0 \times 0$	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: 0x0	Change:	Changeable at any time
	Value Range:		
	0x0 to 0xFFFF		
	Description		
	Same as C9-12		
C9-29	HIWORD of 32-bit data RAM address 5		
	Address: 0xC91D	Effective mode:	-
	Min.: $0 \times 0$	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: 0x0	Change:	Changeable at any time
	Value Range:		
	0x0 to 0xFFFF		
	Description		
	Same as C9-13		

```
C9-30 Internal parameter monitoring input 1
 Address: 0xC91E Effective mode:
 Min.: 0
 Max.: }9
 Default: 0
 Value Range:
 0 to 97
 Description
C9-31 Internal parameter monitoring input 2
 Address: 0xC91F
 Min.: 0
 Max.: 97
 Default: 0
 Value Range:
 0 to 97
 Description
C9-32 Internal parameter monitoring input 3
Address: 0xC920
Min.: 0
Max.: 97
Default: 0
```


## Value Range:

```
0 to 97
```


## Description

```
C9-33 Internal parameter monitoring input 4
Address: 0xC921
Min.: \(\quad 0\)
Max.: \(\quad 97\)
Default: 0
```


## Value Range:

```
0 to 97
Description
C9-34 Internal parameter monitoring input 5
Address: 0xC922
Min.: 0
Max.: 97
Default: 0
Value Range:
0 to 97
Description
C9-35 Internal parameter monitoring input 6
Address: 0xC923
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Min.: 0	Unit:	-	
Max.:	97	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
0 to 97			
Description			

C9-36 Internal parameter monitoring input 7

Address: 0xC924
Min.: 0
Max.: 97
Default: 0
Value Range:
0 to 97
Description

C9-37 Internal parameter monitoring input 8
Address: 0xC925

Min.: 0
Max.: 97
Default: 0
Value Range:
0 to 97
Description

C9-40 Variable connector value viewing input 1
Address: 0xC928

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
C9-41 Variable connector value viewing input 2

Address: 0xC929
Min.: 0
Max.: 65535
Default: 0
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
C9-42 Variable connector value viewing input 3
Address: 0xC92A
Min.: 0
Max.: 65535
Effective mode: -
Unit:
Data type: Ulnt16

Default: 0
Value Range:
0 to 65535
Description

C9-43 Variable connector value viewing input 4
Address: 0xC92B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C9-44 Variable connector value viewing input 5
Address: 0xC92C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

C9-45 Variable connector value viewing input 6

Address:	$0 x C 92 D$
Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535
Description

C9-46 Variable connector value viewing input 7
Address: $0 x C 92 E$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## Description

Description

Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

C9-47 Variable connector value viewing input 8

Address: 0xC92F

Min.: 0
Max.: 65535
Default: 0
Value Range:

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

## 0 to 65535 <br> Description

C9-50 Monitoring variable 0

Address:	$0 \times C 932$	Effective mode:	
Min.:	-32768	Unit:	-
Max.:	32767	Data type:	Int16
Default:	0	Change:	Unchangeable

Value Range:
-32768 to +32767
Description

C9-51 Monitoring variable 1

Address:	$0 x C 933$
Min.:	-32768
Max.:	32767
Default:	0

## Value Range:

-32768 to +32767

## Description

## C9-52 Monitoring variable 2

Address:	$0 x C 934$
Min.:	-32768
Max.:	32767
Default:	0

## Value Range:

-32768 to +32767

## Description

## C9-53 Monitoring variable 3

Address: 0xC935
Min.: $\quad-32768$
Max.: 32767
Default: 0
Value Range:
-32768 to +32767
Description

C9-54 Monitoring variable 4
Address: 0xC936
Min.: $\quad-32768$
Max.: 32767
Default: 0
Value Range:
-32768 to +32767

Effective mode:
Unit:
Data type: Int16
Change: Unchangeable

Effective mode:
Unit:
Data type: Int16
Change: Unchangeable

## Description

## C9-55 Monitoring variable 5

Address: 0xC937
Min.: -32768
Max.: 32767
Default: 0
Value Range:
-32768 to +32767
Description

## C9-56 Monitoring variable 6

Address:	$0 x C 938$
Min.:	-32768
Max.:	32767
Default:	0

## Value Range:

-32768 to +32767

## Description

C9-57 Monitoring variable 7
Address: 0xC939
Min.: -32768
Max.: 32767
Default: 0

## Value Range:

-32768 to +32767
Description

C9-58 Monitoring variable 8
Address: 0xC93A
Min.: -32768
Max.: 32767
Default: 0
Value Range:
-32768 to +32767
Description

C9-59 Monitoring variable 9
Address: 0xC93B
Min.: $\quad-32768$
Max.: 32767
Default: 0
Value Range:
-32768 to +32767
Description

Effective mode:
Unit:
Data type: Int16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Int16
Change: Unchangeable

C9-70 Commissioning variable 0

Address:	0xC946	Effective mode:	-
Min.:	-32768	Unit:	-
Max.:	32767	Data type:	Int16
Default: 0	Change:	Changeable at any time	
Value Range:			
-32768 to +32767			
Description			

## C9-71 Commissioning variable 1

Address: 0xC947

Min.: -32768
Max.: 32767
Default: 0
Value Range:
-32768 to +32767
Description

C9-72 Commissioning variable 2

Address:	$0 x C 948$
Min.:	-32768
Max.:	32767
Default:	0

## Value Range:

-32768 to +32767

## Description

## C9-73 Commissioning variable 3

Address:	$0 x C 949$
Min.:	-32768
Max.:	32767
Default:	0

## Value Range:

-32768 to +32767

## Description

## C9-74 Commissioning variable 4

Address:	$0 x$ C94A
Min.:	-32768
Max.:	32767
Default:	0

## Value Range:

-32768 to +32767
Description
Effective mode:
Unit:
Data type: Int16
Change: Changeable at any time

C9-75 Commissioning variable 5
Address: 0xC94B
Effective mode:

Min.:	-32768	Unit:	-
Max.:	32767	Data type:	Int16
Default: 0	Change:	Changeable at any time	
Value Range:			
-32768 to +32767			
Description			

## C9-76 Commissioning variable 6

Address:	0xC94C	Effective mode:	-
Min.:	-32768	Unit:	-
Max.:	32767	Data type:	Int16
Default:	0	Change:	Changeable at any time

Value Range:
-32768 to +32767
Description

C9-77 Commissioning variable 7

Address:	$0 x C 94 D$
Min.:	-32768
Max.:	32767
Default:	0

Effective mode:
Unit:
Data type: Int16
Change:
Changeable at any time

## Value Range:

-32768 to +32767

## Description

## C9-78 Commissioning variable 8

Address:	$0 x C 94 E$
Min.:	-32768
Max.:	32767
Default:	0

## Value Range:

-32768 to +32767

## Description

C9-79 Commissioning variable 9

Address:	$0 x C 94 F$
Min.:	-32768
Max.:	32767
Default:	0

## Value Range:

-32768 to +32767
Description

Effective mode:
Unit:
Data type: Int16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Int16
Change: Changeable at any time


## Description

CA-05 Rated motor speed
Address: 0xCA05
Min.: 1
Max.: 65535
Default: 1460
Value Range:
1 RPM to 65535 RPM
Description
Effective mode: -
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
1 to 200
Description

CA-07 Motor information command word
Address: 0xCA07
Min.: $0 \times 0$
Max.: 0xFFFF
Default: $0 \times 3$
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

## Value Range:

Bit00: Mutual inductance curve
0: Disabled
1: Enabled
Bit01: D- and Q-axis inductance curve
0: Disabled
1: Enabled
Bit02: Rotor resistance online auto-tuning
0 : Disabled
1: Enabled
Bit03: Rotor resistance online auto-tuning method
0 : Amplitude
1: Phase
Bit04: Motor thermal model
0 : Disabled
1: Enabled
Bit05: Temperature source of motor thermal model
0 : Estimated temperature
1: Temperature detected by sensor
Bit06: Torque coefficient calculation of asynchronous motor
0 : Torque formula
1: Current distribution
Bit07: Torque coefficient calculation of synchronous motor
0 : Torque formula
1: Torque matching the rated torque
Bit08: Zero speed friction torque calculation
0 : Torque linearly decreasing to zero
1: Torque to maintain minimum speed
Bit09: Calculation of model parameters based on nameplate parameters
0: Disabled
1: Enabled
Bit10: Confirmation of calculating model parameters based on nameplate parameters
0: Default
1: Confirm
Description

## CA-08 Number of motor pole pairs

Address:	$0 x$ CA08	Effective mode:	
Min.:	0	Unit:	-
Max.:	64	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

## Value Range:

0 to 64
Description

## CA-09 Motor power factor

Address: 0xCA09
Min.: 0.600

Max.: $\quad 1.000$
Default: 0.860

## Value Range:

0.600 to 1.000

Description

## CA-10 Encoder PPR

Address: 0xCA0A
Min.: 1
Max.: 65535
Default: 1024

## Value Range:

1 to 65535
Description

## CA-11 Encoder type

Address: 0xCA0B
Min.: 0
Max.: 3
Default: 0
Value Range:
0 : ABZ incremental encoder
1: 23-bit encoder
2: Resolver
3: External input
Description

CA-12 Speed feedback PG card
Address: 0xCAOC
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Local PG card
1: Extension PG card
Description
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

CA-13 Number of resolver pole pairs
Address: 0xCAOD Effective mode: -
Min.: 1
Max.: 65535
Default: 1
Value Range:
1 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

## Description

CA-15 Speed feedback PG wire breakage detection time
Address: 0xCA0F

Min.: 0.0
Max.: $\quad 10.0$
Default: 0.0
Value Range:
0.0 s to 10.0 s

Description

CA-16 A/B phase sequence of encoder

Address:	$0 x C A 10$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

## Value Range:

0: Forward
1: Reverse
Description

## CA-17 Encoder installation angle

Address:	$0 \times C A 11$	Effective mode:	
Min.:	0.0	Unit:	$\circ$
Max.:	359.9	Data type:	Ulnt16
Default:	0.0	Change:	Changeable only at stop

Value Range:
$0.0^{\circ}$ to $359.9^{\circ}$
Description

## CA-18 Expansion card

Address: 0xCA12
Min.: $\quad 1$
Max.: 2
Default: 1

Effective mode:
Unit: s
Data type: Ulnt16
Change: Changeable only at stop
Changeablent

0: Maintain
1: Attenuate
2: Optimized solution
Description

CA-20 Encoder speed measurement filter time constant

Address:	0xCA14	Effective mode:	S
Min.:	0.000	Unit:	S
Max.:	10.000	Data type:	Ulnt16
Default:	0.004	Change:	Changeable at any time

Value Range:
0.000 s to 10.000 s

Description

CA-21 Encoder wire breakage software detection coefficient

Address:	0xCA15	Effective mode:	-
Min.:	0.000	Unit:	-
Max.:	8.000	Data type:	Ulnt16
Default:	1.000	Change:	Changeable at any time
Value Range:			
0.000 to 8.000			
Description			

## CA-22 Encoder control word

Address: 0xCA16 Effective mode:

Min.: 0
Max.: 65535
Unit:

Default: 0
Value Range:
Bit00: Speed measurement
0 : Disabled
1: Enabled
Bit01: Software detection of wire breakage
0: Disabled
1: Enabled
Bit02: Glitch removal
0 : Disabled
1: Enabled
Bit03: ABZ encoder speed measurement mode
0 : Quadruplicated frequency
1: Single pulse
Description

CA-23 Speed measurement exception count threshold
Address: 0xCA17 Effective mode:
Min.: 1
Unit:
Max.: $\quad 100$

Default: 10
Value Range:
1 to 100
Description

CA-24 Motor gear ratio (numerator)
Address: 0xCA18
Min.: 1
Max.: 65535
Default: 1
Value Range:
1 to 65535
Description

CA-25 Motor gear ratio (denominator)
Address: 0xCA19
Min.: $\quad 1$
Max.: 65535
Default: 1
Value Range:
1 to 65535
Description

CA-26 External input source of encoder
Address: 0xCA1A
Min.: $\quad 0$
Max.: 8
Default: 0
Value Range:
0: 0
1: AI1
2: AI2
3: Al3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description

Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

CA-29 Auto-tuning

Address:	$0 x C A 1 D$
Min.:	0
Max.:	13
Default:	0

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable only at stop

## Value Range:

0: No operation
1: Static auto-tuning on partial parameters of asynchronous motor
2: Dynamic auto-tuning on asynchronous motor
3: Static auto-tuning on all parameters of asynchronous motor
4: Inertia auto-tuning
5: Deadzone auto-tuning
11: With-load auto-tuning on synchronous motor (excluding back EMF)
12: No-load dynamic auto-tuning on synchronous motor
13: Static auto-tuning on all parameters of synchronous motor (excluding zero point angle)

## Description

CA-30 Asynchronous motor stator resistance

Address:	0xCA1E	Effective mode:	
Min.:	0.001	Unit:	$\Omega$
Max.:	65.535	Data type:	Ulnt16
Default:	1.204	Change:	Changeable only at stop

Value Range:
$0.001 \Omega$ to $65.535 \Omega$
Description

## CA-31 Asynchronous motor rotor resistance

Address:	$0 \times C A 1 F$	Effective mode:	-
Min.:	0.001	Unit:	$\Omega$
Max.:	65.535	Data type:	Ulnt16
Default: 0.908	Change:	Changeable only at stop	
Value Range:			
$0.001 \Omega$ to $65.535 \Omega$			
Description			

CA-32 Asynchronous motor leakage inductance

Address:	$0 x C A 20$
Min.:	0.01
Max.:	655.35
Default:	5.28

Effective mode: -
Unit: $\quad \mathrm{mH}$
Data type: Ulnt16
Change: Changeable only at stop

## Value Range:

0.01 mH to 655.35 mH

## Description

CA-33 Asynchronous motor mutual inductance

Address:	$0 \times C A 21$	Effective mode: -	
Min.:	0.1	Unit:	mH
Max.:	6553.5	Data type:	Ulnt16
Default:	156.8	Change:	Changeable only at stop

## Value Range:

0.1 mH to 6553.5 mH

```
Description
CA-34 Asynchronous motor no-load current
Address: 0xCA22
Min.: }0.0
Max.: CA-03
Default: 4.20
Value Range:
0.01 A to CA-03
Description
CA-35 Synchronous motor stator resistance
Address: 0xCA23
Min.: 0.001
Max.: 65.535
Default: 1.204
```


## Value Range:

```
\(0.001 \Omega\) to \(65.535 \Omega\)
```


## Description

```
CA-36 Synchronous motor D axis inductance
\begin{tabular}{ll}
Address: & \(0 x C A 24\) \\
Min.: & 0.01 \\
Max.: & 655.35 \\
Default: & 5.28
\end{tabular}
```


## Value Range:

```
0.01 mH to 655.35 mH
```


## Description

```
CA-37 Synchronous motor Q axis inductance
Address: 0xCA25
Min.: 0.01
Max.: \(\quad 655.35\)
Default: 5.28
Value Range:
0.01 mH to 655.35 mH
```


## Description

```
CA-39 Synchronous motor back EMF coefficient
\begin{tabular}{ll}
Address: & \(0 x C A 27\) \\
Min.: & 0.0 \\
Max.: & 6553.5 \\
Default: & 300.0
\end{tabular}
Value Range:
0.0 V to 6553.5 V
Description
```

Effective mode:
Unit: A
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: $\quad \Omega$

Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: $\quad \mathrm{mH}$
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: $\quad \mathrm{mH}$
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:	-
Unit:	V
Data type:	Ulnt16
Change:	Changeable only at stop

Effective mode:

Change: Changeable only at stop

CA-40	Stator leakage inductance		
	Address: 0xCA28	Effective mode:	
	Min.: 0.000	Unit:	mH
	Max.: 65.535	Data type:	Ulnt16
	Default: 6.540	Change:	Changeable only at stop
	Value Range:		
	0.000 mH to 65.535 mH		
	Description		
	-		
CA-41	Electromechanical time constant		
	Address: 0xCA29	Effective mode:	-
	Min.: 1	Unit:	ms
	Max.: 65535	Data type:	Ulnt16
	Default: 100	Change:	Unchangeable
	Value Range:		
	1 ms to 65535 ms		
	Description		
CA-42	Inertia ratio		
	Address: 0xCA2A	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: 6553.5	Data type:	Ulnt16
	Default: 120.0	Change:	Changeable only at stop
	Value Range:		
	0.0\% to 6553.5\%		
	Description		
CA-43	Friction torque		
	Address: 0xCA2B	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: 6553.5	Data type:	Ulnt16
	Default: 2.0	Change:	Changeable only at stop
	Value Range:		
	0.0\% to 6553.5\%		
	Description		

CA-44 Excitation current coefficient 1 of mutual inductance curve (rated)

Address:	$0 x C A 2 C$
Min.:	5.0
Max.:	100.0
Default:	50.0

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop

## Value Range:

5.0\% to 100.0\%

Description

CA-45 Excitation current coefficient 2 of mutual inductance curve (rated)
Address: 0xCA2D
Effective mode:

	Min.:	5.0	Unit:	\%
	Max.:	100.0	Data type:	Ulnt16
	Default:	75.0	Change:	Changeable only at stop
	Value Ra			
	5.0\% to 1	.0\%		
	Descript			
	-			
CA-46	Excitatio	current co	ductance curve	
	Address:	0xCA2E	Effective mode:	-
	Min.:	100.0	Unit:	\%
	Max.:	800.0	Data type:	Ulnt16
	Default:	150.0	Change:	Changeable only at stop
	Value Ra			
	100.0\% to	00.0\%		
	Descript			
CA-47	Excitatio	current co	ductance curve	
	Address:	0xCA2F	Effective mode:	-
	Min.:	100.0	Unit:	\%
	Max.:	800.0	Data type:	Ulnt16
	Default:	210.0	Change:	Changeable only at stop
	Value Ra	e:		
	100.0\% to	00.0\%		
	Descript			
CA-48	Flux coe	cient 1 of	e (rated)	
	Address:	0xCA30	Effective mode:	-
	Min.:	10.0	Unit:	\%
	Max.:	100.0	Data type:	Ulnt16
	Default:	50.0	Change:	Changeable only at stop
	Value Ra			
	10.0\% to	00.0\%		
	Descript			
	-			
CA-49	Flux coe	cient 2 of	e (rated)	
	Address:	0xCA31	Effective mode:	-
	Min.:	10.0	Unit:	\%
	Max.:	100.0	Data type:	Ulnt16
	Default:	85.0	Change:	Changeable only at stop
	Value Ra			
	10.0\% to	0.0\%		
	Descript			
CA-50	Flux coe	cient 3 of		
	Address:	0xCA32	Effective mode:	-
	Min.:	100.0	Unit:	\%
	Max.:	300.0	Data type:	Ulnt16


Value Range:

## 0 RPM to 30000 RPM

## Description

CA-56 Speed point 5 of friction curve
Address: 0xCA38
Min.: 0
Max.: 30000
Default: 150
Value Range:
0 RPM to 30000 RPM
Description

CA-57 Speed point 6 of friction curve
Address: 0xCA39
Min.: 0
Max.: 30000
Default: 300
Value Range:
0 RPM to 30000 RPM
Description

CA-58 Speed point 7 of friction curve

Address:	$0 x C A 3 A$
Min.:	0
Max.:	30000
Default:	600

Value Range:
0 RPM to 30000 RPM
Description

## CA-59 Speed point 8 of friction curve

Address: 0xCA3B

Min.: 0
Max.: 30000
Default: 1200
Value Range:
0 RPM to 30000 RPM

## Description

## CA-60 Speed point 9 of friction curve

Address: 0xCA3C
Min.: $\quad 0$
Max.: 30000
Default: 1500
Value Range:
0 RPM to 30000 RPM

Effective mode: -
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop

## Description

CA-61 Speed point 10 of friction curve
Address: 0xCA3D
Min.: 0
Max.: 30000
Default: 3000
Value Range:
0 RPM to 30000 RPM
Description

CA-62 Torque point 1 of friction curve
Address: 0xCA3E
Min.: $\quad-320$
Max.: $\quad 320.00$
Default: 0.00

## Value Range:

$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$
Description

CA-63 Torque point 2 of friction curve

Address:	$0 x C A 3 F$
Min.:	-320
Max.:	320.00
Default:	0.00

Value Range:
-320 N•m to $+320 \mathrm{~N} \cdot \mathrm{~m}$
Description

CA-64 Torque point 3 of friction curve
Address: $0 x C A 40$
Min.: $\quad-320$
Max.: $\quad 320.00$
Default: 0.00

## Value Range:

$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$

## Description

## CA-65 Torque point 4 of friction curve

Address:	$0 x C A 41$
Min.:	-320
Max.:	320.00
Default:	0.00

## Value Range:

$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$
Description

```
Effective mode: -
Unit: RPM
Data type: Ulnt16
Change: Changeable only at stop
```

Effective mode:
Unit: $\quad N \cdot m$

Data type: Int16
Change: Changeable only at stop

Effective mode: -
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$

Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

## CA-66 Torque point 5 of friction curve

Address: $0 x C A 42$

Min.: $\quad-320$
Max.: 320.00
Default: 0.00
Value Range:
-320 N•m to +320 N•m
Description

CA-67 Torque point 6 of friction curve
Address: 0xCA43

Min.: -320
Max.: $\quad 320.00$
Default: 0.00
Value Range:
$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$
Description

CA-68 Torque point 7 of friction curve
Address: 0xCA44
Min.: -320
Max.: 320.00
Default: 0.00
Value Range:
-320 N•m to +320 N•m
Description
Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change: Changeable only at stop

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change:

Effective mode:
Unit: $\quad N \cdot m$
Data type: Int16
Change:

Min.:	-320	Unit:	$\mathrm{N} \cdot \mathrm{m}$
Max.:	320.00	Data type:	Int16
Default: 0.00	Change:	Changeable only at stop	
Value Range:			
$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$			
Description			


CA-72	Current coefficient starting point of D - and Q-axis inductance curve			
	Address:	0xCA48	Effective m	-
	Min.:	-800	Unit:	\%
	Max.:	800.0	Data type:	Int16
	Default:	-200	Change:	Chang

Value Range:
-800\% to +800.0\%
Description

CA-73 Current coefficient end point of D- and Q-axis inductance curve

Address:	0xCA49	Effective mode:	
Min.:	-800	Unit:	$\%$
Max.:	800.0	Data type:	Int16
Default:	200.0	Change:	Changeable only at stop

Value Range:
-800\% to +800.0\%
Description

CA-74 D axis inductance 1 of $D$ - and $Q$-axis inductance curve

Address:	$0 x C A 4 A$	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Ulnt16
Default:	100.0	Change:	Changeable only at stop

## Value Range:

0.0\% to 6553.5\%

## Description

CA-75 D axis inductance 2 of $D$ - and $Q$-axis inductance curve

Address:	$0 x C A 4 B$
Min.:	0.0
Max.:	6553.5
Default:	100.0

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop

## Value Range:

0.0\% to 6553.5\%

## Description

CA-76 $D$ axis inductance 3 of $D$ - and $Q$-axis inductance curve

Address:	$0 x C A 4 C$	Effective mode: -	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Ulnt16


	Default: 100.0		Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	-			
CA-77	D axis inductance 4 of D - and Q -axis inductance curve			
	Address:	$0 \times C A 4 D$	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
CA-78	$D$ axis inductance 5 of D - and Q -axis inductance curve			
	Address:	0xCA4E	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
CA-79	$D$ axis inductance 6 of D - and Q -axis inductance curve			
	Address:	0xCA4F	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
CA-80	D axis inductance 7 of D - and Q -axis inductance curve			
	Address:	0xCA50	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	-			
CA-81	D axis inductance 8 of D - and Q -axis inductance curve			
	Address:	0xCA51	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop

Value Range:

	0.0\% to 6553.5\%			
	Description			
	-			
CA-82	D axis inductance 9 of D - and Q -axis inductance curve			
	Address:	0xCA52	Effective mode:	
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
CA-83	D axis inductance 10 of D - and Q-axis inductance curve			
	Address:	$0 \times C A 53$	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
CA-84	D axis inductance 11 of D- and Q-axis inductance curve			
	Address:	0xCA54	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
CA-85	D axis inductance 12 of D - and Q-axis inductance curve			
	Address:	0xCA55	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	Description			
CA-86	$Q$ axis inductance 1 of $D$ - and $Q$-axis inductance curve			
	Address:	0xCA56	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			

## Description

CA-87 $\quad \mathrm{Q}$ axis inductance 2 of D - and Q -axis inductance curve
Address: 0xCA57 Effective mode: -
Min.: $0.0 \quad$ Unit:
Max.: 6553.5 Data type: Ulnt16
Default: $100.0 \quad$ Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%
Description
CA-88 $\quad \mathrm{Q}$ axis inductance 3 of D - and Q -axis inductance curve
Address: 0xCA58 Effective mode:
Min.: $0.0 \quad$ Unit:
Max.: 6553.5 Data type: Ulnt16
Default: 100.0
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

## Description

CA-89 $\quad \mathrm{Q}$ axis inductance 4 of D - and Q -axis inductance curve

Address:	0xCA59	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Ulnt16
Default:	100.0	Change:	Changeable only at stop

Value Range:
0.0\% to 6553.5\%

## Description

CA-90 $\quad \mathrm{Q}$ axis inductance 5 of D - and Q -axis inductance curve

Address:	$0 x C A 5 A$
Min.:	0.0
Max.:	6553.5
Default:	100.0

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0.0\% to 6553.5\%

## Description

CA-91 $\quad \mathrm{Q}$ axis inductance 6 of D - and Q -axis inductance curve
Address: 0xCA5B
Min.: 0.0
Max.: 6553.5
Default: 100.0
Value Range:
0.0\% to 6553.5\%
Description

CA-92	$Q$ axis inductance 7 of D - and Q -axis inductance curve			
	Address:	0xCA5C	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	-			
CA-93	Q axis inductance 8 of D - and Q -axis inductance curve			
	Address:	0xCA5D	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	-			
CA-94	Q axis inductance 9 of D - and Q -axis inductance curve			
	Address:	0xCA5E	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	-			
CA-95	Q axis inductance 10 of D - and Q -axis inductance curve			
	Address:	0xCA5F	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
CA-96	$Q$ axis inductance 11 of $D$ - and $Q$-axis inductance curve			
	Address:	0xCA60	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	100.0	Change:	Changeable only at stop
	Value Ra			
	0.0\% to 6	3.5\%		
	Descripti			

CA-97 $Q$ axis inductance 12 of $D$ - and $Q$-axis inductance curve
Address: 0xCA61
Effective mode:

Min.:	0.0	Unit:	\%
Max.:	6553.5	Data type:	Ulnt16
Default: 100.0	Change:	Changeable only at stop	
Value Range:			
0.0\% to $6553.5 \%$			
Description			

### 4.51 CB: Motor 4 V/f Control Parameters

## CB-00 V/f curve

Address: 0xCB00
Min.: 0
Max.: 11
Default: 0
Value Range:
0 : Straight-line V/f curve
1: Multi-point V/f curve
2: Reserved
3: Reserved
4: Reserved
5: Reserved
6: Reserved
7: Reserved
8: Reserved
9: Reserved
10: V/f complete separation mode
11: V/f half separation mode

## Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

## CB-01 Torque boost

Address: 0xCB01
Min.: $\quad 0.0$
Max.: 30.0
Default: 3.0
Value Range:
0.0\% to 30.0\%

Description

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

CB-02 Cut-off frequency of torque boost

Address:	$0 x C B 02$	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16
Default:	50.00	Change:	Changeable only at stop
Value Range:			
0.00 Hz to F0-10			


	Description		
CB-03	Multi-point V/f frequency 1		
	Address: 0xCB03	Effective mode:	
	Min.: 0.00	Unit:	Hz
	Max.: CB-05	Data type:	Ulnt16
	Default: 0.00	Change:	Changeable only at stop
	Value Range:		
	0.00 Hz to CB-05		
	Description		
	-		
CB-04	Multi-point V/f voltage 1		
	Address: 0xCB04	Effective mode:	
	Min.: 0.0	Unit:	\%
	Max.: $\quad 100.0$	Data type:	Ulnt16
	Default: 0.0	Change:	Changeable only at stop
	Value Range:		
	0.0\% to +100.0\%		
	Description		
CB-05	Multi-point V/f frequency 2		
	Address: 0xCB05	Effective mode:	-
	Min.: CB-03	Unit:	Hz
	Max.: CB-07	Data type:	Ulnt16
	Default: 0.00	Change:	Changeable only at stop
	Value Range:		
	CB-03 to CB-07		
	Description		
	-		
CB-06	Multi-point V/f voltage 2		
	Address: 0xCB06	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: $\quad 100.0$	Data type:	Ulnt16
	Default: 0.0	Change:	Changeable only at stop
	Value Range:		
	0.0\% to +100.0\%		
	Description		
CB-07	Multi-point V/f frequency 3		
	Address: $0 \times \mathrm{CB07}$	Effective mode:	-
	Min.: CB-05	Unit:	Hz
	Max.: CA-04	Data type:	Ulnt16
	Default: 0.00	Change:	Changeable only at stop
	Value Range:		
	CB-05 to CA-04		
	Description		


CB-08	Multi-point V/f voltage 3		
	Address: 0xCB08	Effective mode:	
	Min.: 0.0	Unit:	\%
	Max.: $\quad 100.0$	Data type:	Ulnt16
	Default: 0.0	Change:	Changeable only at stop
	Value Range:		
	0.0\% to +100.0\%		
	Description		
	-		
CB-09	V/f slip compensation gain		
	Address: 0xCB09	Effective mode:	-
	Min.: 0.0	Unit:	-
	Max.: 200.0	Data type:	Ulnt16
	Default: 0.0	Change:	Changeable at any time
	Value Range:		
	0.0 to 200.0		
	Description		
	-		
CB-10	V/f overexcitation gain		
	Address: 0xCB0A	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 200	Data type:	Ulnt16
	Default: 64	Change:	Changeable at any time
	Value Range:		
	0 to 200		
	Description		
CB-11	V/f oscillation suppression gain		
	Address: 0xCB0B	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 100	Data type:	Ulnt16
	Default: 40	Change:	Changeable at any time
	Value Range:		
	$0 \text { to } 100$		
	Description		
CB-12	V/f oscillation suppression		
	Address: 0xCBOC	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 1	Data type:	Ulnt16
	Default: 1	Change:	Changeable at any time
	Value Range:		
	0: Disabled		
	1: Enabled Description		

## CB-13 Voltage source for V/f separation

Address:	$0 x C B O D$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	8	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

## Value Range:

0 : Digital setting (CB-14)
1: AI1
2: AI2
3: AI3
4: Pulse reference (DI5)
5: Multi-reference
6: Simple PLC
7: PID
8: Communication
Others: F connector

## Description

This parameter defines the source of the target voltage in $\mathrm{V} / \mathrm{f}$ separation mode.
0 : Digital setting (F3-14)
The V/f separation voltage is set by F3-14 (V/f separation voltage).
1: AI1
The V/f separation voltage is input with current or voltage signals through the AI1 terminal. The frequency is calculated according to the preset AI curve.
2: AI2
The V/f separation voltage is input with current or voltage signals through the AI2 terminal. The frequency is calculated according to the preset AI curve.
3: AI3
The V/f separation voltage is input with current or voltage signals through the AI3 terminal. The frequency is calculated according to the preset AI curve. The AC drive has two AI terminals by default, and the AI3 terminal needs to be provided through the I/O expansion card.
4: Pulse reference (DI5)
The V/f separation voltage is set through DI5. The frequency is calculated based on the curve reflecting the relationship between the pulse frequency and running frequency.
5: Multi-reference
When multi-reference is used as the source of the V/f separation voltage, different combinations of DI terminal states correspond to different reference values. The four multi-reference terminals can provide 16 state combinations, corresponding to 16 reference values (percentage x maximum frequency) of parameters in group FC.
6: Simple PLC
The V/f separation voltage is set by simple PLC. For details, see the function description of simple PLC.
7: PID
The V/f separation voltage is set by PID. For details, see the PID function description.
8: Communication
The main frequency is set through communication. The running frequency is input through remote communication. The AC drive must be equipped with a communication card to implement communication with the host controller. This mode applies to remote control or centralized control of multiple equipment.

Others: F connector
A function code is set for a floating-point connector, and the value of the connector is read as the motoring torque upper limit in speed control mode. This mode is used for expansion besides the common sources.

## CB-14 V/f separation voltage

Address: $0 x C B 0 E \quad$ Effective mode: -
Min.: 0 Unit: V
Max.: CA-02 Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time

Value Range:
0 V to CA-02

## Description

This parameter defines the V/f separation voltage.

## CB-15 Voltage rise time of V/f separation

Address: $0 x C B 0 F \quad$ Effective mode:
Min.: $0.0 \quad$ Unit:
Max.: $1000.0 \quad$ Data type: Ulnt16
Default: $0.0 \quad$ Change: Changeable at any time

Value Range:
0.0 s to 1000.0 s

## Description

This parameter defines the time required for the output voltage to rise from 0 to the rated motor voltage.

CB-16 Voltage fall time of V/f separation

Address:	$0 x C B 10$	Effective mode:	-
Min.:	0.0	Unit:	s
Max.:	1000.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0s to 1000.0s

Description
This parameter defines the time required for the output voltage to fall from the rated motor voltage to 0 .

## CB-17 Stop mode for V/f separation

Address: 0xCB11 Effective mode:
Min.: $0 \quad$ Unit:
Max.: 2 Data type: Ulnt16
Default: $0 \quad$ Change: Changeable at any time
Value Range:
0 : Frequency and voltage decline to 0 independently
1: Frequency declines to 0 after voltage declines to 0
2: Coast to stop (new)

## Description

0 : The frequency and voltage decrease to 0 independently
1: The frequency decreases to 0 according to the deceleration time after the voltage decreases to 0 according to the deceleration time.
2: The AC drive coasts to stop without following the stop deceleration curve.
CB-18 Overcurrent stall suppression action current
Address: 0xCB12 Effective mode: -
Min.: $50 \quad$ Unit:
Max.: 200Default: 150Data type: Ulnt16Change: Changeable only at stop
Value Range:
50\% to 200\%
Description
CB-19 Overcurrent stall suppression
Address: 0xCB13 Effective mode:Min.: 0
Max.: 1Unit:
Data type: Ulnt16
Default: 1Value Range:
0 : Disabled
1: Enabled
Description
Change Changeable only at stop-
CB-20 Overcurrent stall suppression gain

Address:	$0 \times C B 14$	Effective mode:	
Min.:	1	Unit:	-
Max.:	100	Data type:	Ulnt16
Default:	20	Change:	Changeable at any time

1 to 100 to 100
Description
Effective mode:
Data type: Ulnt16
Change: Changeable at any time
Value Range:-CB-21 Compensation coefficient of speed multiplying overcurrent stall suppression action current
Address: 0xCB15

Min.: 50
Max.: 200
Default: 100

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
50\% to 200\%
Description
CB-22 Overvoltage stall suppression action voltage

Address:	0xCB16	Effective mode: -
Min.:	330.0	Unit:

Max.: 800.0 Data type: Ulnt16
Default: $770.0 \quad$ Change: Changeable at any time
Value Range:
330.0 V to 800.0 V
Description
CB-23 Overvoltage stall suppression
Address: 0xCB17 Effective mode: -
Min.: $0 \quad$ Unit:
Max.: $\quad 1$
Default: 1
Value Range:
0: Disabled
1: Enabled
Description
CB-24 Overvoltage stall suppression frequency gain
Address: 0xCB18 Effective mode: -
Min.: $1 \quad$ Unit:
Max.: 100 Data type: Ulnt16
Default: 30
Change: Changeable at any time
Value Range:
1 to 100
Description
CB-25 Overvoltage stall suppression voltage gain

Address:	$0 x C B 19$	Effective mode:	-
Min.:	1	Unit:	-
Max.:	100	Data type:	Ulnt16
Default:	30	Change:	Changeable at any time

Value Range:
1 to 100
Description
CB-26 Frequency rise threshold for overvoltage stall suppression
Address: 0xCB1A
Min.: $\quad 0$
Max.: 50
Default: 5
Effective mode: -
Unit: Hz
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0 Hz to 50 Hz
Description
CB-27 Slip compensation filter time
Address: 0xCB1B Effective mode:
Min.: $0.1 \quad$ Unit: S
Max.: $\quad 10.0$
Default: 0.5
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
0.1 s to 10.0 s
Description

CB-28 Multi-point curve source
Address: 0xCB1C Effective mode: -
Min.: 0
Max.: 2
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable only at stop

## Value Range:

0: 3-point curve
1: Multi-point curve module A
2: Multi-point curve module B

## Description

0 : 3-point curve
The 3-point curve is used by default, which is set in F3-03 to F3-08.
1: Multi-point curve module A
The output of free module $A$ is used as the voltage reference of the multi-point curve.
2: Multi-point curve module $B$
The output of free module $B$ is used as the voltage reference of the multi-point curve.

CB-33 Online torque compensation gain

Address:	$0 \times C B 21$	Effective mode:	-
Min.:	80	Unit:	-
Max.:	150	Data type:	Ulnt16
Default:	100	Change:	Changeable only at stop

Value Range:
80 to 150
Description

CB-34 ImaxKi coefficient
Address: 0xCB22
Min.: 10
Effective mode: -

Max.: 1000
Unit: \%

Default: 100
Data type: Ulnt16
Change: Changeable only at stop
Value Range:
10\% to 1000\%
Description

CB-35 Overcurrent suppression threshold (relative to rated motor current)
Address: 0xCB23 Effective mode:
Min.: 80 Unit: \%

Max.: 300 Data type: Ulnt16
Default: 200 Change: Changeable only at stop
Value Range:
80\% to 300\%
Description

CB-36 Frequency threshold for overcurrent suppression field weakening

Address:	$0 x C B 24$	Effective mode: -	
Min.:	100	Unit:	$\%$
Max.:	500	Data type:	Ulnt16

Default: 100 Changeable only at stop Change:
Value Range:
100\% to 500\%
Description
CB-37 IT filter time
Address: 0xCB25 Effective mode:Min.: 10Max.: 1000
Default: ..... 100
Value Range:
10 ms to 1000 ms
Description
CB-38 Slip compensation mode
Address: 0xCB26
Min.: 0
Max.: 2
Default ..... 1
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stopUnit: msData type: Ulnt16Change: Changeable only at stop
Value Range:
0: Disabled
1: Slip compensation without PG
2: Slip compensation with PG
Description
$\qquad$
-

## CB-39 VdcMaxCtrl allowed runtime

Address:	$0 \times C B 27$	Effective mode:	-
Min.:	0.0	Unit:	S
Max.:	100.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable only at stop

Value Range:
0.0 s to 100.0s
Description
CB-40 Upper limit of V/f separation voltage

Address:	$0 x C B 28$	Effective mode:	
Min.:	50.0	Unit:	$\%$
Max.:	200.0	Data type:	Ulnt16
Default:	100.0	Change:	Changeable only at stop

Value Range:
50.0\% to 200.0\%
DescriptionThis parameter defines the upper limit of the $\mathrm{V} / \mathrm{f}$ separation voltage, which is a percentage relative tothe rated motor voltage.
CB-41 RFG time of V/f separation frequency
Address: 0xCB29 Effective mode:

Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0: RFG time forced to 0
1: Preset RFG time

## Description

This parameter defines the RFG time of the V/f separation frequency. When it is set to 0 , the frequency reference acceleration/deceleration time is forced to 0 ; when it is set to 1 , the acceleration/ deceleration time is set as normal.

## CB-42 Cut-off frequency of $\mathrm{V} / \mathrm{f}$ oscillation suppression filter

Address:	$0 x C B 2 A$	Effective mode:	-
Min.:	1.0	Unit:	Hz
Max.:	50.0	Data type:	Ulnt16
Default:	8.0	Change:	Changeable at any time

Value Range:
1.0 Hz to 50.0 Hz

Description

CB-43 Cut-off frequency threshold for V/f oscillation suppression
Address: $0 \times C B 2 B$ Effective mode:
$\begin{array}{ll}\text { Min.: } & 10 \\ \text { Max.: } & 300\end{array}$
Default: 200
Value Range:
10 Hz to 3000 Hz
Description

CB-44 VdcMaxCtrl feedforward coefficient

Address:	$0 x C B 2 C$	Effective mode:	
Min.:	0	Unit:	$\%$
Max.:	500	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0\% to 500\%
Description

CB-50 PMVVC low-speed IF
Address: 0xCB32
Min.: $\quad 0$
Max.: $\quad 1$
Default: 1
Value Range:
0 : Disabled
1: Enabled
Description

CB-51	PMVVC low-speed IF current			
	Address:	0xCB33	Effective mode:	-
	Min.:	30	Unit:	-
	Max.:	250	Data type:	Ulnt16
	Default:	100	Change:	Changeable only at stop
	Value Range:			
	30 to 250			
	Description			
	-			
CB-52	PMVVC low-speed IF speed switching threshold			
	Address:	0xCB34	Effective mode:	-
	Min.:	2.0	Unit:	\%
	Max.:	100.0	Data type:	Ulnt16
	Default:	10.0	Change:	Changeable only at stop
	Value Range:			
	2.0\% to 100.0\%			
	Description			
	-			
CB-53	PMVVC oscillation suppression gain coefficient			
	Address:	0xCB35	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	500	Data type:	Ulnt16
	Default:	100	Change:	Changeable at any time
	Value Range:			
	0 to 500			
	Description			
CB-54	PMVVC filter time coefficient			
	Address:	0xCB36	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	500	Data type:	Ulnt16
	Default:		Change:	Changeable at any time
	Value Range:			
	0 to 500			
	Description			
CB-55	PMVVC energy conservation control mode			
	Address:	0xCB37	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	2	Data type:	Ulnt16
	Default:	2	Change:	Changeable only at stop
	Value Ra			
	0: Fixed	aight-line		
	1: Fixed	\% reactive		
	2: MTPA   Descript	trol		

### 4.52 CC: Motor 4 Control and Protection Parameters

## CC-00 Startup mode

Address:	$0 x C C 00$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

## Value Range:

0 : Direct start
1: Flying start
2: Pre-excitation start (AC asynchronous motor)
3: SVC quick start
Description
Flying start is recommended if you need to start a motor that is rotating at a high speed. Pre-excitation start and SVC quick start apply only to AC asynchronous motors.

## CC-01 Speed tracking mode

Address: 0xCC01 Effective mode:
Min.: 0
Max.: 4
Default: 0

Unit:
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0 : From the stop frequency
1: From the power frequency
2: From the maximum frequency
3: Reserved
4: Magnetic field directional speed tracking (MD290)
Description

## CC-02 Speed of speed tracking

Address:	$0 x C C 02$	Effective mode:	-
Min.:	1	Unit:	-
Max.:	100	Data type:	Ulnt16
Default:	20	Change:	Changeable at any time

Value Range:
1 to 100
Description

CC-03 Startup frequency
Address: 0xCC03
Min.: $\quad 0.00$
Max.: $\quad 10.00$
Default: 0.00

Effective mode: -
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0.00 Hz to 10.00 Hz

## Description

This parameter defines the startup frequency for direct start of the AC drive. When the frequency reference is lower than the startup frequency, the AC drive will not start but stay standby.

## CC-04 Startup frequency hold time

Address:	$0 \times C C 04$	Effective mode:	
Min.:	0.0	Unit:	s
Max.:	100.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable only at stop

Value Range:
0.0 s to 100.0s

Description
This parameter defines the hold time during which the output frequency remains at the startup frequency. After this hold time elapses, the AC drive will accelerate/decelerate to the reference frequency.

CC-05 DC braking current at startup

Address:	$0 \times C C 05$	Effective mode:	-
Min.:	0	Unit:	$\%$
Max.:	100	Data type:	Ulnt16
Default:	50	Change:	Changeable only at stop

Value Range:
0\% to 100\%

## Description

A larger DC braking current indicates stronger braking force. 100\% corresponds to the rated motor current (the current upper limit is $80 \%$ of the rated current of the AC drive).

## CC-06 DC braking time at startup

Address:	$0 \times C C 06$	Effective mode:	
Min.:	0.0	Unit:	s
Max.:	100.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable only at stop

Value Range:
0.0 s to 100.0 s

## Description

This parameter defines the time for DC braking at startup, which is valid only when the startup mode is direct start.

CC-07 Stop mode

Address:	$0 x C C 07$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	2	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

## Value Range:

0: Decelerate to stop
1: Coast to stop
2: Stop at maximum capability

## Description

## CC-08 Start frequency of DC braking at stop

Address:	$0 \times C C 08$	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

## Value Range:

0.00 Hz to F0-10

## Description

The AC drive starts DC braking when the running frequency decreases to the value of this parameter during deceleration to stop.

CC-09 DC braking delay at stop
Address: 0xCC09 Effective mode: -
Min.: 0.0 Unit: S
Max.: $100.0 \quad$ Data type: Ulnt16
Default: $0.0 \quad$ Change: Changeable at any time

## Value Range:

0.0 s to 100.0 s

## Description

When the running frequency decreases to the start frequency of DC braking at stop, the AC drive stops output and starts DC braking after this waiting time.

## CC-10 DC braking current at stop

Address:	$0 \times C C O A$	Effective mode:	-
Min.:	0	Unit:	$\%$
Max.:	100	Data type:	Ulnt16
Default:	50	Change:	Changeable at any time

Value Range:
0\% to 100\%
Description
A larger DC braking current indicates stronger braking force. 100\% corresponds to the rated motor current (the current upper limit is $80 \%$ of the rated current of the AC drive).

## CC-11 DC braking time at stop

Address:	$0 \times C C O B$	Effective mode:	
Min.:	0.0	Unit:	S

Max.: $100.0 \quad$ Data type: Ulnt16

Default: 0.0
Change: Changeable at any time
Value Range:
0.0 s to 100.0 s

## Description

If this parameter is set to $0, D C$ braking is disabled.

CC-12 Speed tracking sweep current limit closed loop Kp
Address: 0xCCOC Effective mode: -
Min.: 0 Unit: -
Max.: $1000 \quad$ Data type: Ulnt16
Default: $500 \quad$ Change: Changeable at any time
Value Range:
0 to 1000
Description

CC-13 Speed tracking sweep current limit closed loop Ki
$\begin{array}{lll}\text { Address: } & 0 x C C O D & \text { Effective mode: - } \\ \text { Min.: } & 0 & \text { Unit: }\end{array}$

Max.:	1000	Data type:	Ulnt16
Default:	800	Change:	Changeable at any time

Default: 800
Change: Changeable at any time
Value Range:
0 to 1000
Description

CC-14 Speed tracking current

Address:	$0 \times C C O E$	Effective mode:	-
Min.:	30	Unit:	$\%$
Max.:	200	Data type:	Ulnt16
Default:	80	Change:	Changeable only at stop

Value Range:
30\% to 200\%
Description

## CC-15 Current loop multiple

Address:	$0 \times C C O F$	Effective mode:	-
Min.:	10	Unit:	$\%$
Max.:	600	Data type:	Ulnt16
Default:	100	Change:	Changeable at any time

Value Range:
10\% to 600\%
Description

## CC-16 Demagnetization time (valid for asynchronous motors)

Address:	$0 \times C C 10$	Effective mode:	-
Min.:	0.00	Unit:	s
Max.:	5.00	Data type:	Ulnt16
Default:	0.50	Change:	Changeable at any time

Value Range:
0.00 s to 5.00 s

Description
This parameter defines the minimum waiting time for restart after shutdown.

## CC-17 Overexcitation enable

Address: 0xCC11
Min.: 0
Max.: 2
Default: 0

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Changeable at any time

Value Range:
0: Disabled
2: Enabled during deceleration
3: Enabled always
Description
This parameter defines the active mode of overexcitation in vector control mode for asynchronous motors. When it is set to 2 , overexcitation takes effect during acceleration, operation at constant speed, and deceleration.

## CC-18 Overexcitation suppression current

Address: 0xCC12 Effective mode: -

Min.: 0
Max.: 150
Default: 100
Value Range:
0\% to 150\%
Description
This parameter defines the target current after overexcitation takes effect and is a percentage relative to the rated motor current.

## CC-19 Overexcitation gain

Address:	$0 \times C C 13$	Effective mode:	
Min.:	0.01	Unit:	-
Max.:	2.50	Data type:	Ulnt16
Default:	1.25	Change:	Changeable at any time

Value Range:
0.01 to 2.50

Description

CC-20 Parameter auto-tuning upon startup

Address:	$0 \times C C 14$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop

## Value Range:

Bit00: Synchronous motor pole position auto-tuning upon startup
0: Disabled
1: Enabled
Bit01: Quick stator resistance auto-tuning upon startup
0 : Disabled
1: Enabled
Bit02-Bit03: HFI pole position auto-tuning
0: Disabled
1: Enabled
2: Adaptive
Bit04: IGBT shoot-through self-check upon startup
0: Disabled
1: Enabled
Bit05: Short-to-ground self-check upon startup (reserved)
0: Disabled
1: Enabled
Bit06: Phase loss self-check upon startup (reserved)
0 : Disabled
1: Enabled
Description

```
CC-21 Auto-tuning direction
\begin{tabular}{llll}
Address: & \(0 \times C C 15\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 1 & Data type: & Ulnt16 \\
Default: & 1 & Change: & Changeable only at stop \\
Value Range: & & \\
0 to 1 & & \\
Description & &
\end{tabular}
```

CC-22 Oscillation suppression gain of synchronous motor back EMF auto-tuning
Address: 0xCC16
Min.: 0.0
Max.: 30.0
Default: 3.2
Value Range:
0.0 to 30.0
Description
CC-23 Target speed of rotation auto-tuning

Address:	$0 x C C 17$
Min.:	30.0
Max.:	100.0
Default:	70.0

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop

Value Range:
30.0\% to 100.0\%

Description

## CC-24 Target speed 1 of inertia auto-tuning

Address:	$0 x C C 18$
Min.:	10.0
Max.:	CC-25
Default:	40.0

Value Range:
10.0\% to CC-25

Description

CC-25 Target speed 2 of inertia auto-tuning
Address: 0xCC19 Effective mode: -

Min.: CC-24
Max.: 100.0
Default: 60.0
Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable only at stop

Value Range:
CC-24 to 100.0\%
Description

Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Changeable only at stop

CC-26 Overcurrent prevention of mutual inductance saturation curve
Address: 0xCC1A
Effective mode:

Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop
Value Range:			
0 to 1			
Description			

## CC-27 Auto-tuning items

Address:	$0 \times C C 1 B$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	117	Change:	Changeable only at stop

Value Range:
Bit00: Speed loop parameter adaptation
0: Disabled
1: Enabled
Bit01: Current loop parameter adaptation
0: Disabled
1: Enabled
Bit02: Drive nonlinear auto-tuning
0: Disabled
1: Enabled
Bit03: Inter-phase deviation coefficient auto-tuning
0: Disabled
1: Enabled
Bit04: Auto-tuning of initial pole position of synchronous motor
0: Disabled
1: Enabled
Bit05: Auto-tuning of D- and Q-axis inductance model of synchronous motor
0: Disabled
1: Enabled
Bit06: System inertia auto-tuning
0 : Disabled
1: Enabled
Bit07: HFI pole position auto-tuning
0: Disabled
1: Enabled
Description

## CC-28 OFF3 stop mode

Address: 0xCC1C
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Quick stop
1: Stop at maximum capability

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable only at stop

## Description

CC-29 Stop mode during running
Address: 0xCC1D
Min.: 0
Max.: 2
Default: 1
Value Range:
0: OFF1 stop mode
1: OFF2 stop mode
2: OFF3 stop mode

## Description

## CC-30 Stop mode for torque control

Address:	$0 x C C 1 E$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	2	Data type:	Ulnt16
Default:	1	Change:	Changeable only at stop

## Value Range:

0 : Coast to stop forcibly
1: Switch to speed control mode and then stop
2: Maintain torque control mode until zero speed and then block

## Description

CC-32 Proportional gain adjustment coefficient

Address:	$0 \times C C 20$	Effective mode:	-
Min.:	0.1	Unit:	-
Max.:	2.0	Data type:	Ulnt16
Default: 1.0	Change:	Changeable at any time	
Value Range:			
0.1 to 2.0			
Description			

## CC-33 Integral gain adjustment coefficient

Address:	$0 \times C C 21$	Effective mode:	-
Min.:	0.1	Unit:	-
Max.:	2.0	Data type:	Ulnt16
Default:	1.0	Change:	Changeable at any time

Value Range:
0.1 to 2.0

Description

CC-34 Zero-speed threshold
Address: 0xCC22
Effective mode: -
Min.: 0.1
Unit: $\%$
Max.: $\quad 200.0$

	Default: 2.0		Change:	Changeable at any time
	Value Range:			
	0.1\% to 200.0\%			
	Description			
	-			
CC-35	Zero-speed stop delay			
	Address:	0xCC23	Effective mode:	-
	Min.:	0.00	Unit:	s
	Max.:	10.00	Data type:	Ulnt16
	Default:	0.10	Change:	Changeable only at stop
	Value Range:			
	0.00 s to 10.00 s			
	Description			
	-			
CC-36	Reference source execution interval			
	Address:	$0 \times C C 24$	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	20	Data type:	Ulnt16
	Default:	4	Change:	Changeable only at stop
	Value Range:			
	0 to 20			
	Description			
CC-37	Trial current for speed tracking of synchronous motor			
	Address:	0xCC25	Effective mode:	-
	Min.:	5.0	Unit:	\%
	Max.:	50.0	Data type:	Ulnt16
	Default:	10.0	Change:	Changeable only at stop
	Value Range:			
	5.0\% to 50.0\%			
	Description			
CC-38	Minimum frequency for speed tracking of synchronous motor			
	Address:	0xCC26	Effective mode:	
	Min.:	0.0	Unit:	Hz
	Max.:	100.0	Data type:	Ulnt16
	Default:	0.0	Change:	Changeable only at stop
	Value Range:			
	0.0 Hz to 100.0 Hz			
	Description			
CC-39	Angle compensation for speed tracking of synchronous motor			
	Address:	0xCC27	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	360	Data type:	Ulnt16
	Default:	0	Change:	Changeable only at stop
	Value Range:			

## 0 to 360

Description

CC-40 Parameter auto-tuning of synchronous motor upon startup
Address: 0xCC28 Effective mode:

Min.: 0
Max.: 1
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 to 1
Description

CC-41 Current motor angle

Address:	$0 \times C C 29$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

## CC-42 Forward torque limit 1

Address:	$0 \times C C 2 A$
Min.:	0.0
Max.:	400.0
Default:	150.0

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0 to 400.0

Description

CC-43 Reverse torque limit 1
Address: 0xCC2B
Min.: 0.0
Max.: $\quad 400.0$
Default: 150.0
Value Range:
0.0 to 400.0

Description

CC-44 Source of forward torque limit 2
Address: 0xCC2C
Min.: $\quad 0$
Max.: 0
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0: 400\%
Others: F connector

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Description

CC-45 Source of reverse torque limit 2
Address: 0xCC2D
Min.: 0
Max.: 0
Default: 0
Value Range:
0: -400\%
Others: F connector
Description

CC-46 Ramp (FRG) selection bit0
Address: 0xCC2E Effective mode: -
Min.: 0
Max.: 18
Default: 0
Value Range:
0: 0
1: 1
2: Terminal function input
3: DI1
4: DI2
5: DI3
6: DI4
7: DI5
8: DI6
9: DI7
10: DI8
11: DI9
12: DI10
13: DI11
14: DI12
15: DI13
16: DI14
17: DI15
18: DI16
Others: B connector
Description

CC-47 Ramp (FRG) selection bit1
Address: 0xCC2F
Min.: 0
Max.: 18
Default: 0
Value Range:

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

Unit:
Data type: Ulnt16
Change: Changeable at any time

	Same as CC-46			
	Description			
	-			
CC-50	Motor overload protection			
	Address:	0xCC32	Effective mode:	
	Min.:	0	Unit:	-
	Max.:	1	Data type:	Ulnt16
	Default:	1	Change:	Changeable at any time
	Value Range:			
	0: Disabled			
	1: Enabled			
	Description			
CC-51	Motor overload protection gain			
	Address:	0xCC33	Effective mode:	-
	Min.:	0.20	Unit:	-
	Max.:	10.00	Data type:	Ulnt16
	Default:	1.00	Change:	Changeable at any time
	Value Range:			
	0.20 to 10.00			
	Description			
	-			
CC-52	Motor overload pre-warning coefficient			
	Address:	0xCC34	Effective mode:	-
	Min.:	50	Unit:	\%
	Max.:	100	Data type:	Ulnt16
	Default:	80	Change:	Changeable at any time
	Value Range:			
	50\% to 100\%			
	Description			
CC-53	Overvoltage stall suppression gain			
	Address:	0xCC35	Effective mode:	-
	Min.:	1	Unit:	-
	Max.:	100	Data type:	Ulnt16
	Default:	30	Change:	Changeable at any time
	Value Range:			
	1 to 100			
	Description			
CC-54	Overvoltage stall protection voltage			
	Address:	0xCC36	Effective mode:	-
	Min.:	330.0	Unit:	V
	Max.:	800.0	Data type:	Ulnt16
	Default:	770.0	Change:	Changeable at any time
	Value Range:			
	330.0 V to 800.0 V			

## Description

CC-55 Input phase loss/Contactor pickup protection

Address: 0xCC37
Min.: 0
Max.: $\quad 13$
Default: 11

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:
Ones: Input phase loss protection
0: Disabled
1: Protection enabled when both software and hardware input phase loss conditions are met
2: Protection enabled when software input phase loss conditions are met
3: Protection enabled when hardware input phase loss conditions are met
Tens: Contactor pickup protection
0 : Disabled
1: Enabled
Description

## CC-56 Output phase loss protection

Address:	$0 \times C C 38$	Effective mode:	
Min.:	0	Unit:	-
Max.:	11	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

## Value Range:

Ones: Output phase loss protection upon power-on
0: Disabled
1: Enabled
Tens: Output phase loss protection before running
0: Disabled
1: Enabled
Description

## CC-57 Power dip ride-through

Address: 0xCC39 Effective mode:
Min.: $\quad 0$
Max.: $3 \quad$ Data type: Ulnt16
Default: $0 \quad$ Change: Changeable only at stop
Value Range:
0: Disabled
1: Decelerate
2: Decelerate to stop
3: Suppress voltage dip
Description

CC-58 Voltage threshold for disabling power dip ride-through
Address: 0xCC3A
Effective mode:

	Min.:	80	Unit:	\%
	Max.:	100	Data type:	Ulnt16
	Default:	85	Change:	Changeable only at stop
	Value Ra			
	80\% to 1			
	Descript			
	-			
CC-59	Delay of	ltage rec		
	Address:	0xCC3B	Effective mode:	-
	Min.:	0.0	Unit:	S
	Max.:	100.0	Data type:	Ulnt16
	Default:	0.5	Change:	Changeable only at stop
	Value Ra			
	0.0 s to 1			
	Descript			
	-			
CC-60	Voltage	shold fo	e-through	
	Address:	0xCC3C	Effective mode:	-
	Min.:	60	Unit:	\%
	Max.:	100	Data type:	Ulnt16
	Default:	80	Change:	Changeable only at stop
	Value Ra			
	60\% to 1			
	Descript			
	-			
CC-61	Protecti	upon loa		
	Address:	0xCC3D	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	1	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Ra			
	0: Disabl			
	1: Enable Descript			
CC-62	Load los	detection		
	Address:	0xCC3E	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	100.0	Data type:	Ulnt16
	Default:	10.0	Change:	Changeable at any time
	Value Ra			
	0.0\% to	0.0\%		
	Descript			
	Descrip			
CC-63	Load los	detection		
	Address:	0xCC3F	Effective mode:	-
	Min.:	0.0	Unit:	s



## Value Range:

1 to 100
Description

CC-69 Power dip ride-through integral coefficient Ki

Address:	$0 \times C C 45$	Effective mode:	-
Min.:	1	Unit:	-
Max.:	100	Data type:	Ulnt16
Default:	30	Change:	Changeable at any time

Value Range:
1 to 100
Description

CC-70 Deceleration time of power dip ride-through
Address: 0xCC46
Min.: 0.0
Max.: $\quad 300.0$
Effective mode:
Unit: s

Default: 20.0
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0s to 300.0s

## Description

## CC-71 Voltage dip suppression time

Address:	$0 x C C 47$	Effective mode:	-
Min.:	0.1	Unit:	s
Max.:	600.0	Data type:	Ulnt16
Default:	0.5	Change:	Changeable at any time

Value Range:
0.1 s to 600.0 s

Description

## CC-72 Motor protection

Address:	$0 x C C 48$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	537	Change:	Changeable at any time

## Value Range:

Bit00: Motor overload determination (reserved)
Bit01: Motor overheat detection (reserved)
Bit02: PG fault detection (reserved)
Bit03: Current control error detection
Bit04: Motor stall error detection
Bit05: Locked-rotor detection
Bit06: Synchronous motor demagnetization protection
Bit07: Protection against locked-rotor in SVC speed open-loop control
Bit08: Reserved
Bit09: Parameter setting error

	Description		
CC-73	Locked-rotor time		
	Address: 0xCC49	Effective mode:	-
	Min.: 0.0	Unit:	s
	Max.: 65.0	Data type:	Ulnt16
	Default: 2.0	Change:	Changeable at any time
	Value Range:		
	0.0s to 65.0s		
	Description		
CC-74	Locked-rotor frequency		
	Address: 0xCC4A	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: 600.0	Data type:	Ulnt16
	Default: 6.0	Change:	Changeable at any time
	Value Range:		
	0.0\% to 600.0\%		
	Description		
CC-75	Motor stall detection time		
	Address: 0xCC4B	Effective mode:	-
	Min.: 0.0	Unit:	s
	Max.: 10.0	Data type:	Ulnt16
	Default: 0.5	Change:	Changeable at any time
	Value Range:		
	0.0 s to 10.0 s		
	Description		
	-		
CC-76	Stall detection threshold		
	Address: 0xCC4C	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: $\quad 100.0$	Data type:	Ulnt16
	Default: 30.0	Change:	Changeable at any time
	Value Range:		
	0.0\% to +100.0\%		
	Description		
	-		
CC-77	Current control exception detection time		
	Address: 0xCC4D	Effective mode:	-
	Min.: 0.00	Unit:	S
	Max.: 1.00	Data type:	Ulnt16
	Default: 0.05	Change:	Changeable at any time
	Value Range:		
	0.00 s to 1.00s		
	Description		

CC-78 Current control exception detection threshold
Address: 0xCC4E Effective mode: -
Min.: $0.0 \quad$ Unit:
Max.: 200.0
Default: 25.0
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0\% to 200.0\%
Description
CC-79 Synchronous motor overcurrent threshold
Address: 0xCC4F
Min.: 0.0
Max.: 500.0
Default: 300.0

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0\% to 500.0\%
Description
CC-81 Speed deviation detection

Address:	$0 \times C C 51$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

Value Range:
0 to 1
Description
CC-82 Skip frequency 1

Address:	$0 \times C C 52$	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	F0-10	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

## Value Range:

0.00 Hz to F0-10

## Description

## CC-83 Skip frequency 2

Address:	$0 x C C 53$
Min.:	0.00
Max.:	F0-10
Default:	0.00

Effective mode:
Unit: Hz
Data type: Ulnt16
Default: 0.00
Change: Changeable at any time
Value Range:
0.00 Hz to F0-10

## Description

## CC-84 Skip frequency 3

Address: 0xCC54
Effective mode:

Min.:	0.00
Max.:	F0-10
Default:	0.00

Value Range:
0.00 Hz to F0-10

Description

Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

CC-85 Skip frequency 4
Address: 0xCC55
Min.: $\quad 0.00$
Max.: $\quad$ F0-10
Default: 0.00
Value Range:
0.00 Hz to F0-10

Description

Effective mode:	-
Unit:	Hz
Data type:	Ulnt16
Change:	Changeable at any time

CC-86 Skip frequency band
Address: 0xCC56
Min.: $\quad 0.00$
Max.: $\quad$ F0-10
Default: 0.00

## Value Range:

0.00 Hz to F0-10

## Description

CC-87 Source of frequency upper limit

Address:	$0 \times C C 57$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	5	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

CC-88 Frequency upper limit
Address: 0xCC58
Min.: CC-90
Max.: $\quad$ F0-10
Default: $\quad 50.00$

## Value Range:

CC-90 to F0-10

Effective mode: -
Unit: $\quad \mathrm{Hz}$
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:

Change

## Value Range:

0: F0-12
1: AI1
2: Al2
3: Al3
4: Pulse reference
5: Communication
Others: F connector
Description

	Description		
CC-89	Frequency upper limit offset		
	Address: 0xCC59	Effective mode:	-
	Min.: 0.00	Unit:	Hz
	Max.: F0-10	Data type:	Ulnt16
	Default: 0.00	Change:	Changeable at any time
	Value Range:		
	0.00 Hz to F0-10 (maximum frequency)		
	Description		
	-		
CC-90	Frequency lower limit		
	Address: 0xCC5A	Effective mode:	-
	Min.: 0.00	Unit:	Hz
	Max.: CC-88	Data type:	Ulnt16
	Default: 0.00	Change:	Changeable at any time
	Value Range:		
	0.00 Hz to CC-88		
	Description		
CC-91	Speed/Torque control mode		
	Address: 0xCC5B	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 1	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0: Speed control		
	1: Torque control		
	Description		

### 4.53 CD: Motor 4 Observation and Vector Parameters

CD-00 Asynchronous motor FVC model switchover frequency

Address:	$0 x C D 00$	Effective mode:	-
Min.:	0	Unit:	$\%$
Max.:	1000	Data type:	UInt16
Default: 20	Change:	Changeable only at stop	
Value Range:			
0\% to 1000\%			
Description			

CD-01 Asynchronous motor FVC model switchover hysteresis frequency

Address:	$0 x C D 01$	Effective mode: -	
Min.:	10	Unit:	$\%$
Max.:	50	Data type:	Ulnt16


Value Range:

```
5ms to 50 ms
Description
```

CD-07 Asynchronous motor SVC observer gain 1

Address:	$0 \times C D 07$	Effective mode:	-
Min.:	10	Unit:	$\%$
Max.:	500	Data type:	Ulnt16
Default:	100	Change:	Changeable at any time

Value Range:
10\% to 500\%
Description

CD-08 Asynchronous motor SVC observer gain 2

Address:	$0 x$ CD08	Effective mode: -
Min.:	10	Unit:

Max.: $\quad 100$
Default: 20
Value Range:
10\% to 100\%
Description

CD-09 Asynchronous motor SVC observer mode

Address:	$0 x C D 09$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	3	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0 to 3
Description

Data type: Ulnt16
Change: Changeable at any time

Description

Effective mode:
Unit:

Change: Changeable only at stop
-

CD-10 Asynchronous motor SVC pre-excitation mode

Address:	$0 x C D 0 A$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0 to 1
Description

CD-11 Asynchronous motor SVC speed tracking mode

Address:	$0 \times C D 0 B$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

Value Range:
0 to 1

```
Description
CD-14 Synchronous motor 1 model control
Address: 0xCDOE
Min.: 0
Max.: 65535
Default: 5
Value Range:
Bit00: Low speed processing
Bit01: Low speed processing 1
Bit02: Online auto-tuning of resistance
Bit03: Online auto-tuning of back EMF
Bit04: KS
Description
CD-15 Synchronous motor model K1
```

Address: 0xCD0F
Min.: 10
Max.: 3000
Default: 200
Value Range:
10 to 3000
Description

CD-16 Synchronous motor model K1Max
Address: 0xCD10
Min.: 100
Max.: 6000
Default: 3000
Value Range:
100 to 6000
Description

CD-17 Synchronous motor model KsMin
Address: 0xCD11
Min.: $\quad 0.0$
Max.: $\quad 4.0$
Default: 0.3
Value Range:
0.0 to 4.0

Description

CD-18 Synchronous motor model Kspeed
Address: 0xCD12
Min.: 50
Max.: 2000

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

```
Effective mode:
```

Effective mode:
Unit:
Unit:
Data type: Ulnt16
Data type: Ulnt16
Change: Changeable at any time
Change: Changeable at any time
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```

Default: 400 Change: Changeable at any time
Value Range:
50 to 2000
Description

CD-19 Synchronous motor frequency filter time constant

Address: 0xCD13
Min.: 2
Max.: 100
Default: 10
Value Range:
2 ms to 100 ms
Description

Effective mode:
Unit: ms
Data type: Ulnt16
Change: Changeable at any time

\section*{-}

CD-20 Frequency upper limit of synchronous motor Rs online auto-tuning
\begin{tabular}{llll}
Address: & 0xCD14 & Effective mode: & - \\
Min.: & 1.0 & Unit: & \(\%\) \\
Max.: & 20.0 & Data type: & Ulnt16 \\
Default: & 3.5 & Change: & Changeable at any time \\
Value Range: & & \\
1.0\% to 20.0\% & & \\
Description & & &
\end{tabular}

CD-21 Synchronous motor model Kr
\begin{tabular}{llll}
Address: & \(0 x C D 15\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 50 & Data type: & Ulnt16 \\
Default: & 10 & Change: & Changeable at any time
\end{tabular}

Value Range:
0 to 50
Description

\section*{CD-22 Synchronous motor model Kr1}
\begin{tabular}{llll}
Address: & \(0 x C D 16\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 50 & Data type: & Ulnt16 \\
Default: & 5 & Change: & Changeable at any time
\end{tabular}

Value Range:
0 to 50
Description

CD-23 Synchronous motor low-speed D axis injection current
Address: 0xCD17
Min.: 0
Max.: \(\quad 100\)
Default: 20
Effective mode: -
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time
Value Range:
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{0\% to 100\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{CD-24} & \multicolumn{4}{|l|}{Synchronous motor model LowFreqTime1} \\
\hline & Address: & 0xCD18 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 500 & Data type: & Ulnt16 \\
\hline & Default: & 50 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0 to 500} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{CD-27} & \multicolumn{4}{|l|}{Frequency lower limit of back EMF online auto-tuning} \\
\hline & Address: & 0xCD1B & Effective mode: & - \\
\hline & Min.: & 10 & Unit: & \% \\
\hline & Max.: & 100 & Data type: & Ulnt16 \\
\hline & Default: & 25 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{10\% to 100\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{CD-28} & \multicolumn{4}{|l|}{Synchronous motor model LowFreq} \\
\hline & Address: & 0xCD1C & Effective mode: & - \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 2.0 & Data type: & Ulnt16 \\
\hline & Default: & 0.3 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0\% to 2.0\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{9}{*}{CD-29} & \multicolumn{4}{|l|}{Synchronous motor model LowFreqTime} \\
\hline & Address: & 0xCD1D & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 100 & Data type: & Ulnt16 \\
\hline & Default: & 10 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0 to 100} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{7}{*}{CD-30} & \multicolumn{4}{|l|}{Percentage of pole auto-tuning current} \\
\hline & Address: & 0xCD1E & Effective mode: & - \\
\hline & Min.: & 50 & Unit: & \% \\
\hline & Max.: & 200 & Data type: & UInt16 \\
\hline & Default: & 100 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{50\% to 200\%} \\
\hline
\end{tabular}
Description
CD-31 Percentage of high frequency response current
Address: 0xCD1F Effective mode:
Min.: \(0 \quad\) Unit: \(\%\)
Max.: \(100 \quad\) Data type: Ulnt16
Default: 25
Change: Changeable at any time
Value Range:
0\% to 100\%
Description
CD-32 Percentage of HFI and SVC switching frequency
\begin{tabular}{llll}
Address: & \(0 \times C D 20\) & Effective mode: & - \\
Min.: & 0 & Unit: & \(\%\) \\
Max.: & 30 & Data type: & Ulnt16 \\
Default: & 10 & Change: & Changeable at any time
\end{tabular}
Value Range:
0\% to 30\%
Description
CD-33 Observer parameter
Address: 0xCD21
Min.: 10
Max.: 200
Default: 100
Value Range:
10 to 200
Description
CD-34 Speed filter cut-off frequency
\begin{tabular}{llll}
Address: & \(0 x C D 22\) & Effective mode: & - \\
Min.: & 1 & Unit: & Hz \\
Max.: & 200 & Data type: & Ulnt16 \\
Default: & 10 & Change: & Changeable at any time
\end{tabular}
Value Range:
1 Hz to 200 Hz
Description
CD-35 Carrier frequency during NS auto-tuning
Address: 0xCD23 Effective mode: -
Min.: \(\quad 2.00\)
Max.: \(\quad 16.00\)
Default: 8.00
Value Range:
2.00 Hz to 16.00 Hz
Description

\footnotetext{
CD-36 Automatic calculation of NS auto-tuning voltage
Address: 0xCD24

Effective mode:
Min.: 0 Unit:
Max.: \(1 \quad\) Data type: Ulnt16
Default: \(1 \quad\) Change: Changeable at any time

Value Range:
0: Disabled
1: Enabled
Description

CD-37 Percentage of NS auto-tuning voltage set manually
Address: 0xCD25
Min.: 0
Max.: \(\quad 100\)
Default: 10
Value Range:
0\% to 100\%
Description

CD-38 Duration of HFI stage 1
Address: 0xCD26
Min.: 50
Max.: 500
Default: 150
Effective mode:
Unit: \(\%\)
Data type: Ulnt16
Change: Changeable at any time
-

Value Range:
50 ms to 500 ms
Description

\section*{CD-40 Speed loop proportional gain 1}
\begin{tabular}{llll}
Address: & \(0 x C D 28\) & Effective mode: & - \\
Min.: & 1 & Unit: & - \\
Max.: & 100 & Data type: & Ulnt16 \\
Default: & 30 & Change: & Changeable at any time
\end{tabular}

\section*{Value Range:}

1 to 100
Description

CD-41 Speed loop integral time 1
\begin{tabular}{ll}
Address: & \(0 x C D 29\) \\
Min.: & 0.01 \\
Max.: & 10.00 \\
Default: & 0.50
\end{tabular}

Effective mode:
Unit: \(\quad\) s
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.01 s to 10.00 s

Description
}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{9}{*}{CD-42} & \multicolumn{3}{|l|}{Switchover frequency 1} \\
\hline & Address: 0xCD2A & Effective mode: & \\
\hline & Min.: 0.00 & Unit: & Hz \\
\hline & Max.: CD-45 & Data type: & Ulnt16 \\
\hline & Default: 5.00 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0.00 Hz to CD-45 & & \\
\hline & Description & & \\
\hline & - & & \\
\hline \multirow[t]{9}{*}{CD-43} & \multicolumn{3}{|l|}{Speed loop proportional gain 2} \\
\hline & Address: 0xCD2B & Effective mode: & - \\
\hline & Min.: 1 & Unit: & - \\
\hline & Max.: 100 & Data type: & Ulnt16 \\
\hline & Default: 20 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 1 to 100 & & \\
\hline & Description & & \\
\hline & - & & \\
\hline \multirow[t]{9}{*}{CD-44} & \multicolumn{3}{|l|}{Speed loop integral time 2} \\
\hline & Address: 0xCD2C & Effective mode: & - \\
\hline & Min.: 0.01 & Unit: & s \\
\hline & Max.: \(\quad 10.00\) & Data type: & Ulnt16 \\
\hline & Default: 1.00 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0.01s to 10.00 s & & \\
\hline & Description & & \\
\hline & - & & \\
\hline \multirow[t]{9}{*}{CD-45} & \multicolumn{3}{|l|}{Switchover frequency 2} \\
\hline & Address: 0xCD2D & Effective mode: & - \\
\hline & Min.: CD-42 & Unit: & Hz \\
\hline & Max.: F0-10 & Data type: & Ulnt16 \\
\hline & Default: 10.00 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Value Range: \\
CD-42 to F0-10
\end{tabular}}} \\
\hline & & & \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & & & \\
\hline \multirow[t]{8}{*}{CD-46} & \multicolumn{3}{|l|}{Vector control slip gain} \\
\hline & Address: 0xCD2E & Effective mode: & - \\
\hline & Min.: 50 & Unit: & \% \\
\hline & Max.: 200 & Data type: & Ulnt16 \\
\hline & Default: 100 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 50\% to 200\% & & \\
\hline & Description & & \\
\hline
\end{tabular}

CD-47 Speed feedback filter time in SVC mode Address: 0xCD2F

Effective mode:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{} & Min.: & 0.000 & Unit: & s \\
\hline & Max.: & 0.100 & Data type: & Ulnt16 \\
\hline & Default: & 0.015 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.000 s to 0.100s} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{-} \\
\hline \multirow[t]{15}{*}{CD-49} & \multicolumn{4}{|l|}{Torque upper limit source in speed control mode (motoring)} \\
\hline & Address: & 0xCD31 & Effective mode: & - \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 7 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0: Digital setting (F2-10)} \\
\hline & \multicolumn{4}{|l|}{1: AI1} \\
\hline & \multicolumn{4}{|l|}{2: AI2} \\
\hline & \multicolumn{4}{|l|}{3: AI3} \\
\hline & \multicolumn{4}{|l|}{4: Pulse reference} \\
\hline & \multicolumn{4}{|l|}{5: Communication} \\
\hline & \multicolumn{4}{|l|}{6: MIN (AI1, Al2)} \\
\hline & \multicolumn{4}{|l|}{7: MAX (AI1, Al2)} \\
\hline & \multicolumn{4}{|l|}{Others: F connector Description} \\
\hline \multirow[t]{9}{*}{CD-50} & \multicolumn{4}{|l|}{Torque upper limit in speed control mode} \\
\hline & Address: & 0xCD32 & Effective mode: & \\
\hline & Min.: & 0.0 & Unit: & \% \\
\hline & Max.: & 200.0 & Data type: & Ulnt16 \\
\hline & Default: & 150.0 & Change: & Changeable at any time \\
\hline & \multicolumn{4}{|l|}{Value Range:} \\
\hline & \multicolumn{4}{|l|}{0.0\% to 200.0\%} \\
\hline & \multicolumn{4}{|l|}{Description} \\
\hline & \multicolumn{4}{|l|}{D} \\
\hline \multirow[t]{5}{*}{CD-51} & \multicolumn{4}{|l|}{Torque upper limit source in speed control mode (generating)} \\
\hline & Address: & 0xCD33 & Effective mode: & \\
\hline & Min.: & 0 & Unit: & - \\
\hline & Max.: & 8 & Data type: & Ulnt16 \\
\hline & Default: & 0 & Change: & Changeable at any time \\
\hline
\end{tabular}
Value Range:

0: Digital setting (F2-10)
1: AI1
2: Al2
3: AI3
4: Pulse reference (DI5)
5: Communication
6: MIN (AI1, Al2)
7: MAX (AI1, AI2)
8: Digital setting (F2-12)
Others: F connector
Description

\section*{CD-52 Torque upper limit in speed control mode (generating)}

Address: 0xCD34
Min.: \(\quad 0.0\)
Max.: 200.0
Default: 150.0
Effective mode:
Unit: \(\%\)

Value Range:
0.0\% to 200.0\%

Description

\section*{CD-53 Field weakening mode}
\begin{tabular}{llll}
Address: & \(0 \times C D 35\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 2 & Data type: & Ulnt16 \\
Default: & 1 & Change: & Changeable only at stop
\end{tabular}

\section*{Value Range:}

0 : No field weakening
1: Auto adjustment
2: Calculation+Auto adjustment
Description
0 : No field weakening
Without field weakening control, the maximum motor speed is related to the bus voltage of the AC drive. The output current is smaller under the same load, but the running frequency cannot reach the frequency reference. Do not select this function if a higher speed is required.
1: Auto adjustment
This field weakening mode is simple and reliable. In scenarios requiring quick field weakening, the
field weakening coefficient (F2-19) can be increased as appropriate. However, if the coefficient is too large,
the current may be unstable.
2: Calculation+Auto adjustment
In this mode, the field weakening current is adjusted quickly. This mode can be selected in scenarios where the auto adjustment mode cannot
meet requirements.

CD-54 Field weakening gain
Address: 0xCD36
Effective mode: -
\begin{tabular}{ll}
Min.: & 1 \\
Max.: & 50 \\
Default. & 5
\end{tabular}
```

Unit:
Data type: Ulnt16
Change: Changeable at any time

```

Value Range:
1 to 50
Description
Increasing the setpoint can improve dynamic response. However, an excessively large setpoint may
also cause current oscillation.

CD-57 Generating power limiting
\begin{tabular}{llll}
Address: & \(0 x C D 39\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 3 & Data type: & Ulnt16 \\
Default: & 0 & Change: & Changeable at any time
\end{tabular}

Value Range:
0: Disabled
1: Enabled in the whole process
2: Enabled at constant speed
3: Enabled during deceleration
Description

CD-58 Generating power upper limit
Address: 0xCD3A
\begin{tabular}{ll}
Effective mode: \\
Unit: & \(\%\) \\
Data type: & Ulnt16 \\
Change: & Changeable at any time
\end{tabular}

Min.: 0.0
Max.: 200.0
Change: Changeable at any time
Default: 20.0
Value Range:
0.0\% to 200.0\%

\section*{Description}

CD-59 Motor 4 control mode
\begin{tabular}{llll}
Address: & \(0 \times C D 3 B\) & Effective mode: & - \\
Min.: & 0 & Unit: & - \\
Max.: & 2 & Data type: & Ulnt16 \\
Default: & 2 & Change: & Changeable only at stop
\end{tabular}

Value Range:
0: SVC
1: FVC
2: V/f
Description

CD-60 Initial position angle detection current of synchronous motor
Address: 0xCD3C
Effective mode:
Min.: 50
Max.: 180
Default: 80
Unit:
Data type: Ulnt16

Value Range:
50 to 180

\begin{tabular}{|c|c|c|c|}
\hline & Description & & \\
\hline \multirow[t]{9}{*}{CD-67} & \multicolumn{3}{|l|}{Low speed carrier frequency} \\
\hline & Address: 0xCD43 & Effective mode: & - \\
\hline & Min.: 0.8 & Unit: & kHz \\
\hline & Max.: \(\quad\) F0-15 & Data type: & Ulnt16 \\
\hline & Default: 2.0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0.8 kHz to F0-15 & & \\
\hline & Description & & \\
\hline & & & \\
\hline \multirow[t]{9}{*}{CD-68} & \multicolumn{3}{|l|}{Position lock} \\
\hline & Address: 0xCD44 & Effective mode: & - \\
\hline & Min.: 0 & Unit: & - \\
\hline & Max.: 1 & Data type: & Ulnt16 \\
\hline & Default: 0 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 0 to 1 & & \\
\hline & Description & & \\
\hline & & & \\
\hline \multirow[t]{9}{*}{CD-69} & \multicolumn{3}{|l|}{Switchover frequency} \\
\hline & Address: 0xCD45 & Effective mode: & - \\
\hline & Min.: 0.00 & Unit: & Hz \\
\hline & Max.: CD-42 & Data type: & Ulnt16 \\
\hline & Default: 0.30 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{0.00 Hz to CD-42} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline & \multicolumn{3}{|l|}{-} \\
\hline \multirow[t]{9}{*}{CD-70} & \multicolumn{3}{|l|}{Position lock speed loop proportional gain} \\
\hline & Address: 0xCD46 & Effective mode: & - \\
\hline & Min.: 1 & Unit: & - \\
\hline & Max.: 100 & Data type: & Ulnt16 \\
\hline & Default: 10 & Change: & Changeable at any time \\
\hline & Value Range: & & \\
\hline & 1 to 100 & & \\
\hline & Description & & \\
\hline & & & \\
\hline \multirow[t]{8}{*}{CD-71} & \multicolumn{3}{|l|}{Position lock speed loop integral time} \\
\hline & Address: 0xCD47 & Effective mode: & - \\
\hline & Min.: 0.01 & Unit: & s \\
\hline & Max.: \(\quad 10.00\) & Data type: & Ulnt16 \\
\hline & Default: 0.50 & Change: & Changeable at any time \\
\hline & \multicolumn{3}{|l|}{Value Range:} \\
\hline & \multicolumn{3}{|l|}{0.01s to 10.00s} \\
\hline & \multicolumn{3}{|l|}{Description} \\
\hline
\end{tabular}
```

CD-74 Auto-tuning free mode
Address: 0xCD4A Effective mode: -
Min.: 0 Unit: -
Max.: 2 Data type: Ulnt16
Default: 0 Change: Changeable at any time
Value Range:
0: Disabled
1: Auto-tuning upon initial running after power-on
2: Auto-tuning upon running
Description
CD-76 Initial position compensation angle

Address:	$0 x C D 4 C$	Effective mode:	-
Min.:	0.0	Unit:	-
Max.:	359.9	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0 . 0 ~ t o ~ 3 5 9 . 9
Description

```

\section*{CD-80 Speed loop command word}
```

Address:	$0 \times C D 50$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	11	Change:	Changeable at any time

Value Range:
Bit00: Speed loop
0: Disabled
1: Enabled
Bit01: Integration mode
0: Conventional integration
1: Position integration
Bit02: Acceleration torque
0: Disabled
1: Enabled
Bit03-Bit04: Acceleration source
0 : Function transfer torque
1: Automatic calculation
2: Function transfer acceleration
Bit05: Anti-load disturbance
0 : Disabled
1: Enabled
Description
CD-81 Locked-rotor fast integral cancel coefficient
Address: 0xCD51
Effective mode:

```
\begin{tabular}{ll}
Min.: & 0.0 \\
Max.: & 100.0 \\
Default: & 0.0
\end{tabular}

Value Range:
0.0\% to +100.0\%

Description

CD-82 Integral torque
Address: 0xCD52
Min.: -100
Max.: \(\quad 100.0\)
Default: 0.0
Value Range:
-100\% to +100.0\%
Description
```

Effective mode: -
Unit: \%
Data type: Int16
Change: Changeable at any time

Unit: $\%$
Data type: Ulnt16
Change: Changeable at any time

CD-83 Speed controller frequency window size

Address: 0xCD53
Min.: $\quad 0.00$
Max.: $\quad 10.00$
Default: 0.00

## Value Range:

0.00 Hz to 10.00 Hz

Description

CD-84 Current filter time for torque reference
Address: 0xCD54
Min.: 0.0
Max.: $\quad 100.0$
Default: 0.0
Value Range:
0.0 ms to 100.0 ms

## Description

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit: ms
Data type: Ulnt16
Change: Changeable only at stop

## CD-85 Acceleration torque

Address: 0xCD55
Min.: $\quad 0$
Max.: 8
Default: 0
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
0 : Inactive
1: AI1
2: AI2
3: AI3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector
Description
CD-87 Reference model bandwidth

Address:	0xCD57	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	300.00	Data type:	Ulnt16
Default:	0.00	Change:	Changeable at any time

Value Range:
0.00 Hz to 300.00 Hz
Description
CD-88 Torque feedforward coefficient

Address:	$0 x C D 58$
Min.:	0.0
Max.:	1000.0
Default:	100.0

Value Range:
0.0\% to 1000.0\%

## Description

## CD-89 Vector control reference frequency filter time

Address: 0xCD5
Min.: 0.0
Max.: $\quad 100.0$
Default: 0.0
Value Range:
0.0 ms to 100.0 ms
Description
CD-90 Vector control feedback frequency filter time

Address:	$0 \times C D 5 A$	Effective mode:	-
Min.:	0.0	Unit:	ms
Max.:	100.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable only at stop

Value Range:
0.0 ms to 100.0 ms

	Description		
CD-91	Load observation bandwidth		
	Address: 0xCD5B	Effective mode:	
	Min.: 0.00	Unit:	Hz
	Max.: $\quad 300.00$	Data type:	Ulnt16
	Default: 0.00	Change:	Changeable at any time
	Value Range:		
	0.00 Hz to 300.00 Hz		
	Description		
	-		
CD-92	Load observation coefficient		
	Address: 0xCD5C	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: 1000.0	Data type:	Ulnt16
	Default: 100.0	Change:	Changeable at any time
	Value Range:		
	0.0\% to 1000.0\%		
	Description		
CD-93	Pseudo integral coefficient		
	Address: 0xCD5D	Effective mode:	-
	Min.: 0.000	Unit:	-
	Max.: 10.000	Data type:	Ulnt16
	Default: 1.000	Change:	Changeable at any time
	Value Range:		
	0.000 to 10.000		
	Description		
CD-94	Torque coefficient enable		
	Address: 0xCD5E	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 1	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0: Disabled		
	1: Enabled Description		
CD-96	Center frequency of notch filter 1		
	Address: 0xCD60	Effective mode:	-
	Min.: 0.0	Unit:	-
	Max.: 4000.0	Data type:	Ulnt16
	Default: 4000.0	Change:	Changeable at any time
	Value Range:		
	0.0 to 4000.0		


	Description		
CD-97	Center frequency of notch filter 2		
	Address: 0xCD61	Effective mode:	-
	Min.: 0.0	Unit:	-
	Max.: 4000.0	Data type:	Ulnt16
	Default: 4000.0	Change:	Changeable at any time
	Value Range:		
	0.0 to 4000.0		
	Description		
	-		
CD-98	Integral setting control word		
	Address: 0xCD62	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 1	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0: Disabled		
	1: Enabled		
	Others: B connector		
	Description		
CD-99	Integral reference source		
	Address: 0xCD63	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 8	Data type:	Ulnt16
	Default: 0	Change:	Changeable at any time
	Value Range:		
	0: Digital setting		
	1: Al1		
	2: AI2		
	3: Al3		
	4: Pulse reference		
	5: Communication		
	6: Multi-reference		
	7: Motor-driven potentiometer		
	8: PID		
	Others: F connector Description		

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

### 4.54 CE: Motor 4 Vector Parameters

CE-00 Externally transferred acceleration
Address: 0xCE00

Min.: 0

Effective mode:
Unit:

Max.:	8
Default.	0

Value Range:
0 : Inactive
1: AI1
2: AI2
3: Al3
4: Pulse reference
5: Communication
6: Multi-reference
7: Motor-driven potentiometer
8: PID
Others: F connector

## Description

CE-03 Overturning torque limiting coefficient
Address: 0xCE03

Min.: 0.0
Max.: $\quad 400.0$
Default: 100.0

## Value Range:

0.0\% to 400.0\%

## Description

## CE-04 Motoring power limiting coefficient

Address:	$0 x C E 04$
Min.:	0.0
Max.:	400.0
Default:	400.0

## Value Range:

0.0\% to 400.0\%

## Description

CE-05 Generating power limiting coefficient

Address:	$0 x C E 05$
Min.:	0.0
Max.:	400.0
Default:	400.0

## Value Range:

0.0\% to 400.0\%

Description

Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: \%
Data type: Ulnt16
Change: Changeable at any time

CE-06 Overspeed limiting enable
Address: 0xCE06
Min.: 0
Max.: $\quad 1$
Default: 1

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0 to 1
Description

CE-07 Sine wave frequency of bandwidth test
Address: 0xCE07 Effective mode: -

Min.: 0
Max.: 1000
Default: 0
Unit-
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 Hz to 1000 Hz
Description

CE-08 Sine wave amplitude of bandwidth test
Address: 0xCE08
Min.: 0
Max.: 100
Default: 0
Value Range:
0\% to 100\%
Description

Effective mode:	
Unit:	$\%$
Data type:	Ulnt16
Change:	Changeable at any time

## CE-09 Bandwidth test enable

Address: 0xCE09
Min.: 0
Max.: 4
Default: 0
Value Range:
0 to 4
Description

CE-11 Speed loop parameter calculation mode
Address: 0xCEOB

Min.: $\quad 0$
Max.: 1
Default: 1

## Value Range:

0: New solution
1: Compatible solution
Description

CE-12 Speed loop proportional gain in FVC mode
Address: 0xCEOC
Min.: $\quad 0.00$
Max.: $\quad 100.00$
Default: 8.00
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0.00 Hz to 100.00 Hz

Description

CE-13 Speed loop integral time in FVC mode

Address:	0xCEOD	Effective mode:	-
Min.:	0.000	Unit:	S
Max.:	20.000	Data type:	Ulnt16
Default:	0.080	Change:	Changeable at any time

Value Range:
0.000 s to 20.000 s

Description

CE-14 Speed loop proportional gain in SVC mode

Address:	OxCEOE	Effective mode: -	
Min.:	0.00	Unit:	Hz
Max.:	100.00	Data type:	Ulnt16
Default:	5.00	Change:	Changeable at any time

## Value Range:

0.00 Hz to 100.00 Hz

## Description

## CE-15 Speed loop integral time in SVC mode

Address:	0xCEOF	Effective mode:	
Min.:	0.000	Unit:	s
Max.:	20.000	Data type:	Ulnt16
Default:	0.127	Change:	Changeable at any time

CE-16 Low frequency proportional correction coefficient

Address:	$0 x C E 10$
Min.:	0.0
Max.:	1000.0
Default:	100.0

Effective mode: -
Value Range:
0.000s to 20.000s

Description
Unit: $\%$

## Value Range:

0.0\% to $1000.0 \%$

## Description

CE-17 Low frequency integral correction coefficient

Address:	$0 x C E 11$
Min.:	0.0
Max.:	1000.0
Default:	100.0

Effective mode: -
Unit: \%
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0\% to 1000.0\%

## Description

CE-18 Speed loop adaption factor

Address:	$0 \times C E 12$	Effective mode:	-
Min.:	0.000	Unit:	-
Max.:	10.000	Data type:	Ulnt16
Default:	0.200	Change:	Changeable at any time

Value Range:
0.000 to 10.000
Description
CE-19 Speed loop adaption switchover lower limit
Address: 0xCE13
Min.: 0.000
Max.: $\quad 10.000$
Default: 0.400
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0.000 to 10.000
Description
CE-20 Speed loop adaption switchover upper limit

Address:	$0 x C E 14$
Min.:	0.000
Max.:	10.000
Default:	1.000

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0.000 to 10.000

## Description

## CE-21 Speed loop adaption correction upper limit

Address:	$0 x C E 15$
Min.:	0.0
Max.:	1000.0
Default:	100.0

Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0.0\% to 1000.0\%

## Description

CE-22 Speed loop adaption correction lower limit
Address: 0xCE16
Min.: 0.0
Max.: 1000.0
Default: 100.0
Value Range:
0.0\% to 1000.0\%
Description

CE-23 Flux adaptation enable
Address: 0xCE17 Effective mode: -
Min.: 0
Max.: 1
Default: 0
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 to 1
Description

CE-24 Overspeed controller correction coefficient
Address: 0xCE18 Effective mode: -
Min.: $0.0 \quad$ Unit:

Max.: 1000.0
Data type: Ulnt16
Default: 100.0
Change: Changeable at any time
Value Range:
0.0\% to 1000.0\%

Description

CE-25 VDC control command word
Address: 0xCE19 Effective mode: -
Min.: 0
Max.: 65535
Unit:

Default: 0
Data type: Ulnt16

Value Range:
Bit00: VdcMin
0 : Disabled
1: Enabled
Bit01: VdcMax
0 : Disabled
1: Enabled
Bit02: Automatic calculation of VDC trigger voltage
0 : Disabled
1: Enabled
Bit03: VDC control integral action
0 : Disabled
1: Enabled
Description

## CE-26 Bus capacitance ratio

Address:	0xCE1A	Effective mode:	-
Min.:	50.0	Unit:	$\%$
Max.:	1000.0	Data type:	Ulnt16
Default:	100.0	Change:	Changeable at any time

Value Range:
50.0\% to 1000.0\%

Description
CE-27 Undervoltage suppression exit hysteresis frequency
Address: 0xCE1B Effective mode:
Min.: $\quad 0.00$
Max.: $\quad 10.00$
Default: 3.00
Value Range:
0.00 Hz to 10.00 Hz
Description
CE-28 Minimum VDC failure speed threshold

Address:	0xCE1C	Effective mode:	-
Min.:	0.00	Unit:	Hz
Max.:	20.00	Data type:	Ulnt16
Default:	2.00	Change:	Changeable at any time

            Min.: \(\quad 0.00\)
            Max.: 20.00
            Default: 2.00
            Value Range:
            0.00 Hz to 20.00 Hz
            Description
                                    Unit: Hz
                                    Data type: Ulnt16
                                    Change: Changeable at any time
                                    Unit: Hz
                                    Data type: Ulnt16
                                    Change: Changeable at any time
    CE-29 Dynamic adjustment coefficient

Address:	$0 x C E 1 D$
Min.:	0.0
Max.:	1000.0
Default:	100.0

Effective mode:
Unit: \%

Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0.0\% to 1000.0\%

## Description

## CE-30 Minimum VDC activation voltage

Address:	$0 x C E 1 E$
Min.:	320.0
Max.:	540.0
Default:	430.0

## Value Range:

320.0 V to 540.0 V

## Description

Effective mode:	-
Unit:	V
Data type:	Ulnt16
Change:	Changeable at any time

Description

## CE-31 Maximum VDC activation voltage

Address:	$0 x C E 1 F$
Min.:	650.0
Max.:	800.0
Default:	770.0

Value Range:
650.0 V to 800.0 V

## Description

Effective mode:
Unit: V
Data type: Ulnt16
Change: Changeable at any time

CE-32 Flux linkage control command word
Address: 0xCE20

Effective mode:

Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	2357	Change:	Changeable at any time

Value Range:
Bit00: Output voltage limit calculation filtering mode
0 : Symmetric filtering
1: Asymmetric filtering
Bit01: Asynchronous motor inverse proportion curve calculation
0 : The inverse proportional synchronization frequency decreases.
1: The inverse proportional speed decreases.
Bit02: Flux linkage feedforward calculation by using inverse proportional speed
0 : Disabled
1: Enabled
Bit03: Reserved
Bit04: Reserved
Bit05: Field weakening adjustment
0 : Disabled
1: Enabled
Bit06: Flux linkage derivative feedforward
0: Disabled
1: Enabled
Bit07: Energy conservation control
0: Disabled
1: Enabled
Bit08: Asynchronous motor flux closed loop
0: Disabled
1: Enabled
Bit09: Reserved
Bit10: Reserved
Bit11: Asynchronous motor pre-excitation mode
0 : Pre-excitation based on time
1: Pre-excitation based on current
Bit12: Asynchronous motor pre-excitation current
0: Reference current
1: Maximum current allowed by the drive

## Description

Bit00: Output voltage limit calculation filtering mode
0 indicates the usual first-order filtering, and 1 indicates filtering when the bus voltage rises and no filtering when it falls, so as to avoid overmodulation.

Bit01: Asynchronous motor inverse proportion curve calculation
You can select 1 to deliberately lower the break frequency to avoid saturation in the field-weakening range. The setting is valid only when Bit02 is set to 1 .
Bit02: Flux linkage feedforward calculation by using inverse proportional speed
If it is set to 1 , the inverse proportional speed of flux linkage reference decreases when the output
frequency exceeds the break frequency, which can improve dynamic response during acceleration.
Bit05: Field weakening adjustment
When it is set to 1 , voltage outer loop adjustment is valid.

Bit07: Energy conservation control
This function is valid for asynchronous motors. It can reduce copper loss at light load in vector control mode.
Bit11: Asynchronous motor pre-excitation mode
0 : Pre-excitation is implemented according to the set time. The time will be shorter than the set time if remanence exists.
1: Fixed current is output during the pre-excitation process, and the motor exits the pre-excitation mode when it detects that the flux linkage reaches the setpoint.
Bit12: Asynchronous motor pre-excitation current
0 : Pre-excitation is implemented based on the current defined by AB-51.
1: Pre-excitation is implemented based on the maximum current allowed by the drive, which can shorten the pre-excitation time.

## CE-33 Output voltage upper limit margin for field weakening adjustment

Address: 0xCE21
Min.: 1
Max.: 50
Default: 5
Value Range:
1\% to 50\%
Description
Decreasing the setpoint can improve voltage utilization. The current is smaller under the same load in the field weakening region. However, an excessively small setpoint will affect dynamic performance.

CE-34 Output voltage upper limit margin for auto adjustment of field weakening
Address: 0xCE22
Min.: $\quad 1$
Max.: $\quad 20$
Default: 3
Value Range:
1\% to 20\%
Description
When F2-18 is set to 2 (calculation+auto adjustment), the value of this parameter affects the voltage margin, and the effect is similar to that of AB-33.

## CE-35 Filter time for calculating maximum output voltage

Address:	$0 x C E 23$	Effective mode:	-
Min.:	0	Unit:	ms
Max.:	3000	Data type:	Ulnt16
Default:	30	Change:	Changeable at any time

Value Range:
0 ms to 3000 ms
Description
Increasing the filter time allows the maximum output voltage to change slowly but affects voltage utilization.

## CE-36 Rated flux adjustment coefficient for calculation

Address:	$0 x C E 24$	Effective mode:
Min.:	0.5	Unit:
Max.:	2.0	Data type:

Default: $1.0 \quad$ Change: Changeable at any time

Value Range:
0.5 to 2.0

Description
You can decrease the value of this parameter if underexcitation is required, or increase it if overexcitation is required.

CE-37 Field weakening frequency adjustment coefficient for calculation
Address: 0xCE25
Effective mode:
Min.: $0.8 \quad$ Unit: -
Max.: $1.2 \quad$ Data type: Ulnt16
Default: $1.0 \quad$ Change: Changeable at any time
Value Range:
0.8 to 1.2

## Description

This parameter is used to adjust the break frequency calculated automatically by the AC drive. After flux linkage feedforward calculation by using inverse proportional speed is enabled, deceasing the value of this parameter enables the motor to enter the field weakening state in advance, which is applicable to occasions with short acceleration time and high dynamic response requirements.

CE-38 Slip filter time for calculating field weakening frequency
Address: 0xCE26 Effective mode:
Min.: 0 Unit: ms

Max.: 3000 Data type: Ulnt16
Default: 62 Change: Changeable at any time

## Value Range:

0 ms to 3000 ms

## Description

When flux linkage feedforward calculation by using inverse proportional speed is enabled, increasing the value of this parameter can reduce the fluctuation range of the calculated reference flux linkage.

## CE-39 Feedback speed filtering

Address: 0xCE27 Effective mode:
Min.: 0 Unit: ms
Max.: 8000 Data type: Ulnt16
Default: $50 \quad$ Change: Changeable at any time
Value Range:
0 ms to 8000 ms
Description
When flux linkage feedforward calculation by using inverse proportional speed is enabled, increasing the value of this parameter can reduce the disturbance to the calculated flux linkage feedforward introduced by speed test.

CE-40 Flux linkage rising filter time

Address:	0xCE28	Effective mode:	-
Min.:	0	Unit:	ms
Max.:	8000	Data type:	Ulnt16
Default:	20	Change:	Changeable at any time

Value Range:
0 ms to 8000 ms

## Description

When flux linkage feedforward calculation by using inverse proportional speed is enabled, this parameter defines the filter time of the asymmetric filter that takes effect only when the reference flux linkage increases.

## CE-42 Feedback voltage filter time

Address:	$0 \times C E 2 A$	Effective mode:	-
Min.:	0	Unit:	ms
Max.:	3000	Data type:	Ulnt16
Default:	5	Change:	Changeable at any time

Value Range:
0 ms to 3000 ms

## Description

When field weakening adjustment is enabled, increasing this filter time can reduce the fluctuation of the reference excitation current. To increase the field weakening gain, you need to decrease the filter time to avoid system oscillation.

## CE-43 Maximum demagnetization current of synchronous motor

Address: 0xCE2B Effective mode:
Min.: $0 \quad$ Unit:
Max.: 500 Data type: Ulnt16
Default: 300 Change: Changeable at any time

Value Range:
0\% to 500\%

## Description

This parameter is used to limit the demagnetization current of synchronous motors to prevent faults such as overload. It is a percentage relative to the rated current.

## CE-44 Voltage outer loop lower limit coefficient

Address:	$0 x C E 2 C$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	500	Data type:	Ulnt16
Default:	50	Change:	Changeable at any time

Value Range:
0 to 500
Description
This parameter is used to limit the lower limit of flux linkage during field weakening for asynchronous motors to avoid limiting torque reduction.

## CE-45 Flux linkage derivative feedforward coefficient

Address:	$0 x C E 2 D$
Min.:	0.0
Max.:	1.5
Default:	1.0

Effective mode:
Min.: 0.0 Unit

Default: $1.0 \quad$ Change: Changeable at any time
Value Range:
0.0 to 1.5

## Description

When flux linkage derivative feedforward of an asynchronous motor is enabled, this parameter can adjust the ratio of effective feedforward. A smaller value indicates smaller feedforward effect.
CE-46 Flux linkage derivative feedforward filter time
Address: 0xCE2E Effective mode: -
Min.: $0 \quad$ Unit: ms
Max.: $3000 \quad$ Data type: Ulnt16
Default: 6 Change: Changeable at any time
Value Range:
0 ms to 3000 ms
Description
Increasing the filter time can reduce the fluctuation of the calculated feedforward value.
CE-47 Torque current rising filter time under energy conservation control
Address: 0xCE2F
Min.: 0
Max.: 3000
Unit: ms
Default: 50
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0 ms to 3000 ms

## Description

When energy conservation control of an asynchronous motor is enabled, decreasing the value of this parameter can improve dynamic response and avoid a large drop in speed when a sudden load is applied. You need to increase this value when the output current fluctuates greatly.

## CE-48 Torque current falling filter time under energy conservation control

Address: 0xCE30
Min.: 0
Effective mode: -
Min. 0 Unit: ms
Max.: 3000 Data type: Ulnt16
Default: 100
Change: Changeable at any time

## Value Range:

0 ms to 3000 ms
Description
When energy conservation control of an asynchronous motor is enabled, decreasing the value of this parameter can make the output current decrease rapidly after the load is reduced. You need to increase this value when the output current fluctuates greatly.
CE-49 Flux linkage lower limit coefficient under energy conservation control

Address:	$0 x C E 31$
Min.:	0.00
Max.:	0.50
Default:	0.10

Effective mode:
Min.: $\quad 0.00$
Default: 0.10
Unit:
Data type: Ulnt16
Value Range:
0.00 to 0.50

## Description

This parameter defines the minimum flux linkage allowed under energy conservation control. A smaller value indicates more significant energy conservation effect when no load is applied, but it will affect dynamic response after the load is added.

## CE-51 Pre-excitation current

Address: 0xCE33
Min.: $\quad 1$
Max.: 200
Default: 100

Effective mode: -
Unit: $\%$
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

1\% to 200\%

## Description

When pre-excitation of an asynchronous motor is implemented based on current, this parameter defines the reference excitation current as a percentage of the rated current.

## CE-52 Pre-excitation time

Address: 0xCE34 Effective mode: -
Min.: 1 Unit: ms

Max.: 30000 Data type: Ulnt16
Default: 1000
Change: Changeable at any time
Value Range:
1 ms to 30000 ms

## Description

When pre-excitation of an asynchronous motor is implemented based on time, this parameter defines the total excitation time. The actual excitation time will be shorter than the set time if remanence exists.

## CE-53 Flux linkage closed-loop bandwidth frequency

Address:	OxCE35	Effective mode:	-
Min.:	0.0	Unit:	Hz
Max.:	100.0	Data type:	Ulnt16
Default:	2.0	Change:	Changeable at any time

Value Range:
0.0 Hz to 100.0 Hz

## Description

When flux closed loop is enabled, increasing the setpoint can reduce the deviation of the flux linkage from the rated value during dynamic processes such as sudden load or acceleration and deceleration of the asynchronous motor.

## CE-54 Feedback flux linkage filter time coefficient

Address: 0xCE36 Effective mode: -
Min.: 0 Unit: -

Max.: 200 Data type: Ulnt16
Default: 4 Change: Changeable at any time
Value Range:
0 to 200

## Description

When flux closed loop is enabled, increasing the setpoint can reduce fluctuation of the reference flux linkage. It is a percentage relative to the rotor time constant.

## CE-55 Static output flux linkage filter time

Address:	0xCE37	Effective mode:	
Min.:	0	Unit:	ms
Max.:	5000	Data type:	Ulnt16
Default:	10	Change:	Changeable at any time

Value Range:
0 ms to 5000 ms
Description
Increasing the setpoint can reduce fluctuation of the reference flux linkage.
CE-56 Current loop mode
Address: 0xCE38 Effective mode:
Min.: 0Max.: 3Default: 1
Value Range:

1: Complex vector mode
2: 880 mode
3: No field weakening

## Description

Decreasing the value of this parameter can enhance current loop following but also increase the overshoot and harmonics of the output current.

## CE-57 PI regulator proportional gain adaptation with load

Address:	$0 \times C E 39$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable only at stop

## Value Range:

0: Disabled
1: Enabled
Description

## ,

Unit:
Data type: Ulnt16
Change: Changeable only at stop

## CE-58 Current loop damping

Address: 0xCE3A
Min.: $\quad 0.2$
Max.: $\quad 5.0$
Default: 0.8

## Value Range:

0.2 to 5.0

## Description

Decreasing the value of this parameter can enhance current loop following but also increase the overshoot and harmonics of the output current.

## CE-59 Low-speed current loop Kp adjustment

Address:	0xCE3B	Effective mode:	-
Min.:	0.1	Unit:	-
Max.:	10.0	Data type:	Ulnt16
Default:	1.0	Change:	Changeable at any time

Value Range:
0.1 to 10.0

## Description

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.
CE-60 High-speed current loop Kp adjustment
Address: 0xCE3C Effective mode: -
Min.: 0.1

Unit:

```
Max.: 10.0
Default: 1.0
Data type: Ulnt16
Change: Changeable at any time
```

Value Range:
0.1 to 10.0

Description
The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.

## CE-61 Low-speed current loop Ki adjustment

Address: 0xCE3D Effective mode: -

Min.:	0.1	Unit:	-
Max.:	10.0	Data type:	Ulnt16

Default: $1.0 \quad$ Change: Changeable at any time

Value Range:
0.1 to 10.0

## Description

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.

CE-62 High-speed current loop Ki adjustment
Address: 0xCE3E Effective mode: -
Min.: 0.1 Unit: -

Max.: $10.0 \quad$ Data type: Ulnt16
Default: $2.0 \quad$ Change: Changeable at any time
Value Range:
0.1 to 10.0

## Description

The AC drive automatically calculates the current loop gain based on motor parameters. You can decrease the value of this parameter as appropriate when low-speed current oscillation or torque fluctuation is large.

## CE-63 D-axis current loop complex vector adjustment

Address: 0xCE3F
Min.: 0.1
Max.: 10.0
Default: 1.0
Value Range:
0.1 to 10.0

Description

CE-64 Q-axis current loop complex vector adjustment

Address:	$0 x C E 40$	Effective mode:	-
Min.:	0.1	Unit:	-
Max.:	10.0	Data type:	Ulnt16
Default:	1.0	Change:	Changeable at any time

## Value Range:

0.1 to 10.0

	Descript			
CE-65	Complex vector hysteresis frequency lower limit as a percentage of rated frequency			
	Address:	0xCE41	Effective m	
	Min.:	0	Unit:	\%
	Max.:	CE-66	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	0\% to CE-66			
	Description			
CE-66	Complex vector hysteresis frequency upper limit as a percentage of rated frequency			
	Address:	0xCE42	Effective mode: -	
	Min.:	CE-65	Unit:	\%
	Max.:	150	Data type:	Ulnt16
	Default:	0	Change:	Changeable at any time
	Value Range:			
	CE-65 to 150\%			
	Description			
CE-67	ImCsr2 hysteresis switchover voltage upper limit as a percentage of saturation voltage			
	Address:	0xCE43	Effective m	-
	Min.:	CE-68	Unit:	\%
	Max.:	95	Data type:	Ulnt16
	Default:	89	Change:	Changeable at any time
	Value Range:			
	CE-68 to 95\%			
	Description			
CE-68	ImCsr2 hysteresis switchover voltage lower limit as a percentage of saturation voltage			
	Min.:	60	Unit:	\%
	Max.:	CE-67	Data type:	Ulnt16
	Default:	79	Change:	Changeable at any time
	Value Range:			
	60\% to CE-67			
	Description			
	-			
CE-69	ImCsr2 hysteresis switchover frequency hysteresis range as a percentage of rated frequency			
	Address:	0xCE45	Effective m	
	Min.:	1	Unit:	\%
	Max.:	30	Data type:	Ulnt16
	Default:	10	Change:	Changeable at any time
	Value Range:			
	1\% to 30\%			
	Description			

[^3]Description
CE-75 Derivative feedforward adjustment

Address:	$0 \times C E 4 B$	Effective mode:	-
Min.:	0.0	Unit:	-
Max.:	1.0	Data type:	Ulnt16
Default:	0.0	Change:	Changeable at any time

Value Range:
0.0 to 1.0
Description
CE-76 Decoupling control start frequency as a percentage of rated frequency
Address: 0xCE4CEffective mode: -
Min.: $20 \quad$ Unit: $\%$
Max.: 150Data type: Ulnt16
Default: 40
Change: Changeable at any time
Value Range:
20\% to 150\%
Description
CE-77 Decoupling control filter time adjustment coefficient
Address: 0xCE4D Effective mode:
Min.: $0.1 \quad$ Unit:
Max.: $3.0 \quad$ Data type: Ulnt16
Default: 1.0 Change: Changeable at any time
Value Range:
0.1 to 3.0
Description
CE-78 Decoupling control output adjustment coefficient

Address:	$0 x C E 4 E$	Effective mode: -
Min.:	0.0	Unit:

Max.: 1.0 Data type: Ulnt16Default: 1.0Change: Changeable at any time
Value Range:
0.0 to 1.0
Description
CE-79 CPC feedforward enable

Address:	$0 x C E 4 F$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0: Disabled
1: Enabled

## Description

CE-80 Current loop auxiliary command word

Address: 0xCE50
Min.: 0
Max.: 65535
Default: 0
Value Range:
Bit00: Complex vector angle limiting
0 : Disabled
1: Enabled
Bit01: Voltage angle limiting
0: Program internal limiting
1: Parameter setting
Bit02: 0 by default
0 : No lower limit on the excitation current is imposed during the dynamic process.
1: A lower limit on the excitation current is imposed during the dynamic process in ImCsr2 mode.
Bit03-Bit15: Reserved (0 by default)

## Description

## CE-81 Voltage angle upper limit

Address: 0xCE51
Min.: 90
Max.: 180
Default: 150
Value Range:
$90^{\circ}$ to $180^{\circ}$
Description

## CE-82 Voltage angle lower limit

Address:	$0 x C E 52$	Effective mode:	-
Min.:	0	Unit:	$\circ$
Max.:	90	Data type:	Ulnt16
Default:	30	Change:	Changeable at any time
Value Range:			
$0^{\circ}$ to $90^{\circ}$			

```
Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Description

## CE-83 Asynchronous motor D axis integral limit

Address:	$0 \times C E 53$	Effective mode:	-
Min.:	0.500	Unit:	-
Max.:	1.000	Data type:	Ulnt16
Default:	0.707	Change:	Changeable at any time

Value Range:
0.500 to 1.000

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

	Description			
CE-84	Current loop carrier frequency upper limit			
	Address:	0xCE54	Effective mode:	
	Min.:	5.0	Unit:	-
	Max.:	16.0	Data type:	Ulnt16
	Default:	8.0	Change:	Changeable at any time
	Value Range:			
	5.0 to 16.0			
	Description			
CE-85	Droop enable			
	Address:	0xCE55	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	1	Data type:	Ulnt16
	Default:	0	Change:	Changeable only at stop
	Value Range:			
	0 to 1			
	Description			
CE-86	Droop source			
	Address:	0xCE56	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	3	Data type:	Ulnt16
	Default:	1	Change:	Changeable only at stop
	Value Range:			
	0 : Line current			
	1: Torque reference			
	2: Speed adjustment output			
	3: Speed adjustment integral component			
	Description			
CE-87	Frequency reference droop coefficient			
	Address:	0xCE57	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	50.0	Data type:	Ulnt16
	Default:	0.0	Change:	Changeable at any time
	Value Range:			
	$0.0 \% \text { to } 50.0 \%$			
	Description			
CE-88	FVC-SVC switchover mode			
	Address:	0xCE58	Effective mode:	-
	Min.:	0	Unit:	
	Max.:	3	Data type:	Ulnt16
	Default:	0	Change:	Changeable only at stop

## Value Range:

0: No switchover
1: Active switchover
2: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during stop and does not switch back to FVC mode when the encoder recovers during running.)
3: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during running or stop.)

## Description

## CE-89 FVC-SVC switchover frequency

Address:	$0 \times$ CE59	Effective mode:	
Min.:	10	Unit:	$\%$
Max.:	500	Data type:	Ulnt16
Default:	50	Change:	Changeable only at stop

Value Range:
10\% to 500\%
Description

## CE-90 FVC-SVC switchover hysteresis

Address:	0xCE5A	Effective mode:	
Min.:	10	Unit:	$\%$
Max.:	100	Data type:	Ulnt16
Default: 10	Change:	Changeable only at stop	
Value Range:			
10\% to 100\%			
Description			

### 4.55 H0: Fault Information Parameters

H0-00 Code of active fault 1
Address: 0x8000

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

H0-01 Subcode of active fault 1

Address:	$0 \times 8001$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

## 0 to 65535

Description

H0-02 Information of active fault 1
Address: 0x8002 Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## H0-03 Code of active fault 2

Address: 0x8003
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-04 Subcode of active fault 2

Address: $0 \times 8004$	Effective mode:		
Min.:	0	Unit:	-
Max.: 65535	Data type:	Ulnt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

## H0-05 Information of active fault 2

Address:	$0 \times 8005$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

## H0-06 Code of active fault 3

Address:	$0 \times 8006$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535

## Description

H0-07 Subcode of active fault 3

Address:	$0 \times 8007$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H0-08 Information of active fault 3

Address:	$0 \times 8008$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H0-09 Code of active fault 4
Address: 0x8009
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-10 Subcode of active fault 4

Address:	$0 \times 800 \mathrm{~A}$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

H0-11 Information of active fault 4

Address:	$0 \times 800 B$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

## H0-12 Code of active fault 5

Address: 0x800C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-13 Subcode of active fault 5
Address: 0x800D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-14 Information of active fault 5
Address: 0x800E
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-15 Code of active fault 6
Address: 0x800F
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-16 Subcode of active fault 6

H0-17 Information of active fault 6
Address: 0x8011
Address: 0x8010

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
Address: $0 \times 8010$
:

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:

Min.: 0	Unit:	-
Max.: 65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable
Value Range:		
to 65535		
Description		

## H0-18 Code of active limit 1

Address: 0x8012
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## H0-19 Subcode of active limit 1

Address:	$0 \times 8013$
Min.:	0
Max.:	65535
Default:	0

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

H0-20 Information of active limit 1
Address: 0x8014
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-21 Code of active limit 2
Address: 0x8015
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-22 Subcode of active limit 2

Address:	$0 \times 8016$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16

Default: 0
Value Range:
0 to 65535
Description

H0-23 Information of active limit 2
Address: 0x8017
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-24 Code of active limit 3
Address: $0 \times 8018$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-25 Subcode of active limit 3

Address:	$0 \times 8019$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

H0-26 Information of active limit 3

Address:	$0 \times 801 \mathrm{~A}$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

## H0-27 Code of active limit 4

Address:	$0 \times 801 B$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:

## 0 to 65535

Description

H0-28 Subcode of active limit 4

Address: $0 \times 801 C$	Effective mode:		
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

## H0-29 Information of active limit 4

Address: 0x801D

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-30 Code of active limit 5
Address: 0x801E
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-31 Subcode of active limit 5

Address:	$0 \times 801 F$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H0-32 Information of active limit 5

Address:	$0 \times 8020$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

H0-33 Code of active limit 6
Address: 0x8021

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-34 Subcode of active limit 6

Address:	$0 \times 8022$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H0-35 Information of active limit 6

Address:	$0 \times 8023$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H0-36 Code of active alarm 1

Address:	$0 \times 8024$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

H0-37 Subcode of active alarm 1

Address:	$0 \times 8025$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

H0-38 Information of active alarm 1

Address: $0 \times 8026$	Effective mode:	-	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H0-39 Code of active alarm 2
Address: 0x8027
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-40 Subcode of active alarm 2
Address: 0x8028
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-41 Information of active alarm 2

H0-42 Code of active alarm 3

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Address: 0x802A
Min.: 0
Max.: $\quad 65535$
Default: 0
Value Range:
0 to 65535
Description

## -

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Address: 0x8029
Min.: 0
Max.: $\quad 65535$
Default: 0
Value Range:
0 to 65535
Description
-

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

H0-44 Information of active alarm 3
Address: 0x802C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-45 Code of active alarm 4
Address: 0x802D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H0-46 Subcode of active alarm 4

Address:	$0 \times 802 \mathrm{E}$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H0-47 Information of active alarm 4

Address:	$0 \times 802 F$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H0-48 Code of active alarm 5

Address:	$0 \times 8030$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16

Default: 0
Change: Unchangeable

Value Range:
0 to 65535
Description

H0-49 Subcode of active alarm 5

Address:	$0 \times 8031$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H0-50 Information of active alarm 5

Address:	$0 \times 8032$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H0-51 Code of active alarm 6

Address:	$0 \times 8033$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

H0-52 Subcode of active alarm 6
Address: 0x8034
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

H0-53 Information of active alarm 6

Address:	$0 \times 8035$
Min.:	0
Max.:	65535
Default:	0

Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## 0 to 65535

Description

### 4.56 H1: Fault Setting Parameters

## H1-00 Fault code of exceptions in group 1

Address:	$0 \times 8100$	Effective mode:	-
Min.:	0.0	Unit:	-
Max.:	199.9	Data type:	Ulnt16
Default: 0.0	Change:	Changeable only at stop	
Value Range:			
0.0 to 199.9			
Description			

## H1-01 Handling of exceptions in group 1

Address: $0 \times 8101$	Effective mode:	-
Min.: $\quad 0$	Unit:	-
Max.: 6	Data type:	Ulnt16
Default: 6	Change:	Changeable only at stop
Value Range:		
0: Coast to stop		
1: Stop according to the stop mode		
2: Continue to run		
3: Run with power limit		
4: Run with current limit		
5: Ignore		
6: No action		
Description		

H1-02 Fault code of exceptions in group 2

Address:	$0 \times 8102$
Min.:	0.0
Max.:	199.9
Default:	0.0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Changeable only at stop

Value Range:
0.0 to 199.9

Description

H1-03 Handling of exceptions in group 2

Address:	$0 \times 8103$	Effective mode:	
Min.:	0	Unit:	-
Max.:	6	Data type:	Ulnt16
Default: 6	Change:	Changeable only at stop	
Value Range:			
Same as $\mathrm{H} 1-01$			

## Description

H1-04 Fault code of exceptions in group 3
Address: 0x8104
Min.: 0.0
Max.: 199.9
Default: 0.0
Value Range:
0.0 to 199.9

Description

H1-05 Handling of exceptions in group 3

Address: 0x8105
Min.: 0
Max.: 6
Default: 6
Value Range:
Same as H1-01
Description

H1-06 Fault code of exceptions in group 4
Address: 0x8106
Min.: 0.0
Max.: 199.9
Default: 0.0
Value Range:
0.0 to 199.9

Description

H1-07 Handling of exceptions in group 4
Address: $0 \times 8107$

Min.: 0
Max.: 6
Default: 6
Value Range:
Same as H1-01
Description

H1-08 Fault code of exceptions in group 5

Address:	$0 \times 8108$
Min.:	0.0
Max.:	199.9
Default:	0.0

Value Range:
0.0 to 199.9

Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode: -
Unit:
Data type: Ulnt16
Change: Changeable only at stop

H1-09 Handling of exceptions in group 5

Address:	$0 \times 8109$	Effective mode:	-
Min.:	0	Unit:	-
Max.: 6	Data type:	Ulnt16	
Default: 6	Change:	Changeable only at stop	
Value Range:			
Same as H1-01			
Description			

H1-10 Fault code of exceptions in group 6

Address:	$0 \times 810 \mathrm{~A}$	Effective mode:	
Min.:	0.0	Unit:	-
Max.:	199.9	Data type:	Ulnt16
Default:	0.0	Change:	Changeable only at stop

Value Range:
0.0 to 199.9

Description

H1-11 Handling of exceptions in group 6

Address:	$0 \times 810 \mathrm{~B}$
Min.:	0

Effective mode:
Min.: 0
Max.: 6
Default: 6

## Value Range:

Same as H1-01
Description
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

H1-14 Fault code of exceptions in group 8
Address: $0 \times 810 \mathrm{E}$

Effective mode:

Min.:	0.0
Max.:	199.9
Default:	0.0

Value Range:
0.0 to 199.9

Description

H1-15 Handling of exceptions in group 8

Address:	$0 \times 810 F$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	6	Data type:	Ulnt16
Default:	6	Change:	Changeable only at stop

```
Unit:
Data type: Ulnt16
Change: Changeable only at stop
```

Effective mode:
Unit:

Change: Changeable only at stop

Same as H1-01
Description

H1-16 Fault code of exceptions in group 9
Address: 0x8110
Min.: 0.0
Max.: 199.9
Default: 0.0
Value Range:
0.0 to 199.9

Description

H1-17 Handling of exceptions in group 9

Address: $0 \times 8111$
Min.: $\quad 0$
Max.: 6
Default: 6

## Value Range:

Same as H1-01
Description

H1-18 Fault code of exceptions in group 10
Address: $0 \times 8112$
Min.: 0.0
Max.: 199.9
Default: 0.0
Value Range:
0.0 to 199.9

Description

H1-19 Handling of exceptions in group 10
Address: 0x8113
Min.: 0
Max.: 6

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable only at stop

Effective mode:
Unit:
Data type: Ulnt16
Default: 6
Change:
Changeable only at stop
Value Range:
Same as H1-01
Description
4.57 H2: Fault Setting Parameters

H2-00 Source of external fault 1 (NO)

Address: $0 \times 8200$	Effective mode:	-
Min.: 0	Unit:	-
Max.: 1	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time
Value Range:		
0: Inactive		
1: Active		
Others: B connector		
Description		

H2-01 Source of external fault 2 (NC)
Address: 0x8201
Min.: $\quad 0$
Max.: $\quad 1$
Default: 1

## Value Range:

Same as H2-00
Description

H2-02 Source of external alarm 1
Address: 0x8202
Min.: $\quad 0$
Max.: 0
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0: Reserved
Others: B connector
Description

## H2-03 Source of external alarm 2

Address:	$0 x$
Min.:	0
Max.:	0

Max.: 0
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Value Range:
Same as H2-02
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time


Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Description

H2-09 Source of custom alarm 2

Address: $0 \times 8209$	Effective mode:	-	
Min.:	0	Unit:	-
Max.: 0	Data type:	Ulnt16	
Default: 0	Change:	Changeable at any time	
Value Range:			
Same as H2-07			
Description			

## H2-10 Source of custom alarm 3

Address:	$0 \times 820 \mathrm{~A}$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	0	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
Same as $\mathrm{H} 2-07$			
Description			

## H2-11 Source of custom alarm 4

Address:	$0 \times 820 B$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	0	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
Same as H2-07			
Description			

## H2-12 Auto reset enable

Address:	$0 \times 820 C$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

## Value Range:

0 to 1
Description

H2-15 Auto reset disabled upon manual reset

Address:	$0 \times 820 F$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	1	Data type:	Ulnt16
Default:	1	Change:	Changeable at any time

## Value Range:

0 : Yes
1: No

## Description

## H2-16 Interval for clearing auto reset count

Address: 0x8210

Min.: 0
Max.: 6000
Default: 10
Value Range:
0 min to 6000 min
Description

H2-17 Active fault reset attempt count
Address: 0x8211
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H2-18 Clearing upon fault reset count reach
Address: $0 \times 8212$
Min.: 0
Max.: 1
Default: 0
Value Range:
0: Cleared
1: Not cleared
Description
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

H2-20 Code of non-resettable exception 1

Address:	$0 \times 8214$
Min.:	0
Max.:	200
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
Value Range:
0 to 200
Description

H2-21 Subcode of non-resettable exception 1
Address: 0x8215
Min.: $\quad 0$
Max.: $\quad 9$
Default: 0
Value Range:
0 to 9

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

H2-22 Code of non-resettable exception 2

Address:	$0 \times 8216$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	200	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

H2-23 Subcode of non-resettable exception 2

Address:	$0 \times 8217$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	9	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

## Value Range:

0 to 9
Description

H2-24 Code of non-resettable exception 3

Address:	$0 \times 821$
Min.:	0
Max.:	200
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Changeable at any time

## Value Range:

0 to 200

## Description

H2-25 Subcode of non-resettable exception 3

Address:	$0 x$
Min.:	0

Max.: $\quad 9$
Default: 0

## Value Range:

0 to 9
Description

H2-26 Code of non-resettable exception 4

Address:	$0 \times 821$
Min.:	0
Max.:	200
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Value Range:

0 to 200
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

H2-27 Subcode of non-resettable exception 4

Address: 0x821B
Min.: 0
Max.: 9
Default: 0
Value Range:
0 to 9
Description

H2-28 Code of non-resettable exception 5
Address: 0x821C
Min.: 0
Max.: 200
Default: 0
Value Range:
0 to 200
Description

H2-29 Subcode of non-resettable exception 5
$\begin{array}{ll}\text { Address: } & 0 x 821 \mathrm{D} \\ \text { Min.: } & 0\end{array}$
Max.: $\quad 9$
Default: 0
Value Range:
0 to 9
Description

H2-30 Code of non-resettable exception 6
Address: 0x821E
Min.: 0
Max.: 200
Default: 0
Value Range:
0 to 200
Description

H2-31 Subcode of non-resettable exception 6

Address:	$0 x 8$
Min.:	0
Max.:	9
Default:	0

Value Range:
0 to 9
Description

H2-32 Code of non-resettable exception 7
Address: 0x8220

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:

Min.:	0	Unit:	-
Max.:	200	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
0 to 200			
Description			

H2-33 Subcode of non-resettable exception 7

Address:	$0 \times 8221$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	9	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
0 to 9			
Description			

H2-34 Code of non-resettable exception 8

Address:	$0 \times 8222$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	200	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

Value Range:
0 to 200
Description

H2-35 Subcode of non-resettable exception 8

Address: 0x8223
Min.: 0
Max.: $\quad 9$
Default: 0
Value Range:
0 to 9
Description

H2-36 Code of non-resettable exception 9

Address:	$0 \times 822$
Min.:	0
Max.:	200
Default:	0

## Value Range:

0 to 200
Description

H2-37 Subcode of non-resettable exception 9

Address:	$0 \times 8$
Min.:	0

Max.: $\quad 9$

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```
Effective mode:
Unit:
Data type: Ulnt16
```

Default: 0
Value Range:
0 to 9
Description

H2-38 Code of non-resettable exception 10
Address: 0x8226
Min.: 0
Max.: 200
Default: 0
Value Range:
0 to 200
Description

H2-39 Subcode of non-resettable exception 10
Address: 0x8227
Min.: 0
Max.: 9
Default: 0
Value Range:
0 to 9
Description

H2-42 Restart after auto reset
Address: 0x822A
Min.: 0
Max.: 1
Default: 0
Value Range:
0 to 1
Description

H2-43 Waiting time of restart after auto reset
Address: 0x822B

Min.: 0.0
Max.: $\quad 600.0$
Default: 0.5
Value Range:
0.0s to 600.0s

Description

H2-44 Forced flying start during auto restart
Address: 0x822C
Min.: 0
Max.: $\quad 1$
Default: 0

Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit: S
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

```
O to 1
Description
```

H2-45 Source of exceptions that allow restart
Address: 0x822D

Min.: 0
Max.: $\quad 1$
Default: 1
Value Range:
0 : Whitelist
1: Blacklist
Description

H2-46 Code of specified exception 1

Address:	$0 \times 822 E$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	200	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

## Value Range:

0 to 200
Description

H2-47 Subcode of specified exception 1

Address:	$0 \times 822 F$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	9	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

H2-48 Code of specified exception 2
Address: $0 \times 8230$
Min.: 0
Max.: 200
Default: 0

## Value Range:

0 to 200
Description

H2-49 Subcode of specified exception 2
Address: 0x823

Min.: 0
Max.: $\quad 9$
Default: 0

## Value Range:

0 to 9

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time
```

Effective mode:
Unit:

Change: Changeable at any time

## Value Range:

0 to 9
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

## Description

H2-50 Code of specified exception 3
Address: 0x8232
Min.: 0
Max.: 200
Default: 0
Value Range:
0 to 200
Description

H2-51 Subcode of specified exception 3

Address:	$0 \times 8233$	Effective mode:	
Min.:	0	Unit:	-
Max.:	9	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

## Value Range:

0 to 9
Description

H2-52 Code of specified exception 4
Address: 0x8234
Min.: 0
Max.: 200
Default: 0
Value Range:
0 to 200
Description

H2-53 Subcode of specified exception 4
Address: 0x8235
Min.: $\quad 0$
Max.: $\quad 9$
Default: 0

## Value Range:

0 to 9
Description

H2-54 Code of specified exception 5
Address: 0x8236
Min.: 0
Max.: 200
Default: 0
Value Range:
0 to 200
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:

Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

Effective mode:
Unit:
Data type: Ulnt16
Change: Changeable at any time

H2-55 Subcode of specified exception 5

Address:	$0 \times 8237$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	9	Data type:	Ulnt16
Default: 0	Change:	Changeable at any time	
Value Range:			
0 to 9			
Description			

H2-56 Code of specified exception 6
Address: 0x8238
Min.: 0
Max.: 200
Default: 0
Value Range:
0 to 200
Description

H2-57 Subcode of specified exception 6

Address:	$0 \times 8239$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	9	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

### 4.58 H3: Fault Display Parameters

H3-00 Code of active fault 1
Address: 0x8300
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H3-01 Subcode of active fault 1

Address:	$0 \times 8301$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			

## Description

H3-02 Information of active fault 1

Address:	$0 \times 8302$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	UInt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H3-03 Self diagnosis information 1

Address:	$0 \times 8303$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H3-04 Self diagnosis information 2

Address:	$0 \times 8304$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

## H3-05 Self diagnosis information 3

Address:	$0 \times 8305$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535
Description

H3-06 Self diagnosis information 4
Address: 0x8306
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H3-07 Code of active fault 2
Address: 0x8307

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H3-08 Subcode of active fault 2
Address: 0x8308
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H3-09 Information of active fault 2
Address: 0x8309
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H3-10 Self diagnosis information 1

Address:	$0 \times 830 A$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H3-11 Self diagnosis information 2

Address:	$0 \times 830 \mathrm{~B}$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description
Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description
-

H3-12 Self diagnosis information 3
Address: 0x830C
Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| to 65535 |  |  |
| Description |  |  |

## H3-13 Self diagnosis information 4

Address: 0x830D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

H3-14 Code of active fault 3
Address: 0x830E
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## H3-15 Subcode of active fault 3

Address: 0x830F

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

## H3-16 Information of active fault 3

Address:	$0 \times 8310$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

## H3-17 Self diagnosis information 1

Address:	$0 \times 8311$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16

Default: 0
Value Range:
0 to 65535
Description

H3-18 Self diagnosis information 2
Address: $0 \times 8312$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H3-19 Self diagnosis information 3
Address: $0 \times 8313$
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

H3-20 Self diagnosis information 4
Address: 0x8314
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

## H3-21 Code of active fault 4

Address: $0 \times 8315$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H3-22 Subcode of active fault 4
Address: 0x8316
Min.: 0
Max.: 65535
Default: 0

Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## 0 to 65535 <br> Description

H3-23 Information of active fault 4
Address: 0x8317 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H3-24 Self diagnosis information 1

Address:	$0 \times 8318$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H3-25 Self diagnosis information 2

Address:	$0 \times 8319$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

## H3-26 Self diagnosis information 3

Address:	$0 \times 831 \mathrm{~A}$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0
Value Range:
0 to 65535
Description

H3-27 Self diagnosis information 4
Address: 0x831B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

## Description

H3-28 Code of active fault 5
Address: 0x831C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H3-29 Subcode of active fault 5

Address:	$0 \times 831 D$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

H3-30 Information of active fault 5

Address:	$0 \times 831 \mathrm{E}$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## H3-31 Self diagnosis information 1

Address:	$0 \times 831 F$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

## H3-32 Self diagnosis information 2

Address:	$0 \times 8320$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H3-33 Self diagnosis information 3

Address:	$0 \times 8321$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Unt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

## H3-34 Self diagnosis information 4

Address: 0x8322
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

H3-35 Code of active fault 6

Address:	$0 \times 8323$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

H3-36 Subcode of active fault 6
Address: 0x8324
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

H3-37 Information of active fault 6
Address: 0x8325
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## H3-38 Self diagnosis information 1

Address: 0x8326
Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

H3-39 Self diagnosis information 2

Address:	$0 \times 8327$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H3-40 Self diagnosis information 3

Address:	$0 \times 8328$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535

## Description

H3-41 Self diagnosis information 4

Address:	$0 \times 8329$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Value Range:
0 to 65535
Description

H3-42 Frequency upon the active fault
Address: 0x832A
Min.: $\quad 0.00$
Max.: $\quad 655.35$
Default: 0.00
Value Range:
0.00 Hz to 655.35 Hz

## Description

H3-43 Current upon the active fault
Address: 0x832B
Min.: $\quad 0.00$
Max.: $\quad 655.35$

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Default: 0.00
Change: Unchangeable

Value Range:
0.00 A to 655.35 A

Description

H3-44 Bus voltage upon the active fault
Address: 0x832C
Min.: 0.0
Max.: 6553.5
Default: 0.0
Effective mode:
Unit: V
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0.0 V to 6553.5 V

Description

H3-45 Input terminal state upon the active fault

Address:	$0 \times 832 \mathrm{D}$
Min.:	$0 \times 0$
Max.:	$0 \times F F F F$
Default:	$0 \times 0$

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
$0 \times 0$ to 0xFFFF
Description

H3-46 Output terminal state upon the active fault

Address:	$0 \times 832 \mathrm{E}$	Effective mode:	
Min.:	$0 \times 0$	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	$0 \times 0$	Change:	Unchangeable

Value Range:
$0 \times 0$ to 0xFFFF
Description

H3-47 AC drive state upon the active fault
Address: 0x832F

Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H3-48 Power-on duration upon the active fault
Address: 0x8330
Min.: 0
Max.: 65535
Default: 0
Value Range:

Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit: min
Data type: Ulnt16
Change: Unchangeable
0 min to 65535 min
Description
H3-49 Running duration upon the active fault
Address: $0 \times 8331 \quad$ Effective mode: -
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0 min to 6553.5 min
Description
H3-50 Status word A upon the active fault
Address: 0x8332
Min.: 0x0
Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description
H3-51 Status word B upon the active fault

Address:	$0 \times 8333$
Min.:	$0 \times 0$
Max.:	$0 \times F F F F$
Default:	$0 \times 0$

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0x0 to 0xFFFF
Description
H3-52 Command word upon the active fault

Address:	$0 \times 8334$	Effective mode:	
Min.:	$0 \times 0$	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default: $0 \times 0$	Change:	Unchangeable	
Value Range:			
0x0 to 0xFFFF			
Description			

### 4.59 H4: Fault Display Parameters

H4-00 Code of the latest fault 1

Address:	$0 \times 8400$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16

Default: 0
Value Range:
0 to 65535
Description

H4-01 Subcode of the latest fault 1

Address:	$0 \times 8401$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Change: Unchangeable

0 to 65535
Description

## 0 to 65535 <br> Description

H4-06 Self diagnosis information 4

Address:	$0 \times 8406$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

## H4-07 Code of the latest fault 2

Address:	$0 \times 8407$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## H4-08 Subcode of the latest fault 2

Address:	$0 \times 8408$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535
Description

## H4-09 Information of the latest fault 2

Address:	$0 \times 8409$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535
Description

## H4-10 Self diagnosis information 1

Address:	$0 \times 840 \mathrm{~A}$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			

## Description

H4-11 Self diagnosis information 2

Address:	$0 \times 840 B$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

## H4-12 Self diagnosis information 3

Address:	$0 \times 840 \mathrm{C}$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

## H4-13 Self diagnosis information 4

Address: 0x840D

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

## H4-14 Code of the latest fault 3

Address: $0 \times 840 \mathrm{E}$
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

H4-15 Subcode of the latest fault 3

Address:	$0 \times 840 F$
Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

[^4]Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

H4-16 Information of the latest fault 3
Address: 0x8410

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H4-17 Self diagnosis information 1
Address: 0x8411
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H4-18 Self diagnosis information 2

Address:	$0 \times 8412$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H4-19 Self diagnosis information 3

Address:	$0 \times 8413$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0
Value Range:
0 to 65535
Description

H4-20 Self diagnosis information 4
Address: $0 \times 8414$

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

H4-21 Code of the latest fault 4
Address: $0 \times 8415$
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:

Min.: 0	Unit:	-
Max.: 65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable
Value Range:		
to 65535		
Description		

H4-22 Subcode of the latest fault 4
Address: 0x8416
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

H4-23 Information of the latest fault 4
Address: 0x8417 Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H4-24 Self diagnosis information 1

Address:	$0 \times 8418$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

H4-25 Self diagnosis information 2

Address:	$0 \times 8419$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

H4-26 Self diagnosis information 3

Address:	$0 \times 841 \mathrm{~A}$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16

Default: 0
Value Range:
0 to 65535
Description

H4-27 Self diagnosis information 4

Address:	$0 \times 841 \mathrm{~B}$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

## H4-28 Code of the latest fault 5

Address:	$0 \times 841 \mathrm{C}$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

## H4-29 Subcode of the latest fault 5

Address:	$0 \times 841 \mathrm{D}$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535
Description

H4-30 Information of the latest fault 5

Address: 0x841E
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H4-31 Self diagnosis information 1

Address:	$0 \times 841 F$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:

## 0 to 65535 <br> Description

H4-32 Self diagnosis information 2

Address:	$0 \times 8420$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

## H4-33 Self diagnosis information 3

Address:	$0 \times 8421$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

## H4-34 Self diagnosis information 4

Address: $0 \times 8422$
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

## H4-35 Code of the latest fault 6

Address: 0x8423
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

H4-36 Subcode of the latest fault 6
Address: 0x8424

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

H4-37 Information of the latest fault 6

Address:	$0 \times 8425$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H4-38 Self diagnosis information 1

Address:	$0 \times 8426$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H4-39 Self diagnosis information 2

Address:	$0 \times 8427$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

## H4-40 Self diagnosis information 3

Address:	$0 \times 8428$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535
Description

H4-41 Self diagnosis information 4

Address: 0x8429
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
$\begin{array}{ll}\text { Effective mode: } & - \\ \text { Unit: } & - \\ \text { Data type: } & \text { Ulnt16 } \\ \text { Change: } & \text { Unchangeable }\end{array}$

H4-42	Frequency upon the latest fault			
	Address:	$0 \times 842 \mathrm{~A}$	Effective mode:	
	Min.:	0.00	Unit:	Hz
	Max.:	655.35	Data type:	Int16
	Default:	0.00	Change:	Unchangeable
	Value Range:			
	0.00 Hz to 655.35 Hz			
	Description			
	-			
H4-43	Current upon the latest fault			
	Address:	0x842B	Effective mode:	-
	Min.:	0.00	Unit:	A
	Max.:	655.35	Data type:	Int16
	Default:	0.00	Change:	Unchangeable
	Value Range:			
	0.00 A to 655.35 A			
	Description			
	-			
H4-44	Bus voltage upon the latest fault			
	Address:	$0 \times 842 \mathrm{C}$	Effective mode:	-
	Min.:	0.0	Unit:	V
	Max.:	6553.5	Data type:	Ulnt16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0 V to 6553.5 V			
	Description			
	-			
H4-45	Input terminal state upon the latest fault			
	Address:	0x842D	Effective mode:	-
	Min.:	0x0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Unchangeable
	Value R			
	$0 \times 0$ to 0x			
	Descrip			
H4-46	Output terminal state upon the latest fault			
	Address:	0x842E	Effective mode:	-
	Min.:	0x0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Unchangeable
	Value Range:			
	0x0 to 0xFFFF			
	Description			
	-			
H4-47	AC drive state upon the latest fault			
	Address:	0x842F	Effective mode:	-


	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Ra			
	0 to 6553			
	Descript			
	-			
H4-48	Power-o	duration		
	Address:	0x8430	Effective mode:	
	Min.:	0	Unit:	min
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Ra			
	0 min to	535 min		
	Descript			
	-			
H4-49	Running	uration up		
	Address:	0x8431	Effective mode:	-
	Min.:	0.0	Unit:	min
	Max.:	6553.5	Data type:	Ulnt16
	Default:	0.0	Change:	Unchangeable
	Value Ra			
	0.0 min to	5553.5 min		
	Descript			
	-			
H4-50	Status	d A upon		
	Address:	0x8432	Effective mode:	-
	Min.:	0x0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Unchangeable
	Value Ra			
	0x0 to 0x			
	Descript			
H4-51	Status	d B upon		
	Address:	0x8433	Effective mode:	-
	Min.:	$0 \times 0$	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Unchangeable
	Value Ra			
	0x0 to 0x			
	Descript			
H4-52	Comma	word upo		
	Address:	0x8434	Effective mode:	-
	Min.:	$0 \times 0$	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16

Default: $0 \times 0$
Change:
Unchangeable

Value Range:
$0 \times 0$ to 0xFFFF
Description

### 4.60 H5: Fault Display Parameters

H5-00 Code of the second latest fault 1
Address: 0x8500
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H5-01 Subcode of the second latest fault 1

Address:	$0 \times 8501$	Effective mode: -	
Min.:	0	Unit:	-
Max.: 65535	Data type:	Ulnt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H5-02 Information of the second latest fault 1
Address: 0x8502 Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode: -	
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

H5-03 Self diagnosis information 1

Address:	$0 \times 8503$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H5-04 Self diagnosis information 2
Address: 0x8504
Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

## H5-05 Self diagnosis information 3

Address: 0x8505
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H5-06 Self diagnosis information 4

Address:	$0 \times 8506$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

H5-07 Code of the second latest fault 2

Address:	$0 \times 8507$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

H5-08 Subcode of the second latest fault 2

Address:	$0 \times 8508$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

H5-09 Information of the second latest fault 2

Address:	$0 \times 8509$
Min.:	0
Max.:	65535


Effective mode:	-
Unit:	-
Data type:	Ulnt16

Default: 0
Value Range:
0 to 65535
Description

H5-10 Self diagnosis information 1
Address: 0x850A
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H5-11 Self diagnosis information 2
Address: 0x850B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H5-12 Self diagnosis information 3
Address: 0x850C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H5-13 Self diagnosis information 4
Address: 0x850D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

H5-14 Code of the second latest fault 3
Address: 0x850E
Min.: 0
Max.: 65535
Default: 0
Value Range:
$\begin{array}{ll}\text { Effective mode: } & - \\ \text { Unit: } & - \\ \text { Data type: } & \text { Ulnt16 } \\ \text { Change: } & \text { Unchangeable }\end{array}$

## 0 to 65535

Description

H5-15 Subcode of the second latest fault 3

Address: $0 \times 850 F$	Effective mode: -		
Min.: 00	Unit:	-	
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H5-16 Information of the second latest fault 3

Address:	$0 \times 8510$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H5-17 Self diagnosis information 1

Address:	$0 \times 8511$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

H5-18 Self diagnosis information 2

Address:	$0 \times 8512$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

## H5-19 Self diagnosis information 3

Address:	$0 \times 8513$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			

## Description

H5-20 Self diagnosis information 4

Address:	$0 \times 8514$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

H5-21 Code of the second latest fault 4

Address:	$0 \times 8515$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H5-22 Subcode of the second latest fault 4

Address:	$0 \times 8516$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535
Description

H5-23 Information of the second latest fault 4
Address: $0 \times 8517$

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

H5-24 Self diagnosis information 1

Address: $0 \times 8518$	Effective mode:	-	
Min.: 0	Unit:	-	
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H5-25 Self diagnosis information 2

Address:	$0 \times 8519$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H5-26 Self diagnosis information 3

Address:	$0 \times 851 \mathrm{~A}$
Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535
Description

H5-27 Self diagnosis information 4

Address:	$0 \times 851 B$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

H5-28 Code of the second latest fault 5

Address:	$0 \times 851 C$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H5-29 Subcode of the second latest fault 5

Address:	$0 \times 851 D$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Effective mode:
Unit:

Change: Unchangeable

Effective mode:
Unit:

Change: Unchangeable

Value Range:
0 to 65535
Description

H5-30 Information of the second latest fault 5
Address: 0x851E
Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

## H5-31 Self diagnosis information 1

Address: 0x851F

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## H5-32 Self diagnosis information 2

Address:	$0 \times 8520$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

## H5-33 Self diagnosis information 3

Address:	$0 \times 8521$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

H5-34 Self diagnosis information 4
Address: $0 \times 8522$

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H5-35 Code of the second latest fault 6

Address:	$0 \times 8523$
Min.:	0
Max.:	65535

Effective mode:
Unit:
Data type: Ulnt16

Default: 0
Value Range:
0 to 65535
Description

H5-36 Subcode of the second latest fault 6

Address:	$0 \times 8524$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Change:
Unchangeable

Value Range:
0 to 65535
Description

H5-37 Information of the second latest fault 6

Address:	$0 \times 8525$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

H5-38 Self diagnosis information 1

Address:	$0 \times 8526$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

H5-39 Self diagnosis information 2

Address: $0 \times 8527$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

H5-40 Self diagnosis information 3
Address: $0 \times 8528$

Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:

Unit:
Data type: Ulnt16
Change: Unchangeable

## 0 to 65535 <br> Description

H5-41 Self diagnosis information 4

Address:	$0 \times 8529$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H5-42 Frequency upon the second latest fault

Address:	$0 \times 852 \mathrm{~A}$	Effective mode:	
Min.:	0.00	Unit:	Hz
Max.:	655.35	Data type:	Int16
Default:	0.00	Change:	Unchangeable

## Value Range:

0.00 Hz to 655.35 Hz

Description

H5-43 Current upon the second latest fault

Address:	$0 \times 852 B$
Min.:	0.00
Max.:	655.35
Default:	0.00

Effective mode:
Unit: A
Data type: Int16
Change: Unchangeable

## Value Range:

0.00 A to 655.35 A

## Description

H5-44 Bus voltage upon the second latest fault
Address: 0x852C
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0 V to 6553.5 V

Description
Effective mode:
Unit: V
Data type: Ulnt16
Change: Unchangeable

H5-45 Input terminal state upon the second latest fault

Address: 0x852D
Min.: $0 x 0$
Max.: 0xFFFF
Default: 0x0
Value Range:
$0 \times 0$ to 0xFFFF

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Description
H5-46 Output terminal state upon the second latest fault

Address: 0x852E
Min.: 0x0

Max.: 0xFFFF
Default: 0x0
Value Range:
0x0 to 0xFFFF
Description
H5-47 AC drive state upon the second latest fault

Address:	$0 \times 852 F$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description
H5-48 Power-on duration upon the second latest fault

Address:	$0 \times 8530$	Effective mode:	-
Min.:	0	Unit:	min
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 min to 65535 min

## Description

H5-49 Running duration upon the second latest fault

Address: 0x8531
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0 min to 6553.5 min

Description

Effective mode: -
Unit: min
Data type: Ulnt16
Change: Unchangeable
-
H5-50 Status word A upon the second latest fault

Address:	$0 \times 8532$	Effective mode:	-
Min.:	$0 \times 0$	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	$0 \times 0$	Change:	Unchangeable

## Value Range:

$0 \times 0$ to 0xFFFF
Description

H5-51 Status word B upon the second latest fault

Address:	$0 \times 8533$	Effective mode:	-
Min.:	$0 \times 0$	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default: $0 \times 0$	Change:	Unchangeable	
Value Range:			
0x0 to 0xFFFF			
Description			

## H5-52 Command word upon the second latest fault

Address: 0x8534
Min.: 0x0
Max.: 0xFFFF
Default: $0 \times 0$
Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0x0 to 0xFFFF
Description

### 4.61 H6: Fault Display Parameters

## H6-00 Code of the third latest fault 1

Address: $0 \times 8600$	Effective mode:		
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H6-01 Subcode of the third latest fault 1

Address: $0 \times 8601$	Effective mode:	-	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H6-02 Information of the third latest fault 1

Address:	$0 \times 8602$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			

## Description

H6-03 Self diagnosis information 1

Address:	$0 \times 8603$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

H6-04 Self diagnosis information 2

Address:	$0 \times 8604$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0
Value Range:
0 to 65535
Description

## H6-05 Self diagnosis information 3

Address:	$0 \times 8605$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535
Description

H6-06 Self diagnosis information 4

Address:	$0 \times 8606$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

H6-07 Code of the third latest fault 2

Address:	$0 \times 8607$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

H6-08 Subcode of the third latest fault 2

Address: $0 \times 8608$	Effective mode:	-	
Min.: 0	Unit:	-	
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H6-09 Information of the third latest fault 2
Address: 0x8609
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

H6-10 Self diagnosis information 1

Address:	$0 \times 860$ A	Effective mode:	
Min.:	0	Unit:	-
Max.: 65535	Data type:	Ulnt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

## H6-11 Self diagnosis information 2

Address:	$0 \times 860 B$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

H6-12 Self diagnosis information 3

Address:	$0 \times 860 \mathrm{C}$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

H6-13 Self diagnosis information 4
Address: 0x860D Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

H6-14 Code of the third latest fault 3
Address: 0x860E
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

H6-15 Subcode of the third latest fault 3

Address: $0 \times 860$ F	Effective mode:		
Min.:	0	Unit:	-
Max.: 65535	Data type:	Ulnt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H6-16 Information of the third latest fault 3

Address:	$0 \times 8610$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Value Range:
0 to 65535
Description

H6-17 Self diagnosis information 1

Address:	$0 \times 8611$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

H6-18 Self diagnosis information 2

Address:	$0 \times 8612$	Effective mode: -
Min.:	0	Unit:
Max.:	65535	Data type:

Default: 0
Value Range:
0 to 65535
Description

H6-19 Self diagnosis information 3
Address: 0x8613
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H6-20 Self diagnosis information 4
Address: $0 \times 8614$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H6-21 Code of the third latest fault 4
Address: 0x8615
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H6-22 Subcode of the third latest fault 4

Address:	$0 \times 8616$
Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535
Description

H6-23 Information of the third latest fault 4

Address:	$0 \times 8617$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```


## 0 to 65535 <br> Description

H6-24 Self diagnosis information 1

Address:	$0 \times 8618$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H6-25 Self diagnosis information 2

Address:	$0 \times 8619$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

## H6-26 Self diagnosis information 3

Address:	$0 \times 861 \mathrm{~A}$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Value Range:
0 to 65535
Description

H6-27 Self diagnosis information 4

Address:	$0 \times 861 B$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Value Range:
0 to 65535
Description

H6-28 Code of the third latest fault 5

Address:	$0 \times 861 C$
Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535

## Description

H6-29 Subcode of the third latest fault 5

Address:	$0 \times 861 \mathrm{D}$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H6-30 Information of the third latest fault 5

Address:	$0 \times 861 \mathrm{E}$
Min.:	0
Max.:	65535
Default:	0

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

Value Range:
0 to 65535
Description

## H6-31 Self diagnosis information 1

Address:	$0 \times 861 F$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

H6-32 Self diagnosis information 2

Address:	$0 \times 8620$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

H6-33 Self diagnosis information 3

Address: $0 \times 8621$	Effective mode:		
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
to 65535    Description			

H6-34 Self diagnosis information 4

Address:	$0 \times 8622$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H6-35 Code of the third latest fault 6
Address: 0x8623
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

H6-36 Subcode of the third latest fault 6

Address: $0 \times 8624$	Effective mode:		
Min.:	0	Unit:	-
Max.: 65535	Data type:	Ulnt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H6-37 Information of the third latest fault 6

Address:	$0 \times 8625$
Min.:	0
Max.:	65535
Default:	0

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```


## Value Range:

0 to 65535
Description

H6-38 Self diagnosis information 1

Address:	$0 \times 8626$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H6-39 Self diagnosis information 2
Address: 0x8627
Effective mode:

Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535
Description

H6-40 Self diagnosis information 3

Address:	$0 \times 8628$
Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535
Description

H6-41 Self diagnosis information 4

Address:	$0 \times 8629$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

H6-42 Frequency upon the third latest fault
Address: $0 \times 862 \mathrm{~A}$

Min.: $\quad 0.00$
Max.: $\quad 655.35$
Default: 0.00
Value Range:
0.00 Hz to 655.35 Hz

## Description

H6-43 Current upon the third latest fault

Address:	$0 \times 862 B$
Min.:	0.00
Max.:	655.35
Default:	0.00

Value Range:
0.00 A to 655.35 A

## Description

H6-44 Bus voltage upon the third latest fault

Address:	$0 \times 862 \mathrm{C}$
Min.:	0.0
Max.:	6553.5


Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit: Hz
Data type: Int16
Change: Unchangeable

Effective mode:
Unit: A
Data type: Int16
Change: Unchangeable

	Default: 0.0		Change:	Unchangeable
	Value Range:			
	0.0 V to 6553.5 V			
	Description			
	-			
H6-45	Input terminal state upon the third latest fault			
	Address:	0x862D	Effective mode:	-
	Min.:	$0 \times 0$	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Unchangeable
	Value Range:			
	0x0 to 0xFFFF			
	Description			
	D			
H6-46	Output terminal state upon the third latest fault			
	Address:	0x862E	Effective mode:	-
	Min.:	$0 \times 0$	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Unchangeable
	Value Range:			
	0x0 to 0xFFFF			
	Description			
H6-47	AC drive state upon the third latest fault			
	Address:	0x862F	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 to 65535			
	Description			
	-			
H6-48	Power-on duration upon the third latest fault			
	Address:	0x8630	Effective mode:	-
	Min.:	0	Unit:	min
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 min to 65535 min			
	Description			
	-			
H6-49	Running duration upon the third latest fault			
	Address:	0x8631	Effective mode:	-
	Min.:	0.0	Unit:	min
	Max.:	6553.5	Data type:	Ulnt16
	Default:	0.0	Change:	Unchangeable
	Value Ran			

0.0 min to 6553.5 min

Description

H6-50 Status word A upon the third latest fault

Address:	$0 \times 8632$	Effective mode: -	
Min.:	$0 \times 0$	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	$0 \times 0$	Change:	Unchangeable

Value Range:
0x0 to 0xFFFF
Description

H6-51 Status word B upon the third latest fault

Address:	$0 \times 8633$
Min.:	$0 \times 0$
Max.:	$0 \times F F F F$
Default:	$0 \times 0$

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0x0 to 0xFFFF
Description

H6-52 Command word upon the third latest fault

Address:	$0 \times 8634$	Effective mode: -	
Min.:	$0 \times 0$	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	$0 \times 0$	Change:	Unchangeable

Value Range:
0x0 to 0xFFFF
Description

### 4.62 H7: Fault Display Parameters

H7-00 Code of the fourth latest fault 1

Address: $0 \times 8700$	Effective mode:		
Min.:	0	Unit:	-
Max.: 65535	Data type:	Ulnt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H7-01 Subcode of the fourth latest fault 1

Address:	$0 \times 8701$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16

Default: $0 \quad$ Change: Unchangeable

Value Range:
0 to 65535
Description

H7-02 Information of the fourth latest fault 1
Address: 0x8702 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Unit:
Data type: Ulnt16
Change: Unchangeable

H7-03 Self diagnosis information 1

Address:	$0 \times 8703$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H7-04 Self diagnosis information 2

Address:	$0 \times 8704$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535
Description

H7-05 Self diagnosis information 3

Address: 0x8705
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H7-06 Self diagnosis information 4
Address: 0x8706
Min.: 0
Max.: 65535
Default: 0
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## 0 to 65535

Description

H7-07 Code of the fourth latest fault 2

Address:	$0 \times 8707$	Effective mode:	
Min.:	0	Unit:	-
Max.: 65535	Data type:	Ulnt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

## H7-08 Subcode of the fourth latest fault 2

Address:	$0 \times 8708$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

## H7-09 Information of the fourth latest fault 2

Address: $0 \times 8709$	Effective mode: -		
Min.:	0	Unit:	-
Max.: 65535	Data type:	Ulnt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

## H7-10 Self diagnosis information 1

Address:	$0 \times 870 \mathrm{~A}$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

## H7-11 Self diagnosis information 2

Address:	$0 \times 870 B$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			

## Description

H7-12 Self diagnosis information 3

Address:	$0 \times 870 C$
Min.:	0

Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

H7-13 Self diagnosis information 4

Address:	$0 \times 870 \mathrm{D}$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

H7-14 Code of the third latest fault 3

Address:	$0 \times 870 \mathrm{E}$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

H7-15 Subcode of the third latest fault 3

Address:	$0 \times 870 F$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

H7-16 Information of the third latest fault 3

Address:	$0 \times 8710$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0
Change: Unchangeable

## Value Range:

0 to 65535
Description

H7-17 Self diagnosis information 1
Address: 0x8711

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H7-18 Self diagnosis information 2
Address: 0x8712
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

H7-19 Self diagnosis information 3

Address:	$0 \times 8713$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

## H7-20 Self diagnosis information 4

Address:	$0 \times 8714$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Value Range:
0 to 65535
Description

H7-21 Code of the fourth latest fault 4
Address: $0 \times 8715$

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

H7-22 Subcode of the fourth latest fault 4
Address: 0x8716
Effective mode:

Min.: 0	Unit:	-
Max.: 65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable
Value Range:		
to 65535		
Description		

H7-23 Information of the fourth latest fault 4
Address: 0x8717
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H7-24 Self diagnosis information 1

Address:	$0 \times 8718$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H7-25 Self diagnosis information 2

Address:	$0 \times 8719$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

## H7-26 Self diagnosis information 3

Address:	$0 \times 871 A$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H7-27 Self diagnosis information 4

Address:	$0 \times 871 B$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16

Default: 0
Value Range:
0 to 65535
Description

H7-28 Code of the fourth latest fault 5
Address: 0x871C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H7-29 Subcode of the fourth latest fault 5

Address:	$0 \times 871 D$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

Change: Unchangeable

Value Range:
0 to 65535
Description

```
0 to 65535
```

Description

H7-33 Self diagnosis information 3

Address:	$0 \times 8721$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H7-34 Self diagnosis information 4

Address:	$0 \times 8722$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535
Description

H7-35 Code of the fourth latest fault 6

Address:	$0 \times 8723$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535

## Description

H7-36 Subcode of the fourth latest fault 6

Address:	$0 \times 8724$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

H7-37 Information of the fourth latest fault 6

Address: $0 \times 8725$
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

## H7-38 Self diagnosis information 1

Address: 0x8726

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

H7-39 Self diagnosis information 2

Address:	$0 \times 8727$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0

## Value Range:

0 to 65535
Description

H7-40 Self diagnosis information 3

Address:	$0 \times 8728$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Value Range:
0 to 65535
Description

H7-41 Self diagnosis information 4
Address: 0x8729
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H7-42 Frequency upon the fourth latest fault
Address: $0 \times 872 \mathrm{~A}$
Min.: $\quad 0.00$
Max.: $\quad 655.35$
Default: 0.00
Value Range:
0.00 Hz to 655.35 Hz

Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Change: Unchangeable

H7-43 Current upon the fourth latest fault

Address:	$0 \times 872 \mathrm{~B}$	Effective mode:	-
Min.:	0.00	Unit:	A
Max.:	655.35	Data type:	Int16
Default: 0.00	Change:	Unchangeable	
Value Range:			
0.00 A to 655.35 A			
Description			

H7-44 Bus voltage upon the fourth latest fault

Address:	$0 \times 872 \mathrm{C}$	Effective mode:	
Min.:	0.0	Unit:	V
Max.:	6553.5	Data type:	Ulnt16
Default:	0.0	Change:	Unchangeable

## Value Range:

0.0 V to 6553.5 V

Description

H7-45 Input terminal state upon the fourth latest fault

Address:	$0 \times 872 \mathrm{D}$	Effective mode: -	
Min.:	$0 \times 0$	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	$0 \times 0$	Change:	Unchangeable

Value Range:
0x0 to 0xFFFF
Description

H7-46 Output terminal state upon the fourth latest fault

Address:	$0 \times 872 \mathrm{E}$
Min.:	$0 \times 0$
Max.:	$0 \times F F F F$
Default:	$0 \times 0$

Effective mode:
Unit:
Data type: Ulnt16
Default: 0x0
Change: Unchangeable
Value Range:
$0 \times 0$ to 0xFFFF
Description

H7-47 AC drive state upon the fourth latest fault
Address: 0x872F
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H7-48 Power-on duration upon the fourth latest fault
Address: 0x8730
Effective mode:

| Min.: 0 | Unit: | min |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 min to 65535 min |  |  |
| Description |  |  |

## H7-49 Running duration upon the fourth latest fault

Address:	$0 \times 8731$	Effective mode:	
Min.:	0.0	Unit:	min
Max.:	6553.5	Data type:	Ulnt16
Default:	0.0	Change:	Unchangeable

Value Range:
0.0 min to 6553.5 min

Description

H7-50 Status word A upon the fourth latest fault

Address:	$0 \times 8732$	Effective mode:	
Min.:	$0 \times 0$	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	$0 \times 0$	Change:	Unchangeable

Value Range:
0x0 to 0xFFFF
Description

H7-51 Status word B upon the fourth latest fault

Address:	$0 \times 8733$
Min.:	$0 \times 0$
Max.:	$0 \times F F F F$
Default:	$0 \times 0$

Value Range:
0x0 to 0xFFFF
Description

H7-52 Command word upon the fourth latest fault
Address: 0x873
Min.: $0 \times 0$
Max.: 0xFFFF
Default: $0 \times 0$
Value Range:
0x0 to 0xFFFF
Description
4.63 H8: Fault Display Parameters
H8-00 Code of the fifth latest fault 1

Address:	$0 \times 8800$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H8-01 Subcode of the fifth latest fault 1

Address:	$0 \times 8801$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description
H8-02 Information of the fifth latest fault 1

Address:	$0 \times 8802$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535
Description
H8-03 Self diagnosis information 1

Address:	$0 \times 8803$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description
H8-04 Self diagnosis information 2

Address:	$0 \times 8804$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H8-05 Self diagnosis information 3

Address:	$0 \times 8805$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Unt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H8-06 Self diagnosis information 4

Address:	$0 \times 8806$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H8-07 Code of the fifth latest fault 2

Address:	$0 \times 8807$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H8-08 Subcode of the fifth latest fault 2

Address:	$0 \times 8808$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

H8-09 Information of the fifth latest fault 2

Address:	$0 \times 8809$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

H8-10 Self diagnosis information 1
Address: 0x880A Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

## H8-11 Self diagnosis information 2

Address:	$0 \times 880 B$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## H8-12 Self diagnosis information 3

Address:	$0 \times 880$ C
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535

## Description

## H8-13 Self diagnosis information 4

Address:	$0 \times 880 \mathrm{D}$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Value Range:
0 to 65535
Description

## H8-14 Code of the fifth latest fault 3

Address:	$0 \times 880 \mathrm{E}$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535
Description

H8-15 Subcode of the fifth latest fault 3

Address:	$0 \times 880$ F	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16

Default: 0
Change: Unchangeable

Value Range:
0 to 65535
Description

H8-16 Information of the fifth latest fault 3
Address: $0 \times 8810$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

H8-17 Self diagnosis information 1
Address: 0x8811
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## H8-18 Self diagnosis information 2

Address: $0 \times 8812$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H8-19 Self diagnosis information 3
Address: $0 \times 8813$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

H8-20 Self diagnosis information 4
Address: $0 \times 8814$
Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## 0 to 65535

Description

H8-21 Code of the fifth latest fault 4
Address: 0x8815
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H8-22 Subcode of the fifth latest fault 4

Address:	$0 \times 8816$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H8-23 Information of the fifth latest fault 4

Address:	$0 \times 8817$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H8-24 Self diagnosis information 1

Address:	$0 x 8818$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

H8-25 Self diagnosis information 2

Address:	$0 \times 8819$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			

## Description

H8-26 Self diagnosis information 3
Address: 0x881A

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H8-27 Self diagnosis information 4

Address:	$0 \times 881 B$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

H8-28 Code of the fifth latest fault 5

Address:	$0 \times 881 \mathrm{C}$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

H8-29 Subcode of the fifth latest fault 5

Address:	$0 \times 881 \mathrm{D}$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

H8-30 Information of the fifth latest fault 5

Address:	$0 \times 881 \mathrm{E}$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

H8-31 Self diagnosis information 1

Address:	$0 \times 881 F$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H8-32 Self diagnosis information 2

Address:	$0 \times 8820$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

H8-33 Self diagnosis information 3

Address:	$0 \times 8821$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

## H8-34 Self diagnosis information 4

Address:	$0 \times 8822$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

## H8-35 Code of the fifth latest fault 6

Address: 0x8823

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

H8-36 Subcode of the fifth latest fault 6
Address: 0x8824
Effective mode:

Min.: 0	Unit:	-
Max.: 65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable
Value Range:		
to 65535		
Description		

H8-37 Information of the fifth latest fault 6
Address: 0x8825

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H8-38 Self diagnosis information 1
Address: 0x8826
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

H8-39 Self diagnosis information 2

Address:	$0 \times 8827$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

## H8-40 Self diagnosis information 3

Address:	$0 \times 8828$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

H8-41 Self diagnosis information 4

Address:	$0 \times 8829$	Effective mode: -
Min.:	0	Unit:
Max.:	65535	Data type:

Default: $0 \quad$ Change: Unchangeable

## Value Range:

0 to 65535
Description

H8-42 Frequency upon the fifth latest fault

Address:	$0 \times 882 \mathrm{~A}$	Effective mode:	
Min.:	0.00	Unit:	Hz
Max.:	655.35	Data type:	Int16
Default:	0.00	Change:	Unchangeable

Value Range:
0.00 Hz to 655.35 Hz

Description

H8-43 Current upon the fifth latest fault

Address:	$0 \times 882 B$	Effective mode: -	
Min.:	0.00	Unit:	A
Max.:	655.35	Data type:	Int16
Default:	0.00	Change:	Unchangeable

## Value Range:

0.00 A to 655.35 A

Description

H8-44 Bus voltage upon the fifth latest fault
Address: 0x882C
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0 V to 6553.5 V

## Description

Effective mode:
Unit: V
Data type: Ulnt16
Change: Unchangeable

H8-45 Input terminal state upon the fifth latest fault

Address:	$0 \times 882 \mathrm{D}$
Min.:	$0 \times 0$

Max.: 0xFFFF
Default: $0 \times 0$
Value Range:
0x0 to 0xFFFF
Description

H8-46 Output terminal state upon the fifth latest fault

Address:	$0 \times 882 \mathrm{E}$	Effective mode: -	
Min.:	$0 \times 0$	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	$0 \times 0$	Change:	Unchangeable

Value Range:

## $0 x 0$ to 0xFFFF

## Description

H8-47 AC drive state upon the fifth latest fault

Address:	$0 \times 882 F$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

H8-48 Power-on duration upon the fifth latest fault

Address:	$0 \times 8830$	Effective mode:	
Min.:	0	Unit:	min
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 min to 65535 min
Description

H8-49 Running duration upon the fifth latest fault

Address:	$0 \times 8831$	Effective mode:	
Min.:	0.0	Unit:	min
Max.:	6553.5	Data type:	Ulnt16
Default:	0.0	Change:	Unchangeable

Value Range:
0.0 min to 6553.5 min

## Description

H8-50 Status word A upon the fifth latest fault

Address:	$0 \times 8832$	Effective mode:	
Min.:	$0 \times 0$	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default: $0 \times 0$	Change:	Unchangeable	
Value Range:			
0x0 to 0xFFFF			
Description			

H8-51 Status word B upon the fifth latest fault

Address:	$0 \times 8833$	Effective mode:	
Min.:	$0 \times 0$	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	$0 \times 0$	Change:	Unchangeable
Value Range:			
$0 \times 0$ to 0xFFFF			

## Description

H8-52 Command word upon the fifth latest fault

Address:	$0 \times 8834$	Effective mode: -	
Min.:	$0 \times 0$	Unit:	-
Max.:	$0 \times F F F F$	Data type:	Ulnt16
Default:	$0 \times 0$	Change:	Unchangeable

Value Range:
0x0 to 0xFFFF
Description

### 4.64 U0: Monitoring Parameters

U0-00 Running frequency

Address:	$0 \times 7000$
Min.:	0.00
Max.:	500.00
Default:	0.00

Value Range:
0.00 Hz to 500.00 Hz

Description

## U0-01 Frequency reference

Address: 0x7001

Min.: $\quad 0.00$
Max.: $\quad 500.00$
Default: 0.00
Value Range:
0.00 Hz to 500.00 Hz

Description

U0-02 Bus voltage
Address: $0 \times 7002$
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0 V to 6553.5 V

## Description

Effective mode:
Unit: V
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Unchangeable

	Value Range:			
	0 V to 65535 V			
	Description			
	-			
U0-04	Output current			
	Address:	$0 \times 7004$	Effective mode:	-
	Min.:	0.00	Unit:	A
	Max.:	655.35	Data type:	Ulnt16
	Default:	0.00	Change:	Unchangeable
	Value Range:			
	0.00 A to 655.35 A			
	Description			
	-			
U0-05	Output power			
	Address:	0x7005	Effective mode:	-
	Min.:	-3276.8	Unit:	kW
	Max.:	3276.7	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	-3276.8 kW to +3276.7 kW			
	Description			
	-			
U0-06	Output torque			
	Address:	0x7006	Effective mode:	-
	Min.:	-3276.8	Unit:	\%
	Max.:	3276.7	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	-3276.8\% to +3276.7\%			
	Description			
	-			
U0-07	DI state			
	Address:	0x7007	Effective mode:	-
	Min.:	0x0	Unit:	-
	Max.:	0x7FFF	Data type:	Ulnt16
	Default:	0x0	Change:	Unchangeable
	Value Range:			
	0x0 to 0x7FFF			
	Description			
	-			
U0-08	DO state			
	Address:	0x7008	Effective mode:	-
	Min.:	0x0	Unit:	-
	Max.:	0x7FFF	Data type:	Ulnt16
	Default:	0x0	Change:	Unchangeable
	Value Range:			
	$0 \times 0$ to 0x7FFF			


	Description		
U0-09	Al1 voltage		
	Address: 0x7009	Effective mode:	-
	Min.: $\quad 10.57$	Unit:	V
	Max.: $\quad 10.57$	Data type:	Int16
	Default: 0.00	Change:	Unchangeable
	Value Range:		
	-10.57 V to +10.57 V		
	Description		
	-		
U0-10	Al2 voltage		
	Address: 0x700A	Effective mode:	-
	Min.: $\quad-10.57$	Unit:	V
	Max.: $\quad 10.57$	Data type:	Int16
	Default: 0.00	Change:	Unchangeable
	Value Range:		
	-10.57 V to +10.57 V		
	Description		
	-		
U0-11	Al3 voltage		
	Address: 0x700B	Effective mode:	-
	Min.: $\quad-10.57$	Unit:	V
	Max.: $\quad 10.57$	Data type:	Int16
	Default: 0.00	Change:	Unchangeable
	Value Range:		
	-10.57 V to +10.57 V		
	Description		
	des		
U0-12	Count value		
	Address: 0x700C	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
U0-13	Length value		
	Address: 0x700D	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Value Range:
0 to 65535
Description

Length value
Address: 0x700D
Min.: 0
Max.: 65535
Default: 0
Value Range:

Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

U0-14 Load speed
Address: 0x700E
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 RPM to 65535 RPM
Description

Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Unchangeable

U0-15 PID reference
Address: 0x700F
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U0-16 PID feedback
Address: 0x7010
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U0-17 PLC stage

Address: $0 \times 7011$	Effective mode: -		
Min.:	0	Unit:	-
Max.: 65535	Data type:	Unt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

U0-18 Pulse input frequency

Address:	$0 \times 7012$	Effective mode: -	
Min.:	0.00	Unit:	kHz
Max.:	100.00	Data type:	Ulnt16
Default:	0.00	Change:	Unchangeable

Value Range:
0.00 kHz to 100.00 kHz

## Description

U0-19 Feedback speed
Address: 0x7013
Effective mode:

Min.:	-500
Max.:	500.00
Default:	0.00

Value Range:
-500 Hz to +500.00 Hz
Description
U0-20 Remaining running duration

Address: 0x7014
Min.: 0.0
Max.: 65535.0
Default: 0.0
Value Range:
0.0 min to 65535.0 min

Description
-

U0-21 Al1 voltage before correction

Address:	$0 \times 7015$
Min.:	-10.57
Max.:	10.570
Default:	0.000

## Value Range:

-10.57 V to +10.570 V

## Description

## U0-22 Al2 voltage before correction

Address:	$0 \times 7016$	Effective mode:	
Min.:	-10.57	Unit:	V
Max.:	10.570	Data type:	Int16
Default:	0.000	Change:	Unchangeable

## Value Range:

-10.57 V to +10.570 V

## Description

U0-23 Al3 voltage before correction

Address:	$0 \times 7017$
Min.:	-10.57
Max.:	10.570
Default:	0.000

## Value Range:

-10.57 V to +10.570 V

## Description

Effective mode:	-
Unit:	min
Data type:	Ulnt16
Change:	Unchangeable

Unit: min
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit: V
Data type: Int16
Change: Unchangeable

Effective mode:
Unit: V
Data type: Int16
Change: Unchangeable

Unit: Hz
Data type: Int16
Change: Unchangeable
U0-24 Motor speed
Address: 0x7018
Min.: 0
Max.: 65535

Default: 0
Value Range:
0 RPM to 65535 RPM
Description

U0-25 Current power-on duration
Address: 0x7019
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 min to 65535 min
Description

U0-26 Current running duration
Address: 0x701A
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0 min to 6553.5 min

## Description

U0-27 Pulse input frequency
Address: 0x701B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 Hz to 65535 Hz
Description

U0-28 Communication reference

Address:	$0 \times 701 \mathrm{C}$
Min.:	-100
Max.:	100.00
Default:	0.00

Value Range:
$-100 \%$ to $+100.00 \%$
Description

U0-29 Encoder feedback speed

Address:	$0 x 701 \mathrm{D}$
Min.:	-500
Max.:	500.00
Default:	0.00

## Value Range:

Change: Unchangeable

Effective mode:
Unit: min
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit: min
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit: Hz
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit: $\%$
Data type: Int16
Change: Unchangeable

	-500 Hz to +500.00 Hz			
	Description			
U0-30	Main frequency $X$			
	Address:	0x701E	Effective mode:	-
	Min.:	-500	Unit:	Hz
	Max.:	500.00	Data type:	Int16
	Default:	0.00	Change:	Unchangeable
	Value Range:			
	-500 Hz to +500.00 Hz			
	Description			
	-			
U0-31	Auxiliary frequency $\mathbf{Y}$			
	Address:	0x701F	Effective mode:	-
	Min.:	-500	Unit:	Hz
	Max.:	500.00	Data type:	Int16
	Default:	0.00	Change:	Unchangeable
	Value Range:			
	-500 Hz to +500.00 Hz			
	Description			
	-			
U0-32	Any memory address			
	Address:	0x7020	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 to 65535			
	Description			
U0-33	Synchronous motor rotor position			
	Address:	0x7021	Effective mode:	-
	Min.:	0.0	Unit:	-
	Max.:	6553.5	Data type:	Ulnt16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	$0.0^{\circ}$ to 6553.5 ${ }^{\circ}$			
	Description			
U0-34	Al3 temperature mode - motor temperature			
	Address:	0x7022	Effective mode:	-
	Min.:	0	Unit:	${ }^{\circ} \mathrm{C}$
	Max.:	200	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Ra			
	$0^{\circ} \mathrm{C}$ to 200			

## Value Range:

$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$

	Description		
U0-35	Target torque		
	Address: 0x7023	Effective mode:	
	Min.: $\quad-200$	Unit:	\%
	Max.: 200.0	Data type:	Int16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	-200\% to +200.0\%		
	Description		
U0-36	Resolver position		
	Address: 0x7024	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
U0-37	Power factor angle		
	Address: 0x7025	Effective mode:	-
	Min.: 0.0	Unit:	-
	Max.: 6553.5	Data type:	Ulnt16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	$0.0^{\circ}$ to 6553.5 ${ }^{\circ}$		
	Description		
	-		
U0-38	ABZ position		
	Address: 0x7026	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
U0-39	Target voltage upon V/f separation		
	Address: 0x7027	Effective mode:	-
	Min.: 0	Unit:	V
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 V to 65535 V		
	Description		

Description

U0-40	Output voltage upon V/f separation		
	Address: 0x7028	Effective mode:	
	Min.: 0	Unit:	V
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 V to 65535 V		
	Description		
	-		
U0-45	Fault subcode		
	Address: 0x702D	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
U0-46	Limit code		
	Address: 0x702E	Effective mode:	-
	Min.: 0.0	Unit:	-
	Max.: 6553.5	Data type:	Ulnt16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0 to 6553.5		
	Description		
	-		
U0-50	0.5 ms A hold-up time		
	Address: 0x7032	Effective mode:	-
	Min.: 0.0	Unit:	ms
	Max.: 6553.5	Data type:	Ulnt16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0 ms to 6553.5 ms		
	Description		
	-		
U0-51	0.5 ms B hold-up time		
	Address: 0x7033	Effective mode:	
	Min.: 0.0	Unit:	ms
	Max.: 6553.5	Data type:	Ulnt16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0 ms to 6553.5 ms		
	Description		
	-		
U0-52	0.5 ms C hold-up time		
	Address: 0x7034	Effective mode:	-


	Min.:	0.0	Unit:	ms
	Max.:	6553.5	Data type:	Ulnt16
	Default:	0.0	Change:	Unchangeable
	Value Ra			
	0.0 ms to	553.5 ms		
	Descript			
	-			
U0-53	0.5 ms D hold-up time			
	Address:	0x7035	Effective mode:	-
	Min.:	0.0	Unit:	ms
	Max.:	6553.5	Data type:	UInt16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0 ms to 6553.5 ms			
	Description			
	-			
U0-54	0.5 ms A execution time			
	Address:	0x7036	Effective mode:	-
	Min.:	0.0	Unit:	ms
	Max.:	6553.5	Data type:	Ulnt16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0 ms to 6553.5 ms			
	Description			
	-			
U0-55	0.5 ms B execution time			
	Address:	0x7037	Effective mode:	-
	Min.:	0.0	Unit:	ms
	Max.:	6553.5	Data type:	Ulnt16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0 ms to 6553.5 ms			
	Description			
U0-56	$\mathbf{0 . 5} \mathbf{~ m s ~ C ~ e x e c u t i o n ~ t i m e ~}$			
	Address:	0x7038	Effective mode:	-
	Min.:	0.0	Unit:	ms
	Max.:	6553.5	Data type:	Ulnt16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0 ms to 6553.5 ms			
	Description			
	-			
U0-57	0.5 ms D execution time			
	Address:	0x7039	Effective mode:	-
	Min.:	0.0	Unit:	ms
	Max.:	6553.5	Data type:	UInt16


Value Range:

## 0 to 65535

Description

U0-63 Torque sent in point-to-point communication

Address:	$0 \times 703 F$	Effective mode: -	
Min.:	0.00	Unit:	$\%$
Max.:	6553.50	Data type:	Ulnt16
Default:	0.00	Change:	Unchangeable

Value Range:
0.00\% to 6553.50\%

Description

U0-64 Number of slaves in master-slave control

Address:	$0 \times 7040$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

U0-65 Torque upper limit
Address: 0x7041
Min.: -2000
Max.: 2000.0
ve mode:
Unit: \%

Default: 0.0
Data type: Int16
Change: Unchangeable
Value Range:
-2000\% to +2000.0\%
Description

U0-66 Model of communication expansion card

Address:	$0 \times 7042$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

U0-67 Software version of communication expansion card

Address:	$0 \times 7043$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			


	Description		
U0-68	AC drive state on PROFIBUS DP card		
	Address: 0x7044	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
U0-69	Frequency sent to PROFIBUS DP card/0.01 Hz		
	Address: 0x7045	Effective mode:	-
	Min.: 0.00	Unit:	Hz
	Max.: 655.35	Data type:	Ulnt16
	Default: 0.00	Change:	Unchangeable
	Value Range:		
	0.00 Hz to 655.35 Hz		
	Description		
U0-70	Motor speed sent to PROFIBUS DP card/RPM		
	Address: 0x7046	Effective mode:	-
	Min.: 0	Unit:	RPM
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 RPM to 65535 RPM		
	Description		
U0-71	Communication card-specific current		
	Address: 0x7047	Effective mode:	-
	Min.: 0.0	Unit:	A
	Max.: 6553.5	Data type:	Ulnt16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0 A to 6553.5 A		
	Description		
U0-72	Communication card error state		
	Address: 0x7048	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		


U0-73	Motor SN			
	Address:	0x7049	Effective mode:	
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 to 65535			
	Description			
	-			
U0-74	AC drive output torque			
	Address:	0x704A	Effective mode:	-
	Min.:	-200	Unit:	\%
	Max.:	200.0	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	-200\% to +200.0\%			
	Description			
	-			
U0-76	Low-order bits of accumulative power consumption			
	Address:	0x704C	Effective mode:	-
	Min.:	0.0	Unit:	kW•h
	Max.:	6553.5	Data type:	Ulnt16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	$0.0 \mathrm{~kW} \cdot \mathrm{~h}$ to $6553.5 \mathrm{~kW} \cdot \mathrm{~h}$			
	Description			
	-			
U0-77	High-order bits of accumulative power consumption			
	Address:	0x704D	Effective mode:	-
	Min.:	0	Unit:	kW•h
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	$0 \mathrm{~kW} \cdot \mathrm{~h}$ to $65535 \mathrm{~kW} \cdot \mathrm{~h}$			
	Description			
	-			
U0-78	Linear speed			
	Address:	0x704E	Effective mode:	-
	Min.:	0	Unit:	$\mathrm{m} / \mathrm{min}$
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	$0 \mathrm{~m} / \mathrm{min}$ to $65535 \mathrm{~m} / \mathrm{min}$			
	Description			
U0-80	EtherCAT slave name			
	Address:	0x7050	Effective mode:	-


Min.: 0	Unit:	-
Max.: 65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable
Value Range:		
to 65535		
Description		

U0-81 EtherCAT slave alias

Address:	$0 \times 7051$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

U0-82 EtherCAT ESM transmission error code
Address: 0x7052
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

U0-83 EtherCAT XML file version
Address: 0x7053 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U0-84 EtherCAT synchronization loss count

Address:	$0 \times 7054$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

Unit:
Data type: Ulnt16
Change: Unchangeable
-

U0-85 Maximum errors and invalid frames of EtherCAT port 0 per unit time

Address:	$0 \times 7055$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16



```
0 to 65535
Description
```

U0-91 DI function selection display 2

Address:	$0 x 705 B$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

U0-92 DI function selection display 3

Address: 0x705C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U0-93 DI function selection display 4

Address:	$0 \times 705 \mathrm{D}$
Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535
Description

U0-94 DI function selection display 5

Address:	$0 \times 705 E$
Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535
Description

U0-95 STO initialization flag
Address: 0x705F
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

	Description		
U0-96	STO status word monitoring		
	Address: 0x7060	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
U0-97	STO model		
	Address: 0x7061	Effective mode:	-
	Min.: 0x0	Unit:	-
	Max.: 0xFFFF	Data type:	Ulnt16
	Default: 0x0	Change:	Unchangeable
	Value Range:		
	0x0 to 0xFFFF		
	Description		
U0-98	STO 1.2 V AD sampling value		
	Address: 0x7062	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
U0-99	STO 5 V AD sampling value		
	Address: 0x7063	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		

### 4.65 U2: System Parameters

U2-00 Current motor parameter group

Address:	$0 \times 7200$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

U2-01 Current control channel
Address: 0x7201
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U2-02 Current reference channel
Address: 0x7202 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U2-03 Skip frequency flag
Address: 0x7203
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

U2-04 Local or remote

Address:	$0 \times 7204$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

U2-05 Current multi-speed reference

Address:	$0 \times 7205$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			


	Descript			
U2-06	Current multi-speed reference effective value			
	Address:	0x7206	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 to 65535			
	Description			
	-			
U2-07	Key value			
	Address:	$0 \times 7207$	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 to 65535			
	Description			
	-			
U2-08	Power-off time			
	Address:	0x7208	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 to 65535			
	Description			
	-			
U2-09	16-bit parameter error index menu address			
	Address:	0x7209	Effective mode:	-
	Min.:	0x0	Unit:	-
	Max.:	0xFFFF	Data type:	Ulnt16
	Default:	0x0	Change:	Unchangeable
	Value Range:			
	$0 \times 0$ to 0xFFFF			
	Description			
	-			
U2-10	16-bit parameter error type			
	Address:	$0 \times 720 \mathrm{~A}$	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 to 65535			
	Description			

Description

U2-11 32-bit parameter error internal index address

Address: 0x720B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
-

U2-12 32-bit parameter error internal index address
Address: 0x720C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U2-13 Fault and limit severity
Address: 0x720D Effective mode: -
Min.: $0 \quad$ Unit:
Max.: 65535
Default: 0
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

U2-14 Fault auto reset and restart steps

Address:	$0 \times 720 E$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

U2-23 Parameter backup exception

Address:	$0 \times 7217$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

U2-24 Macro parameter backup and restoration exception
Address: 0x7218 Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

U2-25 Remaining running duration during timed running

Address: 0x7219
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0 min to 6553.5 min

Description

U2-26 Parameter record information 0

Address:	$0 \times 721 \mathrm{~A}$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

U2-27 Parameter record information 1

Address:	$0 \times 721 \mathrm{~B}$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

U2-28 Parameter record information 2

Address:	$0 \times 721 C$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

U2-29 Parameter record information 3

Address:	$0 \times 721 \mathrm{D}$	Effective mode:
Min.:	0	Unit:
Max.:	65535	Data type:

Default: 0
Value Range:
0 to 65535
Description

U2-30 Parameter record information 4

Address:	$0 x 721 \mathrm{E}$
Min.:	0

Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U2-31 Parameter record information 5

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

Address:	$0 \times 721 F$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U2-32 Parameter record information 6

Address:	$0 \times 7220$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Min.: 0
Max.: 65535
Default: 0

Value Range:
0 to 65535
Description

U2-33 Parameter record information 7

Address:	$0 \times 7221$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

U2-34 Parameter record information 8

Address:	$0 \times 7222$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

Value Range:

## 0 to 65535

Description

U2-35 Parameter record information 9

Address:	$0 \times 7223$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

U2-36 Parameter record information 10
Address: 0x7224
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U2-37 Parameter record information 11
Address: 0x7225
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U2-38 Parameter record information 12

Address:	$0 \times 7226$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

U2-39 Parameter record information 13

Address:	$0 \times 7227$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Unt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			

## Description

U2-40 Parameter record information 14

Address:	$0 \times 7228$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

U2-41 Parameter record information 15

Address:	$0 \times 7229$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

U2-42 Parameter record information 16

Address: $0 \times 722 A$	Effective mode:	-	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

U2-43 Parameter record information 17

Address:	$0 \times 722 B$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

U2-44 Parameter record information 18

Address:	$0 \times 722 C$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

U2-45 Parameter record information 19

Address: $0 \times 722 \mathrm{D}$	Effective mode: -		
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

U2-46 Parameter record information 20
Address: 0x722E

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U2-47 Parameter record information 21
Address: 0x722F
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U2-48 Parameter record information 22
Address: 0x7230
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U2-49 Parameter record information 23
Address: 0x7231
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U2-50 Parameter record information 24
Address: 0x7232
Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

U2-51 Parameter record information 25

| Address: $0 \times 7233$ | Effective mode: | - |
| :--- | :--- | :--- | :--- |
| Min.: 0 | Unit: | - |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

U2-52 Parameter record information 26
Address: 0x7234 Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U2-60 Address mapping enable state

Address:	$0 \times 723 C$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

U2-61 Expansion card communication fault state

Address:	$0 \times 723 D$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

U2-62 Communication fault reset command

Address:	$0 \times 723 E$
Min.:	0
Max.:	65535


Effective mode:	-
Unit:	-
Data type:	Ulnt16

Default: 0
Change: Unchangeable

Value Range:
0 to 65535
Description

U2-63 Communication warning flag

Address:	$0 \times 723 F$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

U2-64 16-bit parameter error internal index address

Address: 0x7240
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

U2-65 Power-on initialization completion flag
Address: 0x7241

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

U2-66 Model-related parameter update flag

Address:	$0 \times 7242$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

### 4.66 U3: System Parameters

## U3-12 Master state

Address: 0x730C Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

U3-13 Master frequency

Address: $0 \times 730 D$	Effective mode:	-	
Min.: 0	Unit:	-	
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

## U3-14 Master torque

Address:	$0 \times 730 E$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

U3-15 Master phase sequence

Address:	$0 \times 730 F$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

U3-16 Communication frequency reference

Address:	$0 \times 7310$
Min.:	0.00
Max.:	655.35
Default:	0.00

## Value Range:

0.00 Hz to 655.35 Hz

## Description

U3-17 Communication reference control word

Address:	$0 \times 7311$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16

```
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description
```

U3-18 DO state (terminal function defined by parameters in group F5: communication control)
Address: 0x7312 Effective mode: -
Min.: $0 \quad$ Unit:
Max.: 65535 Data type: Ulnt16
Default: 0 Change: Unchangeable

Value Range:
0 to 65535
Description

U3-19 AO1 output reference (terminal function defined by parameters in group F5: communication control)

Address:	$0 \times 7313$	Effective mode: -	
Min.:	0	Unit:	$\%$
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0\% to 65535\%
Description

U3-20 AO2 output reference (terminal function defined by parameters in group F5: communication control)
Address: 0x7314 Effective mode: -
Min.: $0 \quad$ Unit:
Max.: 65535 Data type: Ulnt16
Default: 0 Change: Unchangeable
Value Range:
0\% to 65535\%
Description

U3-21 HDO output reference (terminal function defined by parameters in group F5: communication control)

Address:	$0 \times 7315$	Effective mode: -	
Min.:	0	Unit:	$\%$
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0\% to 65535\%
Description

U3-22 Command input through communication
Address: 0x7316
Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

U3-23 Speed reference input through communication

Address:	$0 \times 7317$	Effective mode:	
Min.:	0	Unit:	RPM
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 RPM to 65535 RPM
Description

U3-24 Communication card type

Address:	$0 \times 7318$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

U3-25 Communication card version

Address:	$0 \times 7319$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

## U3-28 EtherCAT station alias

Address:	$0 \times 731 C$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Changeable at any time

## Value Range:

0 to 65535
Description

U3-35 EtherCAT card information 1

Address:	$0 \times 7323$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16


	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
U3-36	EtherCAT card information 2		
	Address: 0x7324	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
U3-37	EtherCAT card information 3		
	Address: 0x7325	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	D		
U3-38	EtherCAT card information 4		
	Address: 0x7326	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
U3-39	EtherCAT card information 5		
	Address: 0x7327	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
U3-40	EtherCAT card information 6		
	Address: 0x7328	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable

Value Range:

## 0 to 65535 <br> Description

U3-41 EtherCAT card information 7
Address: 0x7329 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U3-42 EtherCAT card information 8
Address: 0x732A Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U3-43 EtherCAT card information 9

Address:	$0 \times 732 B$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

U3-44 EtherNet/IP error

Address:	$0 \times 732$ C	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

U3-50 LED control word
Address: $0 \times 7332$
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

## Description

## U3-51 Background control word

Address: 0x7333
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

U3-52 SOP control word
Address: 0x7334
Min.: 0
Max.: 65535
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

U3-53 Remote call

Address:	$0 \times 7335$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
-

U3-54 Control word set through communication

Address:	$0 \times 7336$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

U3-55 Target speed set through communication

Address:	$0 \times 7337$
Min.:	0.0
Max.:	6553.5
Default:	0.0

Value Range:
0.0\% to 6553.5\%

Description

Effective mode: -
Unit: $\%$
Data type: Ulnt16
Change: Unchangeable

U3-56	MD500 compatible status word			
	Address:	0x7338	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 to 65535			
	Description			
	-			
U3-57	MD500 compatible LCD command word			
	Address:	0x7339	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 to 65535			
	Description			
	-			
U3-58	MD500 compatible IDS command word			
	Address:	0x733A	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Range:			
	0 to 65535			
	Description			
	-			
U3-59	MD500 compatible 1000H speed reference			
	Address:	0x733B	Effective mode:	-
	Min.:	0.00	Unit:	\%
	Max.:	655.35	Data type:	Ulnt16
	Default:	0.00	Change:	Unchangeable
	Value Ra			
	0.00\% to	5.35\%		
	Descript			

### 4.67 L0: Bit Connector 1 Parameters

L0-00 DI1 drive sampling state
Address: 0x9000 Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

	Description		
L0-01	DI2 drive sampling state		
	Address: 0x9001	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-02	DI3 drive sampling state		
	Address: 0x9002	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
L0-03	DI4 drive sampling state		
	Address: 0x9003	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
L0-04	DI5 drive sampling state		
	Address: 0x9004	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-05	DI6 drive sampling state		
	Address: 0x9005	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

6535
Description

L0-06	DI7 drive sampling state		
	Address: 0x9006	Effective mode:	
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
L0-07	DI8 drive sampling state		
	Address: 0x9007	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-08	D19 drive sampling state		
	Address: 0x9008	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-09	DI10 drive sampling state		
	Address: 0x9009	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
L0-10	AIIAsDI final output state		
	Address: 0x900A	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-11	AI2AsDI final output state		
	Address: 0x900B	Effective mode:	-


Min.: 0	Unit:	-
Max.: 65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable
Value Range:		
to 65535		
Description		

L0-12 AI3AsDI final output state

Address:	$0 \times 900 C$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L0-13 Al1AsDI inversion state

Address:	$0 \times 900 \mathrm{D}$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L0-14 AI2AsDI inversion state

Address:	$0 \times 900 E$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L0-15 AI3AsDI inversion state

Address:	$0 \times 900 F$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

L0-16 DI1 drive output state

Address:	$0 \times 9010$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16

Default: 0
Value Range:
0 to 65535
Description

L0-17 DI2 drive output state
Address: 0x9011

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-18 DI3 drive output state
Address: 0x9012
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-19 DI4 drive output state
Address: 0x9013
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L0-20 DI5 drive output state
Address: 0x9014
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L0-21 DI6 drive output state
Address: 0x9015
Min.: 0
Max.: 65535
Default: 0

Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

0 to 65535
Description

L0-22 DI7 drive output state
Address: 0x9016

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-23 DI8 drive output state
Address: $0 \times 9017$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-24 DI9 drive output state
Address: 0x9018
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-25 DI10 drive output state
Address: 0x9019
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L0-26 VDI1 drive output state
Address: 0x901A
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

	Description		
L0-27	VDI2 drive output state		
	Address: 0x901B	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
L0-28	VDI3 drive output state		
	Address: 0x901C	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
L0-29	VDI4 drive output state		
	Address: 0x901D	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
L0-30	VDI5 drive output state		
	Address: 0x901E	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-31	VDI6 drive output state		
	Address: 0x901F	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable


| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

L0-38 DI7 final output state
Address: 0x9026
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-39 DI8 final output state
Address: 0x9027
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-40 DI9 final output state
Address: 0x9028
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L0-41 DI10 final output state
Address: 0x9029
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

## Description

L0-42 VDI1 final output state

Address:	$0 \times 902 A$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16

Default: 0
Change: Unchangeable

Value Range:
0 to 65535
Description

L0-43 VDI2 final output state
Address: 0x902B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-44 VDI3 final output state
Address: 0x902C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-45 VDI4 final output state
Address: 0x902D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-46 VDI5 final output state
Address: 0x902E
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L0-47 VDI6 final output state
Address: 0x902F

Min.: 0
Max.: 65535
Default: 0

## Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## 0 to 65535 <br> Description

L0-48 DI1 inversion state
Address: 0x9030

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-49 DI2 inversion state
Address: 0x9031
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-50 DI3 inversion state
Address: 0x9032
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-51 DI4 inversion state
Address: 0x9033
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-52 DI5 inversion state
Address: 0x9034
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

L0-53 DI6 inversion state
Address: 0x9035

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-54 DI7 inversion state
Address: 0x9036
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-55 DI8 inversion state
Address: 0x9037
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-56 DI9 inversion state
Address: 0x9038
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-57 DI10 inversion state
Address: 0x9039
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-58 VDI1 inversion state
Address: 0x903A

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-59 VDI2 inversion state
Address: 0x903B

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-60 VDI3 inversion state
Address: 0x903C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-61 VDI4 inversion state
Address: 0x903D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-62 VDI5 inversion state
Address: 0x903E
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-63 VDI6 inversion state
Address: 0x903F
Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

L0-64 Relay 1 (DO3) state before filtering
Address: 0x9040

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## L0-65 FMR state before filtering

Address: 0x9041
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-66 DO1 state before filtering
Address: 0x9042
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L0-67 Relay 2 (DO4) state before filtering
Address: 0x9043
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-68 DO2 state before filtering
Address: 0x9044
Effective mode: -
Min.: 0
Max.: 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Default: 0
Value Range:
0 to 65535
Description

L0-69 VDO1 state before filtering
Address: 0x9045

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-70 VDO2 state before filtering
Address: 0x9046
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L0-71 VDO3 state before filtering

Address:	$0 \times 9047$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

L0-72 VDO4 state before filtering
Address: 0x9048
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-73 VDO5 state before filtering
Address: 0x9049
Min.: 0
Max.: 65535
Default: 0
Value Range:

Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```


## 0 to 65535

Description

L0-74 VDO6 state before filtering
Address: 0x904A

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-75 VDO7 state before filtering
Address: 0x904B
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L0-76 VDO8 state before filtering

Address:	$0 \times 904 C$
Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535
Description

L0-77 VDO9 state before filtering

Address:	$0 \times 904 \mathrm{D}$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

L0-78 VDO10 state before filtering

Address:	$0 \times 904 E$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Effective mode:
Unit:

Change: Unchangeable

Value Range:
0 to 65535
Description

Effective mode:
Unit:

Change: Unchangeable

Effective mode:
Unit:

Change: Unchangeable

	Description		
L0-79	VD011 state before filtering		
	Address: 0x904F	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-80	Relay 1 (DO3) final output state		
	Address: 0x9050	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-81	FMR final output state		
	Address: 0x9051	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-82	DO1 final output state		
	Address: 0x9052	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-83	Relay 2 (DO4) final output state		
	Address: 0x9053	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		


L0-84	DO2 final output state		
	Address: 0x9054	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-85	VDO1 final output state		
	Address: 0x9055	Effective mode:	-
	Min.: 0	Unit:	
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-86	VDO2 final output state		
	Address: 0x9056	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-87	VDO3 final output state		
	Address: 0x9057	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L0-88	VDO4 final output state		
	Address: 0x9058	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
L0-89	VDO5 final output state		
	Address: 0x9059	Effective mode:	


	Min.:	0	Unit:	
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Ra			
	0 to 6553			
	Descript			
	-			
L0-90	VDO6 fin	output s		
	Address:	0x905A	Effective mode:	-
	Min.:	0	Unit:	
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Ra			
	0 to 6553			
	Descript			
	-			
L0-91	VDO7 fin	output s		
	Address:	0x905B	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Ra			
	0 to 6553			
	Descript			
	-			
L0-92	VDO8 fin	output s		
	Address:	0x905C	Effective mode:	
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Ra			
	0 to 6553			
	Descript			
L0-93	VDO9 fin	output s		
	Address:	0x905D	Effective mode:	
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value Ra			
	0 to 6553			
	Descript			
	-			
L0-94	VD010 f	output		
	Address:	0x905E	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16

Default: 0
Change: Unchangeable

Value Range:
0 to 65535
Description

L0-95 VDO11 final output state
Address: 0x905F
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-96 Al1 input overlimit
Address: 0x9060
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L0-97 Al2 input overlimit
Address: 0x9061
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L0-98 Al3 input overlimit
Address: 0x9062
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L0-99 HDI input wire breakage
Address: 0x9063
Min.: 0
Max.: 65535
Default: 0
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Address:	$0 \times 9063$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

### 4.68 L1: Bit Connector 2 Parameters

L1-00 Reference count value reach

Address:	$0 \times 9100$	Effective mode: -
Min.:	0	Unit:

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-01 Designated count value reach
Address: 0x9101 Effective mode: -

L1-02 Length comparison value reach
Address: 0x9102 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Unit: -
Data type: Ulnt16
Change: Unchangeable

Data type: Ulnt16
Change: Unchangeable

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Unit:
Data type: Ulnt16
Change: Unchangeable
-

L1-03 Comparison result of DIO edge counting module 1
Address: 0x9103
Effective mode:
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L1-04 Comparison result of DIO edge counting module 2
Address: 0x9104
Effective mode:
Min.: 0
Max.: 65535
Unit:
Data type: Ulnt16
Default: 0
Change: Unchangeable

Value Range:
0 to 65535
Description

L1-05 Comparison result of DIO edge counting module 3
Address: 0x9105 Effective mode:
Min.: 0 Unit:
Max.: 65535 Data type: Ulnt16
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

L1-06 Comparison result of DIO edge counting module 4

Address:	$0 \times 9106$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L1-07 AI2 or Al3 temperature mode - motor temperature reach
Address: 0x9107 Effective mode:
Min.: $0 \quad$ Unit:

Max.: 65535
Data type: Ulnt16
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

L1-08 Al2 or Al3 temperature mode - motor overtemperature
Address: 0x9108 Effective mode:
Min.: 0 Unit: -

Max.: 65535 Data type: Ulnt16
Default: 0 Change: Unchangeable
Value Range:
0 to 65535
Description

L1-09 Al2 temperature mode - motor overtemperature
Address: 0x9109
Min.: 0
Max.: 65535
Default: 0
Value Range:

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## 0 to 65535

Description

L1-10 Al3 temperature mode - motor overtemperature

Address: $0 \times 910 \mathrm{~A}$	Effective mode:	-	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
to 65535    Description			

L1-11 IGBT temperature reach (flag)
Address: 0x910B
Min.: 0
Max.: 65535
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

L1-12 Ready to switch on
Address: 0x910C
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

## L1-13 Ready to run

Address:	$0 \times 910 \mathrm{D}$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description
Description

L1-14 Running

Address:	$0 \times 910 E$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Change: Unchangeable

## Description

## L1-15 Faulty

Address:	$0 \times 910 F$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 : Not faulty
1: Faulty
Description

## L1-16 OFF2 inactive

Address: $0 \times 9110$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 : Active (OFF2 = 0)
1: Inactive (OFF2 = 1)
Description

## L1-17 OFF3 inactive

Address: 0x9111
Min.: 0
Max.: 65535
Default: 0
Value Range:
0: Active (OFF3 = 0)
1: Inactive (OFF3 = 1)
Description

L1-18 Switch-on blocking
Address: 0x9112
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L1-19 Alarm/Limit activation
Address: 0x9113
Min.: 0
Max.: 65535
Default: 0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

L1-20 Actual speed following speed reference

Address:	$0 \times 9114$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L1-21 Local or remote
Address: 0x9115
Min.: 0
Max.: 65535
Default: 0

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0: Local
1: Remote
Description

L1-22 Target speed reach
Address: $0 \times 9116$
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

## Description

L1-23 Torque limit reach
Address: 0x9117
Min.: 0
Max.: 65535
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

L1-24 Forward speed

Address:	$0 \times 9118$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

## 0 to 65535 <br> Description

L1-25 Reverse speed
Address: 0x9119 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-26 Motor running flag

Address:	$0 \times 911 \mathrm{~A}$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

L1-27 User setting 0
Address: 0x911B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-28 Self-check

Address:	$0 \times 911 \mathrm{C}$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

L1-29 Auto-tuning
Address: 0x911D
Min.: 0
Max.: 65535
Default: 0
Value Range:

```
0 to 65535
Description
```

L1-30 Limit (running with limits) activation
Address: $0 \times 911 \mathrm{E}$

Min.: 0
Max.: 65535
Default: 0

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535
Description

L1-31 Alarm activation

Address:	$0 \times 911 F$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

L1-32 Speed mode

Address:	$0 \times 9120$
Min.:	0
Max.:	65535
Default:	0


Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535

## Description

## L1-33 Torque mode

Address: 0x9121

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

## Description

L1-34 Position mode
Address: 0x9122
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

	Description		
L1-35	RFG enable		
	Address: 0x9123	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
L1-36	RFG running		
	Address: 0x9124	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
	-		
L1-37	Stop upon fault		
	Address: 0x9125	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
L1-38	Normal running		
	Address: 0x9126	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		
L1-39	Jogging		
	Address: 0x9127	Effective mode:	-
	Min.: 0	Unit:	-
	Max.: 65535	Data type:	Ulnt16
	Default: 0	Change:	Unchangeable
	Value Range:		
	0 to 65535		
	Description		

L1-42 Terminal control flag

Address: 0x912A
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-43 User setting 1
Address: 0x912B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-44 Control channel
Address: 0x912C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 : Control channel 1
1: Control channel 2
Description

L1-45 Reference channel
Address: 0x912D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 : Reference channel 1
1: Reference channel 2
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

L1-60 Excessive speed deviation

Address: $0 \times 913 C$	Effective mode:	-	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L1-61 Overspeed
Address: 0x913D Effective mode.
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-62 Target speed reach
Address: 0x913E
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-63 Speed comparison reach 0

Address:	$0 \times 913 F$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L1-64 Speed comparison reach 1

Address:	$0 \times 9140$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

## L1-65 Motor speed positive

Address: 0x9141

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

L1-66 Motor speed negative
Address: $0 \times 9142$
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

L1-76 Bit0 of W2B module A
Address: 0x914C

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-77 Bit1 of W2B module A
Address: 0x914D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-78 Bit2 of W2B module $A$
Address: 0x914E
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-79 Bit3 of W2B module A
Address: 0x914F
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-80 Bit4 of W2B module A

Address:	$0 \times 9150$	Effective mode: -
Min.:	0	Unit:
Max.:	65535	Data type:

Default: 0
Value Range:
0 to 65535
Description

L1-81 Bit5 of W2B module A
Address: 0x9151
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-82 Bit6 of W2B module A
Address: 0x9152
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-83 Bit7 of W2B module $A$
Address: 0x9153
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## L1-84 Bit8 of W2B module A

Address: 0x9154
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## L1-85 Bit9 of W2B module A

Address:	$0 \times 9155$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Unit:

Change: Unchangeable

## 0 to 65535

Description

L1-86 Bit10 of W2B module $A$
Address: 0x9156
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-87 Bit11 of W2B module $A$
Address: 0x9157
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-88 Bit12 of W2B module $A$
Address: 0x9158
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-89 Bit13 of W2B module $A$
Address: 0x9159
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-90 Bit14 of W2B module $A$

Address:	$0 \times 915 \mathrm{~A}$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable
Description
L1-91 Bit15 of W2B module A
Address: 0x915B

Effective mode:
Min.: 0Max.: 65535
Default:0
Value Range:
0 to 65535
Description
L1-92 Bit0 of W2B module B
Address: 0x915C
Min.: 0
Max.: 65535
Default: ..... 0
Value Range:
0 to 65535
Description
L1-93 Bit1 of W2B module B
Address: 0x915D
Min.: 0
Max.: 65535
Default: ..... 0
Value Range:
0 to 65535
Description
L1-94 Bit2 of W2B module B
Address: 0x915E
Min.: 0
Max.: ..... 65535
Default: ..... 0
Value Range:
0 to 65535
Description
L1-95 Bit3 of W2B module $B$

Address:	$0 \times 915 F$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

L1-96 Bit4 of W2B module $B$
Address: 0x9160

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-97 Bit5 of W2B module B
Address: 0x9161

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-98 Bit6 of W2B module $B$
Address: 0x9162
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L1-99 Bit7 of W2B module $B$
Address: 0x9163
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

### 4.69 L2: Bit Connector 3 Parameters

L2-00 Bit8 of W2B module $B$
Address: 0x9200
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

L2-01 Bit9 of W2B module B
Address: 0x9201
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-02 Bit10 of W2B module B
Address: 0x9202
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-03 Bit11 of W2B module $B$
Address: 0x9203
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-04 Bit12 of W2B module B

Address:	$0 \times 9204$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

## L2-05 Bit13 of W2B module B

Address:	$0 \times 9205$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

L2-06 Bit14 of W2B module $B$

Address: 0x9206
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-07 Bit15 of W2B module B
Address: 0x9207
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-08 Bit0 of W2B module C
Address: 0x9208
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-09 Bit1 of W2B module C
Address: 0x9209
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-10 Bit2 of W2B module C
Address: 0x920A
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-11 Bit3 of W2B module C
Address: 0x920B

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:

Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535
Description

L2-12 Bit4 of W2B module C
Address: 0x920C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-13 Bit5 of W2B module C
Address: 0x920D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-14 Bit6 of W2B module C
Address: 0x920E
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-15 Bit7 of W2B module C
Address: 0x920F
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-16 Bit8 of W2B module C
Address: 0x9210
Min.: 0
Max.: 65535

Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16

Default: 0
Value Range:
0 to 65535
Description

L2-17 Bit9 of W2B module C
Address: 0x9211
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-18 Bit10 of W2B module C
Address: 0x9212
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-19 Bit11 of W2B module C
Address: 0x9213
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-20 Bit12 of W2B module C

Address:	$0 \times 9214$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

L2-21 Bit13 of W2B module C

Address:	$0 \times 9215$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:

0 to 65535
Description

L2-22 Bit14 of W2B module C
Address: 0x9216 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-23 Bit15 of W2B module C
Address: 0x9217
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-24 Bit0 of W2B module D
Address: 0x9218
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-25 Bit1 of W2B module D
Address: 0x9219
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-26 Bit2 of W2B module D
Address: 0x921A
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

L2-27 Bit3 of W2B module D
Address: 0x921B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-28 Bit4 of W2B module D
Address: 0x921C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-29 Bit5 of W2B module D
Address: 0x921D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-30 Bit6 of W2B module D
Address: 0x921E
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L2-31 Bit7 of W2B module D
Address: 0x921F
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L2-32 Bit8 of W2B module D
Address: 0x9220
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-33 Bit9 of W2B module D
Address: 0x9221
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-34 Bit10 of W2B module D
Address: 0x9222
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-35 Bit11 of W2B module D
Address: 0x9223
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-36 Bit12 of W2B module D
Address: 0x9224
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-37 Bit13 of W2B module D
Address: 0x9225
Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:

Min.:	0
Max.:	65535
Default:	0

Value Range:
0 to 65535
Description

L2-38 Bit14 of W2B module D
Address: 0x9226
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-39 Bit15 of W2B module D
Address: 0x9227
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-40 Bit0 of W2B module E
Address: 0x9228
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-41 Bit1 of W2B module E
Address: 0x9229
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-42 Bit2 of W2B module E
Address: 0x922A
Min.: 0
Max.: 65535

Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Data type: Ulnt16
Change: Unchangeable

Default: 0
Value Range:
0 to 65535
Description

L2-43 Bit3 of W2B module E
Address: 0x922B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-44 Bit4 of W2B module E
Address: 0x922C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-45 Bit5 of W2B module E
Address: 0x922D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-46 Bit6 of W2B module E
Address: 0x922E
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-47 Bit7 of W2B module E
Address: 0x922F
Min.: 0
Max.: 65535
Default: 0
Value Range:

Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## 0 to 65535 <br> Description

L2-48 Bit8 of W2B module E
Address: 0x9230
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-49 Bit9 of W2B module E
Address: 0x9231
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## L2-50 Bit10 of W2B module E

Address: 0x9232
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## L2-51 Bit11 of W2B module E

Address: 0x9233
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## L2-52 Bit12 of W2B module E

Address:	$0 \times 9234$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```


## Description

L2-53 Bit13 of W2B module E
Address: 0x9235 Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-54 Bit14 of W2B module E
Address: 0x9236 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## L2-55 Bit15 of W2B module E

Address: 0x9237
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-56 Bit0 of W2B module $F$
Address: 0x9238
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-57 Bit1 of W2B module $F$
Address: 0x9239
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-58 Bit2 of W2B module $F$

Address: 0x923A
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-59 Bit3 of W2B module F
Address: 0x923B

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-60 Bit4 of W2B module $F$
Address: 0x923C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-61 Bit5 of W2B module $F$
Address: 0x923D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-62 Bit6 of W2B module $F$
Address: 0x923E
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-63 Bit7 of W2B module F
Address: 0x923F

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable Effective mode:

	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value R			
	0 to 6553			
	Descrip			
	-			
L2-64	Bit8 of	B module		
	Address:	0x9240	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value R			
	0 to 6553			
	Descrip			
	-			
L2-65	Bit9 of	$B$ module		
	Address:	0x9241	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value R			
	0 to 6553			
	Descrip			
L2-66	Bit10 of	2B modul		
	Address:	0x9242	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value R			
	0 to 6553			
	Descrip			
	-			
L2-67	Bit11 of	2B modul		
	Address:	0x9243	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16
	Default:	0	Change:	Unchangeable
	Value R			
	0 to 6553			
	Descrip			
L2-68	Bit12 of	2B modul		
	Address:	0x9244	Effective mode:	-
	Min.:	0	Unit:	-
	Max.:	65535	Data type:	Ulnt16

Default: 0 Change: Unchangeable
Value Range:
0 to 65535
Description
L2-69 Bit13 of W2B module F
Address: 0x9245
Min.: 0
Max.: 65535
Default: ..... 0
Value Range:
0 to 65535
Description
L2-70 Bit14 of W2B module F
Address: 0x9246

Effective mode:
Min.: 0
Max.: 65535
Default: ..... 0
Value Range:
0 to 65535
Description
L2-71 Bit15 of W2B module F
Address: 0x9247
Min.: 0
Max.: 65535
Default: ..... 0
Value Range:
0 to 65535
Description
L2-72 Bit0 of W2B module G
Address: 0x9248
Min.: 0
Max.: ..... 65535
Default: ..... 0
Value Range:
0 to 65535
Description
L2-73 Bit1 of W2B module G
Address: 0x9249
Min.: 0
Max.: 65535
Default: 0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Unit:
Data type: Ulnt16
Change: Unchangeable

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

Value Range:

0 to 65535
Description

L2-74 Bit2 of W2B module G
Address: 0x924A
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-75 Bit3 of W2B module G
Address: 0x924B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-76 Bit4 of W2B module G
Address: 0x924C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-77 Bit5 of W2B module G
Address: 0x924D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-78 Bit6 of W2B module G
Address: $0 \times 924 \mathrm{E}$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

L2-79 Bit7 of W2B module G
Address: 0x924F

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-80 Bit8 of W2B module G
Address: 0x9250
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-81 Bit9 of W2B module G
Address: 0x9251
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-82 Bit10 of W2B module G

Address:	$0 \times 9252$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

L2-83 Bit11 of W2B module G

Address:	$0 \times 9253$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

L2-84 Bit12 of W2B module G

Address: $0 \times 9254$	Effective mode:	-	
Min.: 0	Unit:	-	
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

## L2-85 Bit13 of W2B module G

Address: 0x9255
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-86 Bit14 of W2B module G
Address: 0x9256
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-87 Bit15 of W2B module G
Address: 0x9257
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-88 Bit0 of W2B module H
Address: 0x9258
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-89 Bit1 of W2B module H
Address: 0x9259

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:

Min.:	0	Unit:	-
Max.: 65535	Data type:	Ulnt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L2-90 Bit2 of W2B module H
Address: 0x925A

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-91 Bit3 of W2B module $H$
Address: 0x925B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-92 Bit4 of W2B module H
Address: 0x925C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-93 Bit5 of W2B module H
Address: 0x925D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-94 Bit6 of W2B module H

Address:	$0 \times 925 \mathrm{E}$	Effective mode: -
Min.:	0	Unit:
Max.:	65535	Data type:

Default: 0
Value Range:
0 to 65535
Description

L2-95 Bit7 of W2B module H
Address: 0x925F
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-96 Bit8 of W2B module H
Address: 0x9260
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L2-97 Bit9 of W2B module H
Address: 0x9261
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## L2-98 Bit10 of W2B module H

Address: 0x9262
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## L2-99 Bit11 of W2B module H

Address: 0x9263
Min.: 0
Max.: 65535
Default: 0

Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:

### 4.70 L3: Bit Connector 4 Parameters

## L3-00 Bit12 of W2B module H

Address:	$0 \times 9300$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## L3-01 Bit13 of W2B module H

Address: 0x9301
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## L3-02 Bit14 of W2B module H

Address: 0x9302
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-03 Bit15 of W2B module H
Address: 0x9303
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-04 Output of binary selector module A

Address:	$0 \times 9304$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16

Default: 0
Value Range:
0 to 65535
Description

L3-05 Output of binary selector module B
Address: 0x9305

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-06 Output of binary selector module C
Address: 0x9306

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-07 Output of binary selector module D
Address: 0x9307
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-08 Output of binary selector module E
Address: 0x9308
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-09 Output of binary selector module F
Address: 0x9309
Min.: 0
Max.: 65535
Default: 0

Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

## 0 to 65535 <br> Description

L3-10 Output of binary selector module G
Address: 0x930A

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-11 Output of binary selector module H
Address: 0x930B
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L3-20 Output of logic delay module A
Address: 0x9314
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

## Description

L3-21 Output of logic delay module B
Address: 0x9315
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-22 Output of logic delay module C
Address: $0 \times 9316$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

L3-23 Output of logic delay module D
$\begin{array}{ll}\text { Address: } & 0 \times 9317 \\ \text { Min. } & 0\end{array}$
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-24 Output of logic delay module E
Address: 0x9318
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L3-25 Output of logic delay module F
Address: 0x9319
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L3-26 Output of logic delay module G
Address: 0x931A
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-27 Output of logic delay module $\mathbf{H}$
Address: 0x931B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

L3-36 Output of logic AND-OR module A

Address: 0x932
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-37 Output of logic AND-OR module B
Address: 0x9325
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-38 Output of logic AND-OR module C
Address: 0x9326
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-39 Output of logic AND-OR module D
Address: 0x9327
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L3-40 Output of logic AND-OR module E
Address: 0x9328
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Effective mode:
Unit:
Change: Unchangeable
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

L3-41 Output of logic AND-OR module F Address: 0x9329

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

L3-42 Output of logic AND-OR module G
Address: 0x932A
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

L3-43 Output of logic AND-OR module H
Address: 0x932B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-44 Output of logic AND-OR module I
Address: 0x932C
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L3-45 Output of logic AND-OR module J
Address: 0x932D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-46 Output of logic AND-OR module K
Address: 0x932E
Min.: 0
Max.: 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16

Default: 0
Value Range:
0 to 65535
Description

L3-47 Output of logic AND-OR module L
Address: 0x932F
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-52 Output of logic NOT module $A$
Address: 0x9334
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-53 Output of logic NOT module B
Address: 0x9335
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-54 Output of logic NOT module C
Address: 0x9336
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-55 Output of logic NOT module D
Address: 0x9337
Min.: 0
Max.: 65535
Default: 0
Value Range:

Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

## 0 to 65535 <br> Description

L3-56 Output of logic NOT module E
Address: 0x9338
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-57 Output of logic NOT module F
Address: 0x9339
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L3-58 Output of logic NOT module G
Address: 0x933A
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L3-59 Output of logic NOT module H
Address: 0x933B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-60 Output of logic NOT module I
Address: 0x933C
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

L3-61 Output of logic NOT module J

Address:	$0 x 933 \mathrm{D}$
Min.:	0

Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L3-62 Output of logic NOT module K
Address: 0x933E

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

## Description

L3-63 Output of logic NOT module L
Address: 0x933F
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L3-64 Output of logic NOT module M
Address: 0x9340
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-65 Output of logic NOT module $N$
Address: 0x9341
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

L3-66 Output of logic NOT module 0

Address: 0x9342
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-67 Output of logic NOT module $P$
Address: 0x9343
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-68 Output of logic XOR/XNOR module A
Address: 0x9344
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-69 Output of logic XOR/XNOR module B
Address: 0x9345
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-70 Output of logic XOR/XNOR module C
Address: 0x9346
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L3-71 Output of logic XOR/XNOR module D
Address: 0x9347

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

[^5]	Min.: 0	Unit:	-
Max.: 65535	Data type:	Ulnt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L3-72 Output of logic XOR/XNOR module E
Address: 0x9348

Min.: 0
Max.: 65535
Default: 0

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

Value Range:
0 to 65535
Description

L3-73 Output of logic XOR/XNOR module F
Address: 0x9349

Min.: 0
Max.: 65535
Default: 0

Effective mode: -	
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

## Value Range:

0 to 65535

## Description

L3-74 Output of logic XOR/XNOR module G
Address: 0x934A
Min.: 0
Max.: 65535
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

L3-75 Output of logic XOR/XNOR module H

Address:	$0 \times 934 B$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

L3-84 Output of level-to-pulse conversion module $A$

Address:	$0 \times 9354$
Min.:	0
Max.:	65535

Effective mode: -
Unit:
Data type: Ulnt16
Default: 0
Change:
Unchangeable

Value Range:
0 to 65535
Description

L3-85 Output of level-to-pulse conversion module B
Address: 0x9355 Effective mode:

Min.: $0 \quad$ Unit:
Max.: 65535 Data type: Ulnt16
Default: 0 Change: Unchangeable
Value Range:
0 to 65535
Description

L3-86 Output of level-to-pulse conversion module C
Address: 0x9356 Effective mode:
Min.: 0 Unit:
Max.: 65535 Data type: Ulnt16
Default: 0 Change: Unchangeable
Value Range:
0 to 65535
Description

L3-87 Output of level-to-pulse conversion module D

Address: $0 \times 9357$	Effective mode:	-	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

### 4.71 L4: Bit Connector 5 Parameters

L4-00 Output of floating-point comparison module A
Address: 0x9400 Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L4-01 Output of floating-point comparison module B
Address: 0x9401
Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

L4-02 Output of floating-point comparison module C
Address: 0x9402 Effective mode:
Min.: $0 \quad$ Unit:
Max.: 65535 Data type: Ulnt16

Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

L4-03 Output of floating-point comparison module D

Address:	$0 \times 9403$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L4-04 Output of fixed-point comparison module E
Address: 0x9404 Effective mode:
Min.: 0 Unit:
Max.: 65535 Data type: Ulnt16
Default: 0 Change: Unchangeable
Value Range:
0 to 65535
Description

L4-05 Output of fixed-point comparison module F
Address: 0x9405 Effective mode: -

Min.: 0 Unit
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L4-06 Output of fixed-point comparison module G
Address: 0x9406 Effective mode:
Min.: 0 Unit
Max.: 65535 Data type: Ulnt16
Default: 0
Change: Unchangeable

Value Range:
0 to 65535
Description

L4-07 Output of fixed-point comparison module H
Address: 0x9407 Effective mode: -

Min.: 0 Unit
Max.: 65535 Data type: Ulnt16
Default: 0 Change: Unchangeable
Value Range:
0 to 65535
Description

L4-16 Flag indicating whether input of floating-point absolute value module $A$ is negative

Address: $0 \times 9410$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 : Not negative
1: Negative
Description

L4-17 Flag indicating whether input of floating-point absolute value module $B$ is negative Address: 0x9411

Effective mode:
Min.: 0
Unit:
Max.: 65535
Data type: Ulnt16
Default: 0
Value Range:
0 : Not negative
1: Negative
Description

L4-18 Flag indicating whether input of floating-point absolute value module $\mathbf{C}$ is negative Address: 0x9412

Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 : Not negative
1: Negative
Description

L4-19 Flag indicating whether input of floating-point absolute value module $D$ is negative Address: 0x9413

Effective mode:

Min.:	0	Unit:	-
Max.: 65535	Data type:	Ulnt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0: Not negative			
1: Negative			
Description			

L4-20 Flag indicating whether input of floating-point absolute value module $E$ is negative Address: 0x9414
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 : Not negative
1: Negative
Description

L4-21 Flag indicating whether input of fixed-point absolute value module $F$ is negative

Address: 0x9415
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 : Not negative
1: Negative
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

L4-32 Flag indicating whether divisor of MULTIPLY/DIVIDE module $A$ is 0

Address: 0x9420
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 : Not 0
1: 0
Description

L4-33 Flag indicating whether divisor of MULTIPLY/DIVIDE module $B$ is 0
Address: 0x9421
Min.: 0
Max.: 65535
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 : Not 0
1: 0
Description

L4-34 Flag indicating whether divisor of MULTIPLY/DIVIDE module $\mathbf{C}$ is 0
Address: 0x9422
Min.: 0
Max.: 65535
Effective mode:

Default: 0
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 : Not 0
1: 0
Description

L4-35 Flag indicating whether divisor of MULTIPLY/DIVIDE module $D$ is 0
Address: $0 \times 9423$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 : Not 0
1: 0
Description

L4-36 Flag indicating whether divisor of MULTIPLY/DIVIDE module E is 0
Address: 0x9424
Min.: 0
Max.: 65535
Default: 0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 : Not 0
1: 0
Description

L4-37 Flag indicating whether divisor of MULTIPLY/DIVIDE module $F$ is 0

Address: 0x9425
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 : Not 0
1: 0
Description

L4-38 Flag indicating whether divisor of MULTIPLY/DIVIDE module $\mathbf{G}$ is 0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Address: 0x9426

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 : Not 0
1: 0
Description
-

L4-39 Flag indicating whether divisor of MULTIPLY/DIVIDE module H is $\mathbf{0}$
Address: 0x9427
Min.: 0
Max.: 65535
Default: 0
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 : Not 0
1: 0
Description

L4-48 Upper limit flag of limiting module A

Address:	$0 \times 9430$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

L4-49 Lower limit flag of limiting module $A$

Address:	$0 \times 9431$	Effective mode:
Min.:	0	Unit:


Max.: 65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable
Value Range:		
0 to 65535		
Description		

L4-50 Upper limit flag of limiting module B
Address: 0x9432

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L4-51 Lower limit flag of limiting module B

Address: 0x9433
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L4-52 Upper limit flag of limiting module C
Address: 0x9434

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L4-53 Lower limit flag of limiting module C
Address: 0x9435

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L4-54 Upper limit flag of limiting module D
Address: 0x9436
Min.: 0
Max.: 65535
Default: 0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

L4-55 Lower limit flag of limiting module D

Address:	$0 \times 9437$
Min.:	0
Max.:	65535
Default:	0

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```


## Value Range:

0 to 65535
Description

L4-56 Upper limit flag of limiting module E
Address: 0x9438

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

## Description

L4-57 Lower limit flag of limiting module E

Address:	$0 \times 9439$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

L4-58 Upper limit flag of limiting module $F$
Address: $0 \times 943 \mathrm{~A}$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L4-59 Lower limit flag of limiting module $F$

Address: 0x943B
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

## L4-64 Hibernation enable flag

Address:	$0 \times 9440$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

L4-66 Startup frequency RFG forcing

Address: 0x9442
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L4-67 Startup frequency stop flag
Address: 0x9443
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L4-72 Power-on duration reach
Address: 0x9448
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L4-73 Running duration reach
Address: 0x9449
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
-

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

## L4-74 Timing duration reach

Address:	$0 \times 944 \mathrm{~A}$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L4-75 Current running duration reach
Address: 0x944B

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

```
Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable
```


### 4.72 L5: Word Connector 1 Parameters

L5-00 System status word 1
Address: 0x9500
Min.: 0
Max.: 65535
Default: 0

## Value Range:

Bit00: Ready to switch on
Bit01: Ready to run
Bit02: Running
Bit03: Faulty
Bit04: OFF2
Bit05: OFF3
Bit06: Switch-on blocking
Bit07: Running with limits
Bit08: No speed deviation
Bit09: Local or remote
Bit10: Target speed reach
Bit11: Torque limiting
Bit12: Positive speed
Bit13: Negative speed
Bit14: Running (pulse output)
Bit15: User-defined state 0
Description

L5-01 System status word 2

Address: 0x9501
Min.: 0
Max.: 65535
Default: 0
Value Range:
Bit00: Self-check
Bit01: Auto-tuning
Bit02: Limit state
Bit03: Alarm state
Bit04: Speed mode
Bit05: Torque mode
Bit06: Position mode
Bit07: RFG enable
Bit08: RFG running
Bit09: Stop upon fault
Bit10: Normal running
Bit11: Jogging
Bit12: Decelerate to stop
Bit13: Reserved
Bit14: Terminal control
Bit15: User-defined state 1
Description
-

L5-02 Main status word of drive
Address: 0x9502
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
-

L5-03 Auxiliary status word of drive
Address: 0x9503
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L5-04 Main status word of motor
Address: 0x9504
Min.: 0
Max.: 65535
Default: 0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

L5-05 Auxiliary status word of motor

Address:	$0 \times 9505$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L5-06 Current state of system state machine

Address:	$0 \times 9506$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 : Initializing
1: Switch-on prohibited
2: Switch-on allowed
3: Running allowed
4: Started
5: Running
6: Stopped
7: Self-check
8: Auto-tuning
Description

L5-07 System state machine switchover command

Address: 0x9507
Min.: 0
Max.: 65535
Default: 0

Bit00: Startup active
Bit01: Stop active
Bit02: OFF2 stop active
Bit03: OFF3 stop active
Bit04: Running permission active
Bit05: Running prohibition active
Bit06: Stop upon fault active
Description

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

L5-08 System running state

Address:	$0 \times 9508$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L5-09 Current stop mode
Address: 0x9509
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 : Coast to stop
1: Stop at maximum capability
2: Quick stop
3: Decelerate to stop
Description

## L5-10 DC braking state during deceleration to stop

Address: 0x950A
Effective mode:
Min.: $0 \quad$ Unit:
Max.: 65535
Data type: Ulnt16
Default: 0
Change: Unchangeable
Value Range:
0 to 65535
Description

L5-17 Bus voltage
Address: 0x9511
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0 V to 6553.5 V

Description

L5-20 IGBT temperature
Address: 0x9514
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0 to 6553.5

## Description

L5-21 LED control word
Address: 0x9515

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L5-22 IDS control word
Address: 0x9516
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L5-23 SOP control word
Address: 0x9517
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L5-24 Command channel system command

Address:	$0 \times 9518$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

L5-25 LED command clear flag
Address: 0x9519
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

L5-26 SOP command clear flag

Address: 0x951A
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L5-27 IDS command clear flag
Address: 0x951B
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L5-28 Terminal module command

Address:	$0 \times 951 C$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```


## Value Range:

0 to 65535
Description

L5-29 Input state of terminal module A

Address:	$0 \times 951 D$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

L5-30 Input state of terminal module B
Address: 0x951E

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

L5-31 Running mode (normal jogging)
Address: 0x951F
Effective mode:

Min.:	0	Unit:	-
Max.: 65535	Data type:	Ulnt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

## L5-32 Jogging source 12

Address: 0x9520
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L5-33 Control target

Address:	$0 \times 9521$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0: Speed control
1: Torque control
1: Position control
Description

L5-34 RFG status word
Address: 0x9522
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L5-35 RFG command word
Address: 0x9523
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L5-38 V/f separation time set to 0
Address: 0x9526 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L5-40 Al1 raw sampling value

Address:	$0 \times 9528$
Min.:	-32.767
Max.:	32.767
Default:	0.000

Value Range:
-32.767 V to +32.767 V
Description

L5-41 Al2 raw sampling value
Address: 0x9529
Min.: $\quad-32.767$
Max.: $\quad 32.767$
Default: 0.000

## Value Range:

-32.767 V to +32.767 V
Description

L5-42 Al3 raw sampling value

Address:	$0 \times 952 \mathrm{~A}$
Min.:	-32.767
Max.:	32.767
Default:	0.000

## Value Range:

-32.767 V to +32.767 V

## Description

L5-43 Al1 sampling value after correction

Address:	$0 \times 952 \mathrm{~B}$
Min.:	-327.67
Max.:	327.67
Default:	0.00

## Value Range:

-327.67 V to +327.67 V
Description
Effective mode:
Unit: V
Data type: Int16
Change: Unchangeable

Description

L5-44 Al2 sampling value after correction Address: 0x952C

Effective mode:

Min.:	-327.67	Unit:	V
Max.:	327.67	Data type:	Int16
Default: 0.00	Change:	Unchangeable	
Value Range:			
-327.67 V to +327.67 V			
Description			

L5-45 Al3 sampling value after correction

Address:	$0 \times 952 \mathrm{D}$	Effective mode:	-
Min.:	-327.67	Unit:	V
Max.:	327.67	Data type:	Int16
Default:	0.00	Change:	Unchangeable

L5-46 Input value of Al1 curve
Address: 0x952E
Min.: $\quad$-327.67
Max.: 327.67
Default: 0.00

## Value Range:

-327.67 V to +327.67 V
Description

L5-47 Input value of AI2 curve
Address: 0x952F
Min.: -327.67
Max.: $\quad 327.67$
Default: 0.00
Value Range:
-327.67 V to +327.67 V

## Description

L5-48 Input value of AI3 curve
Address: 0x9530
Min.: $\quad-327.67$
Max.: $\quad 327.67$
Default: 0.00

## Value Range:

-327.67 V to +327.67 V

## Description

L5-49 AO1 output (before correction)

Address:	$0 \times 9531$
Min.:	-327.67
Max.:	327.67


Effective mode:	-
Unit:	V
Data type:	Int16

Default: 0.00
Change: Unchangeable

Value Range:
-327.67 V to +327.67 V
Description

L5-50 AO2 output (before correction)
Address: 0x9532
Min.: $\quad-327.67$
Max.: $\quad 327.67$
Default: 0.00
Value Range:
-327.67 V to +327.67 V
Description

L5-51 AO1 output (after correction)

Address:	$0 \times 9533$
Min.:	-32.767
Max.:	32.767
Default:	0.000

## Value Range:

-32.767 V to +32.767 V

## Description

L5-52 AO2 output (after correction)
Address: 0x9534

Min.: $\quad-32.767$
Max.: $\quad 32.767$
Default: 0.000
Value Range:
-32.767 V to +32.767 V
Description

L5-53 HDI input frequency
Address: 0x9535
Min.: 0.00
Max.: $\quad 655.35$
Default: 0.00
Value Range:
0.00 kHz to 655.35 kHz

Description

L5-54 Counter output
Address: 0x9536
Min.: 0
Max.: 65535
Default: 0
Value Range:

Effective mode:
Unit: V
Data type: Int16
Change: Unchangeable

Effective mode:
Unit: V
Data type: Int16
Change: Unchangeable

Effective mode:
Unit: V
Data type: Int16
Change: Unchangeable

Effective mode:
Unit: kHz
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

## 0 to 65535 <br> Description

L5-55 Length count

Address:	$0 \times 9537$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L5-56 Command word set through communication

Address:	$0 \times 9538$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

Bit00:OFF1
Bit01: OFF2
Bit02: OFF3
Bit03: Running permission
Bit04: Reset
Bit05: JOG1
Bit06: JOG2
Bit07: Speed negation
Description

L5-57 Communication setpoint

Address:	$0 \times 9539$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

## Value Range:

0.0\% to 6553.5\%

## Description

L5-58 Communication command clear flag

Address:	$0 \times 953 A$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

## L5-59 RFG performance forcing enable

Address:	$0 \times 953 B$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

## L5-60 Pre-auto-tuning command

Address: 0x953C Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description
Unit:
Data type: Ulnt16
Change: Unchangeable

L5-62 DI immediate DC braking command

Address:	$0 \times 953 E$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

L5-63 Drive sampling DI state
Address: 0x953F
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L5-64 Drive output DI state
Address: 0x9540
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

Effective mode:	-
Unit:	-
Data type:	Ulnt16
Change:	Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

L5-65 Final output DI state
Address: 0x9541
Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

L5-66 DI state inversion
Address: 0x9542

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L5-67 DO state before filtering
Address: 0x9543 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L5-68 Final output DO state
Address: 0x9544
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L5-69 I/O monitoring state
Address: $0 \times 9545$
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

## Description

L5-70 Main speed

Address:	$0 \times 9546$	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16

Default: 0.0
Change:
Unchangeable

Value Range:
0.0\% to 6553.5\%

Description

L5-71 Auxiliary speed

Address:	$0 \times 9547$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

Value Range:
0.0\% to 6553.5\%

## Description

L5-73 Al2 sampling current 1 after correction (impedance: $500 \Omega$ )
Address: 0x9549

Min.: -327.67
Max.: $\quad 327.67$
Default: 0.00
Effective mode: -
Unit: mA
Data type: Int16
Change: Unchangeable
Value Range:
-327.67 mA to +327.67 mA
Description

L5-75 AO1 output current (before correction)

Address:	$0 \times 954 B$	Effective mode:	-
Min.:	-327.67	Unit:	mA
Max.:	327.67	Data type:	Int16
Default:	0.00	Change:	Unchangeable

Value Range:
-327.67 mA to +327.67 mA
Description

L5-76 AO2 output current (before correction)

Address:	$0 \times 954 C$	Effective mode:	-
Min.:	-327.67	Unit:	mA
Max.:	327.67	Data type:	Int16
Default:	0.00	Change:	Unchangeable

Value Range:
-327.67 mA to +327.67 mA
Description

L5-77 Al2 sampling current 2 after correction (impedance: $250 \Omega$ )
Address: 0x954D Effective mode:
Min.: -327.67 Unit: mA
Max.: 327.67 Data type: Int16
Default: 0.00 Change: Unchangeable
Value Range:

```
-327.67 mA to +327.67 mA
Description
```

L5-78 Flag indicating whether mapping write data is 32-bit

Address:	$0 \times 954 E$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L5-79 External communication data low-order 16 bits 1

Address:	$0 \times 954 F$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L5-80 External communication data low-order 16 bits 2

Address:	$0 \times 9550$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L5-81 External communication data low-order 16 bits 3

Address:	$0 \times 9551$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L5-82 External communication data low-order 16 bits 4

Address:	$0 \times 9552$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535

## Description

L5-83 External communication data low-order 16 bits 5

Address:	$0 \times 9553$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L5-84 External communication data low-order 16 bits 6

| Address: $0 \times 9554$ | Effective mode: | - |
| :--- | :--- | :--- | :--- |
| Min.: 0 | Unit: | - |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

L5-85 External communication data low-order 16 bits 7

Address:	$0 \times 9555$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L5-86 External communication data low-order 16 bits 8

Address:	$0 \times 9556$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L5-87 External communication data low-order 16 bits 9

Address:	$0 \times 9557$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L5-88 External communication data low-order 16 bits 10

Address: $0 \times 9558$	Effective mode:	-	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L5-89 External communication data high-order 16 bits 1

Address:	$0 \times 9559$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L5-90 External communication data high-order 16 bits 2

Address:	$0 \times 955 \mathrm{~A}$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

L5-91 External communication data high-order 16 bits 3

Address:	$0 \times 955 B$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

L5-92 External communication data high-order 16 bits 4

Address:	$0 \times 955 C$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Unt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L5-93 External communication data high-order 16 bits 5
Address: 0x955D
Effective mode:

Min.: 0	Unit:	-
Max.: 65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable
Value Range:		
0 to 65535		
Description		

L5-94 External communication data high-order 16 bits 6
Address: 0x955E Effective mode:
Min.: 0 Unit

Max.: 65535 Data type: Ulnt16
Default: 0 Change: Unchangeable
Value Range:
0 to 65535
Description

L5-95 External communication data high-order 16 bits 7

Address:	$0 \times 955 F$
Min.:	0
Max.:	65535
Default:	0

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

L5-96 External communication data high-order 16 bits 8

Address: $0 \times 9560$	Effective mode:	-	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
to 65535    Description			

L5-97 External communication data high-order 16 bits 9

Address: $0 \times 9561$	Effective mode:	-	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L5-98 External communication data high-order 16 bits 10

Address:	$0 \times 9562$	Effective mode:
Min.:	0	Unit:
Max.:	65535	Data type:

Max.: 65535 Data type: Ulnt16
Default: 0
Change:
Unchangeable
Value Range:
0 to 65535
Description

### 4.73 L6: Word Connector 2 Parameters

L6-00 Rated motor speed
Address: 0x9600
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 RPM to 65535 RPM
Description

L6-01 Rated motor frequency
Address: 0x9601
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0 Hz to 6553.5 Hz

Description

L6-02 Rated voltage
Address: 0x9602
Min.: 0.0
Max.: $\quad 6553.5$
Default: 0.0
Value Range:
0.0 V to 6553.5 V

Description

L6-03 Rated current
Address: 0x9603
Min.: 0.0
Max.: $\quad 6553.5$
Default: 0.0
Value Range:
0.0 A to 6553.5 A

Description

L6-04 Rated power
Address: 0x9604
Effective mode: -
Unit: A
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit: V
Data type: Ulnt16
Change: Unchangeable
ive mode:
Unit: $\quad \mathrm{Hz}$

Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit: RPM
Data type: Ulnt16
Change: Unchangeable

Min.:	0.0
Max.:	6553.5
Default:	0.0

Value Range:
0.0 kW to 6553.5 kW

Description

L6-05 System main status word C
Address: 0x9605
Min.: 0
Max.: 65535
Default: 0
Value Range:
Bit00: Control channel
Bit01: Reference channel
Bit02: Motor selection bit 0
Bit03: Motor selection bit 1
Bit04: Exception (fault and alarm)
Bit05: EEPROM idle
Description

L6-06 Motor object auxiliary status word 2

Address:	$0 \times 9606$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

0 to 65535
Description

L6-07 V/f separation stop frequency control Address: 0x9607
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L6-08 Torque control frequency offset mode
Address: $0 \times 9608$
Min.: 0
Max.: 65535
Default: 0

Unit: kW
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Value Range:
0 to 65535

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

L6-09 RFG acceleration/deceleration state
Address: 0x9609 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

L6-10 RFG rounding state
Address: 0x960A
Min.: 0
Max.: 65535
Default: 0

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```


## Value Range:

0 to 65535
Description

L6-11 Inverter protection state monitoring

Address:	$0 \times 960 B$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

Bit00: Pulse-by-pulse current limit protection
Bit01: Pulse-by-pulse current limit inhibition
Bit02: Input phase loss Bit03: Output phase loss
Bit04: Pre-charge resistor exception Bit05: Drive overload
Bit06: Drive pre-overload
Bit07: Bus overvoltage
Bit08: Bus undervoltage
Bit09: Output overcurrent
Bit10: Drive overtemperature
Bit11: Drive pre-overtemperature
Bit12: Leakage current protection
Bit13: Current control exception Bit14: Software overcurrent
Bit15: Short-to-ground (reserved)

## Description

L6-12 Modulation module status word

Address:	$0 \times 960 C$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

L6-13 Body sampling status word
Address: 0x960D Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

L6-14 Al2 temperature mode - motor temperature sampling value
Address: 0x960E
Min.: -32767
Max.: 32767
Default: 0
Value Range:
$-32767^{\circ} \mathrm{C}$ to $+32767^{\circ} \mathrm{C}$
Description

L6-15 Al3 temperature mode - motor temperature sampling value
Address: $0 \times 960 \mathrm{~F}$
Min.: 0
Max.: 65535
Default: 0
Effective mode:
Unit: $\quad{ }^{\circ} \mathrm{C}$
Data type: Ulnt16
Change: Unchangeable

## Value Range:

$0^{\circ} \mathrm{C}$ to $65535^{\circ} \mathrm{C}$
Description

L6-16 Motor protection status word

Address:	$0 \times 9610$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

Bit00: Motor overload
Bit01: Motor pre-overload
Bit02: Output load loss (reserved)
Bit03: PG-detected fault (reserved)
Bit04: Current control error
Bit05: Locked-rotor
Bit06: Motor wire breakage, two- or three-phase loss (reserved)
Bit07: Excessive motor load at constant current (reserved)
Bit08:VC out-of-step due to magnetic flux exception
Bit09: Abnormal speed fluctuation (reserved)
Bit10: Motor parameter setting error (reserved)
Bit11: HSVM sampling card wire breakage and misphase (reserved)
Bit12: Synchronous motor overcurrent (reserved)

## Description

## L6-17 Speed controller status word

Address:	$0 \times 9611$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

Bit00: Speed loop enable
Bit01: Actual state of integral mode
Bit02: Integral forcing enable Bit03: Feedforward torque enable
Bit04: Positive limit reach Bit05: Negative limit reach
Bit06: Integral hold enable
Bit07: Fast integral cancel enable
Bit08: Anti-load disturbance enable
Bit09: Reserved
Bit10: Reserved
Bit11: Reserved
Bit12: Reserved
Bit13: Reserved
Bit14: Reserved
Bit15: Reserved
Description

L6-18 VDC control status word
Address: 0x9612 Effective mode:
Min.: $0 \quad$ Unit: -
Max.: 65535 Data type: Ulnt16
Default: 0 Change: Unchangeable
Value Range:

Bit00: Undervoltage suppression enable
Bit01: Overvoltage suppression enable
Bit02: Low frequency lower limit for enabling undervoltage suppression
Bit03: Reserved
Bit04: Reserved
Bit05: Reserved
Bit06: Reserved
Bit07: Reserved
Bit08: Reserved
Bit09: Reserved
Bit10: Reserved
Bit11: Reserved
Bit12: Reserved
Bit13: Reserved
Bit14: Reserved
Bit15: Reserved
Description

L6-19 Excitation module status word

Address: $0 \times 9613$	Effective mode:	-	
Min.:	0	Unit:	-
Max.: 65535	Data type:	Ulnt16	
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L6-20 Motor model status word
Address: 0x9614 Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L6-21 Motor current loop status word
Address: 0x9615
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L6-22 Motor V/f control status word
Address: 0x9616 Effective mode:
Min.: $0 \quad$ Unit:

Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L6-23 Per-unit frequency after HDO function source selection
Address: 0x961
Effective mode:
Min.: $\quad 0.00$
Max.: $\quad 655.35$
Default: 0.00
Value Range:
0.00\% to 655.35\%

Description

L6-24 Per-unit frequency before HDO curve correction
Address: 0x9618 Effective mode: -
Min.: 0.00 Unit: \%
Max.: 655.35 Data type: Int16

Default: 0.00
Change: Unchangeable
Value Range:
0.00\% to 655.35\%

Description

L6-25 Per-unit value of HDO final output frequency
Address: 0x9619
Min.: $\quad 0.00$
Max.: $\quad 655.35$
Default: 0.00
Value Range:
0.00\% to 655.35\%

Description

L6-26 Actual value of HDO final output frequency

Address:	$0 \times 961 \mathrm{~A}$	Effective mode:	
Min.:	0.00	Unit:	kHz
Max.:	655.35	Data type:	Ulnt16
Default:	0.00	Change:	Unchangeable

## Value Range:

0.00 kHz to 655.35 kHz

## Description

L6-35 System main status word D
Address: 0x9623 Effective mode:

Min.:	0
Max.:	65535
Default:	0

## Value Range:

Bit0: Zero-speed running (inactive at stop)
Bit1: Zero-speed running (active at stop)
Bit2: Frequency-level detection 1
Bit3: Frequency-level detection 2
Bit4: Al1 > Al2
Bit5: Simple PLC cycle completion
Bit6: Communication setpoint
Bit7: STO state
Bit8: Current 1 reach
Bit9: Current 2 reach
Bit10: Zero current state
Bit11: Output overcurrent
Bit12: Motor overload pre-warning
Bit13: AC drive overload pre-warning
Bit14: Undervoltage
Bit15: Load loss
Description

Unit:
Data type: Ulnt16
Change: Unchangeable

### 4.74 L7: Word Connector 3 Parameters

L7-00 Per-unit constant value 22

Address:	$0 \times 9700$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

L7-01 Per-unit constant value 23
Address: 0x9701 Effective mode:
Min.: $0 \quad$ Unit:
Max.: 65535
Default: 0
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

L7-02 Per-unit constant value 24
Address: 0x9702 Effective mode:
Min.: 0 Unit:

Max.: 65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable
Value Range:		
0 to 65535		
Description		

L7-03 Per-unit constant value 25
Address: 0x9703 Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-04 Per-unit constant value 26
Address: 0x9704 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-05 Per-unit constant value 27
Address: 0x9705 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## L7-06 Per-unit constant value 28

Address: 0x9706
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L7-07 Per-unit constant value 29
Address: 0x9707
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L7-08 Per-unit constant value 30
Address: 0x9708 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-09 Per-unit constant value 31
Address: 0x9709 Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-10 Per-unit constant value 32

Address:	$0 \times 970 \mathrm{~A}$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L7-11 Per-unit constant value 33

Address:	$0 \times 970 B$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

## L7-12 Per-unit constant value 34

Address: 0x970C
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

## Description

L7-13 Per-unit constant value 35
Address: 0x970D Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-14 Per-unit constant value 36
Address: 0x970E Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-15 Per-unit constant value 37

Address:	$0 x 970 F$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L7-16 Per-unit constant value 38

Address:	$0 \times 9710$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

L7-17 Per-unit constant value 39

Address:	$0 \times 9711$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

L7-18 Per-unit constant value 40

Address: 0x9712
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-19 Per-unit constant value 41
Address: 0x9713
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-20 Per-unit constant value 42
Address: 0x9714
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-21 B2W module A
Address: 0x9715
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-22 B2W module B
Address: 0x9716
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-23 B2W module C
Address: 0x9717
Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

L7-24 B2W module D
Address: 0x9718
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-25 DW-W HIWORD A
Address: 0x9719
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-26 DW-W LOWORD A
Address: 0x971A
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

## L7-27 DW-W HIWORD B

Address:	$0 \times 971 B$
Min.:	0
Max.:	65535
Default:	0

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

Value Range:
0 to 65535
Description

## L7-28 DW-W LOWORD B

Address:	$0 \times 971 C$
Min.:	0
Max.:	65535


Effective mode:	-
Unit:	-
Data type:	Ulnt16

Default: 0
Value Range:
0 to 65535
Description

L7-29 DW-W HIWORD C
Address: 0x971D
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-30 DW-W LOWORD C
Address: 0x971E
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-31 DW-W HIWORD D
Address: 0x971F
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-32 DW-W LOWORD D
Address: 0x9720
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-36 16-bit parameter monitoring 1

Address:	$0 \times 9724$
Min.:	0
Max.:	65535
Default:	0

## Value Range:

Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

## 0 to 65535 <br> Description

L7-37 16-bit parameter monitoring 2
Address: 0x9725 Effective mode:
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-38 $\quad$ 16-bit parameter monitoring 3
Address: 0x9726

Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

## Description

L7-39 16-bit parameter monitoring 4
Address: 0x9727
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L7-40 16-bit parameter monitoring 5
Address: $0 \times 9728$
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-41 Output of word selector A
Address: 0x9729
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode: -
Unit:
Data type: Ulnt16
Change: Unchangeable

## Description

L7-42 Output of word selector B
Address: 0x972A
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L7-43 Output of word selector C
Address: $0 \times 972 \mathrm{~B}$ Effective mode:
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L7-44 Output of word selector D
Address: 0x972C
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535

## Description

L7-50 Internal parameter monitoring output 1
Address: 0x9732
Min.: -32767
Max.: 32767
Default: 0

## Value Range:

-32767 to +32767

## Description

L7-51 Internal parameter monitoring output 2
Address: 0x9733
Min.: -32767
Max.: 32767
Default: 0
Value Range:
-32767 to +32767
Description

Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Int16
Change: Unchangeable
L7-52 Internal parameter monitoring output 3
Address: 0x9734 Effective mode: -
Min.: -32767
Max.: 32767
Default: 0
Value Range:
-32767 to +32767
Description
L7-53 Internal parameter monitoring output 4
Address: 0x9735

Min.: -32767
Max.: 32767
Default: 0
Value Range:
-32767 to +32767
Description

L7-54 Internal parameter monitoring output 5

Address:	$0 x 9736$
Min.:	-32767

Max.: 32767
Default: 0
Value Range:
-32767 to +32767

## Description

L7-55 Internal parameter monitoring output 6
Address: 0x9737
Min.: $\quad-32767$
Max.: 32767
Default: 0
Value Range:
-32767 to +32767
Description

L7-56 Internal parameter monitoring output 7
Address: $0 \times 9738$
Min.: -32767
Max.: 32767
Default: 0
Value Range:
-32767 to +32767
Description

Effective mode:
Unit:
Data type: Int16
Change: Unchangeable

Effective mode:
Unit:
Data type: Int16
Change: Unchangeable

Effective mode:
Unit:
Data type: Int16
Change: Unchangeable

Effective mode:
Unit:
Data type: Int16
Change: Unchangeable
L7-57 Internal parameter monitoring output 8
Address: 0x9739
Effective mode:

Min.:	-32767	Unit:	-
Max.:	32767	Data type:	Int16
Default: 0	Change:	Unchangeable	
Value Range:			
-32767 to +32767			
Description			

### 4.75 L9: DWord Connector 1 Parameters

## L9-00 Output of W-DW module A

Address: 0x9900
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

L9-01 Output of W-DW module B
Address: 0x9901
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L9-02 Output of W-DW module C
Address: 0x9902
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L9-03 Output of W-DW module D

Address:	$0 \times 9903$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L9-04 Output of DWord selector module A

Address:	$0 \times 9904$	Effective mode:	-
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L9-05 Output of DWord selector module B
Address: 0x9905 Effective mode:
Min.: 0
Max.: 65535
Default: 0
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

L9-06 Output of DWord selector module C

Address:	$0 \times 9906$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L9-07 Output of DWord selector module D

Address:	$0 \times 9907$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

L9-08 Output of fixed-point absolute value module F

Address:	$0 \times 9908$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Unt16
Default: 0	Change:	Unchangeable	
Value Range:			
to 65535			
Description			

L9-09 Output of fixed-point absolute value module G
Address: 0x9909
Effective mode:

| Min.: 0 | Unit: | - |
| :--- | :--- | :--- | :--- |
| Max.: 65535 | Data type: | Ulnt16 |
| Default: 0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0 to 65535 |  |  |
| Description |  |  |

L9-10 Output of fixed-point absolute value module H

Address: 0x990A
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
$\qquad$

L9-11 Output of fixed-point ADD/SUBTRACT module F
Address: 0x990B

Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L9-12 Output of fixed-point ADD/SUBTRACT module G

Address:	$0 \times 990$ C	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

Value Range:
0 to 65535
Description

L9-13 Output of fixed-point ADD/SUBTRACT module H

Address: $0 \times 990 \mathrm{D}$	Effective mode: -		
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default: 0	Change:	Unchangeable	
Value Range:			
0 to 65535			
Description			

L9-14 Output of fixed-point MULTIPLY/DIVIDE module F

Address:	$0 \times 990 E$	Effective mode: -	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16

Default: 0
Change: Unchangeable

Value Range:
0 to 65535
Description

L9-15 Output of fixed-point MULTIPLY/DIVIDE module G
Address: 0x990F
Effective mode:
Min.: 0
Max.: 65535
Default: 0
Unit:
Data type: Ulnt16
Change: Unchangeable
Value Range:
0 to 65535
Description

L9-16 Output of fixed-point MULTIPLY/DIVIDE module $\mathbf{H}$

Address:	$0 \times 9910$	Effective mode:	
Min.:	0	Unit:	-
Max.:	65535	Data type:	Ulnt16
Default:	0	Change:	Unchangeable

## Value Range:

0 to 65535
Description

L9-17 Output of fixed-point filter module E
Address: 0x9911
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L9-18 Output of fixed-point filter module F
Address: 0x9912
Effective mode:
Min.: 0
Max.: 65535
Default: 0
Unit:
Data type: Ulnt16
Change: Unchangeable

## Value Range:

0 to 65535
Description

L9-19 Output of fixed-point limiting module E
Address: $0 \times 9913 \quad$ Effective mode:

Min.: 0
Max.: 65535
Default: 0

Unit: -
Data type: Ulnt16
Change: Unchangeable

Value Range:

## 0 to 65535 <br> Description

L9-20 Output of fixed-point limiting module $F$
Address: 0x9914
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

L9-21 32-bit parameter monitoring 1

Address:	$0 \times 9915$
Min.	0

Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L9-22 32-bit parameter monitoring 2
Address: 0x9916
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L9-23 32-bit parameter monitoring 3

Address: 0x9917
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

L9-24 32-bit parameter monitoring 4
Address: 0x9918
Effective mode: -
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535

Unit: -
Data type: Ulnt16
Change: Unchangeable

## Description

L9-25 32-bit parameter monitoring 5

Address: 0x9919
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L9-30 Variable connector viewing output 1

Address:	$0 \times 991 \mathrm{E}$
Min.	0

Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L9-31 Variable connector viewing output 2
Address: 0x991F
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

L9-32 Variable connector viewing output 3
Address: 0x9920
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L9-33 Variable connector viewing output 4
Address: 0x9921
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

L9-34 Variable connector viewing output 5

Address: 0x9922
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L9-35 Variable connector viewing output 6
Address: 0x9923
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L9-36 Variable connector viewing output 7
Address: 0x9924
Min.: 0
Max.: 65535
Default: 0
Value Range:
0 to 65535
Description

L9-37 Variable connector viewing output 8
Address: 0x9925
Min.: 0
Max.: 65535
Default: 0

## Value Range:

0 to 65535
Description

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

```
Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable
```

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

Effective mode:
Unit:
Data type: Ulnt16
Change: Unchangeable

### 4.76 LB: Floating-point Connector 1 Parameters

## LB-00 Al1 input per-unit value

Address:	$0 \times 9 \mathrm{~B} 00$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

## Value Range:

0.0\% to 6553.5\%
Description
LB-01 Al2 input per-unit value
Address: 0x9B01 Effective mode: -

Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

Effective mode: -
Unit: \%
Data type: Int16
Change: Unchangeable
LB-02 AI3 input per-unit value
Address: 0x9B02 Effective mode:
Min.: 0.0
Max.: $\quad 6553.5$
Default: 0.0
Unit:
Data type: Int16
Change: Unchangeable

## Value Range:

0.0\% to 6553.5\%

## Description

LB-03 HDI input per-unit value
Address: 0x9B03
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

LB-04 Per-unit value of speed reference set through communication
Address: 0x9B04 Effective mode: -
Min.: $0.0 \quad$ Unit:
Max.: $\quad 6553.5$
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LB-05 Main speed reference
Address: 0x9B05
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%
Description

LB-06 Auxiliary speed reference

Address:	$0 \times 9 B 06$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default: 0.0	Change:	Unchangeable	
Value Range:			
0.0\% to $6553.5 \%$			
Description			

LB-07 Channel target speed
Address: 0x9B07
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

LB-08 Channel supplementary speed
Address: 0x9B08 Effective mode:
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

Unit: $\%$

Data type: Int16
Change: Unchangeable

LB-09 Supplementary speed setpoint
Address: 0x9B09
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

Effective mode: -
Unit: $\%$
Data type: Int16
Change: Unchangeable

LB-10 Maximum forward speed

Address:	$0 \times 9 B 0 \mathrm{~A}$
Min.:	0.0
Max.:	6553.5
Default:	0.0

## Value Range:

0.0\% to 6553.5\%

## Description

LB-11 Minimum forward speed
Address: 0x9B0B Effective mode:
Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable

Min.: 0.0	Unit:	\%	
Max.:	6553.5	Data type:	Int16
Default: 0.0	Change:	Unchangeable	
Value Range:			
0.0\% to $6553.5 \%$			
Description			

LB-12 Maximum reverse speed
Address: 0x9B0C Effective mode: -
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%
Description
Unit: \%
Data type: Int16
Change: Unchangeable
LB-13 Minimum reverse speed
Address: 0x9B0D Effective mode: -
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

## LB-14 Forward limit

Address:	$0 \times 9 B 0 E$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

LB-15 Reverse limit

Address:	$0 \times 9 B 0 F$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

LB-16 Speed reference - raw

Address:	$0 \times 9 B 10$
Min.:	0.0
Max.:	6553.5


Effective mode:	-
Unit:	$\%$
Data type:	Int16

Default: 0.0

Value Range:
0.0\% to 6553.5\%

Description

LB-17 Speed reference - direction limit
Address: 0x9B11
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LB-18 Speed reference - after limiting
Address: 0x9B12

Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable

LB-19 Speed reference - after skip frequency
Address: 0x9B13

Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LB-20 Speed reference - after ramp shift
Address: 0x9B14
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LB-21 Torque reference
Address: 0x9B15
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:

## 0.0\% to 6553.5\%

## Description

LB-22 Supplementary torque
Address: 0x9B16
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LB-23 Torque reference after filtering
Address: 0x9B17
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable


Effective mode:	-
Unit:	\%
Data type:	Int16
Change:	Unchangeable

## Description

LB-27 RFG reference input
Address: 0x9B1B
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LB-28 RFG calculation input
Address: 0x9B1C Effective mode:
Min.: 0.0
Max.: 6553.5
Default: 0.0
Unit: $\%$
Data type: Int16
Change: Unchangeable

## Value Range:

0.0\% to 6553.5\%

## Description

LB-29 RFG actual target

Address:	$0 x 9 B 1 D$
Min.:	0.0
Max.:	6553.5
Default:	0.0


Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

## Value Range:

0.0\% to 6553.5\%

## Description

## LB-30 RFG calculation output

Address: 0x9B1E
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

LB-31 RFG final output (maximum per-unit value)

Address:	$0 \times 9 B 1 F$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

## Value Range:

0.0\% to 6553.5\%

Description

## LB-32 RFG final output (rated per-unit value)

Address:	$0 \times 9 B 20$	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default: 0.0	Change:	Unchangeable	
Value Range:			
0.0\% to $6553.5 \%$			
Description			

LB-33 Updown upper limit
Address: 0x9B21
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

LB-34 Updown lower limit
Address: 0x9B22
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

- 

LB-35 RFG acceleration
Address: 0x9B23
Min.: 0.0
Max.: $\quad 6553.5$
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LB-36 V/f separation voltage output
Address: 0x9B24
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

Effective mode:	-
Unit:	\%
Data type:	Ulnt16
Change:	Unchangeable

Effective mode:
Unit: $\%$
Data type: Ulnt16
Change: Unchangeable

LB-37 RFG force value of startup frequency function
Address: 0x9B25 Effective mode:

Min.:	0.0
Max.:	6553.5
Default:	0.0

Value Range:
0.0\% to 6553.5\%

Description

Unit: \%
Data type: Int16
Change: Unchangeable

Effective mode: -
Unit: \%
Data type: Int16
Change: Unchangeable

LB-39 Frequency offset in torque control mode

Address: 0x9B27
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

Effective mode:
Unit: $\%$

Data type: Ulnt16
Change: Unchangeable

LB-40 Running frequency
Address: 0x9B28
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable

LB-41 Frequency reference
Address: 0x9B29
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:
Unit: $\%$
Data type: Int16
Change: Unchangeable

LB-42 Speed reference - after UpDn
Address: 0x9B2A
Min.: 0.0
Max.: 6553.5

Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

### 4.77 LC: Floating-point Connector 2 Parameters

## LC-00 Final frequency reference

Address: 0x9C00

Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:	-
Unit:	\%
Data type:	Int16
Change:	Unchangeable

LC-01 Final voltage reference
Address: 0x9C01
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:	
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

- 

LC-02 Output voltage without limit
Address: 0x9C02
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

Effective mode:
Unit: $\%$
Data type: Int16
Change: Unchangeable

## LC-03 Voltage phase angle

Address: 0x9C03
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

LC-04 Maximum output voltage
Address: 0x9C04 Effective mode:

| Min.: 0.0 | Unit: | $\%$ |
| :--- | :--- | :--- | :--- |
| Max.: 6553.5 | Data type: | Int16 |
| Default: 0.0 | Change: | Unchangeable |
| Value Range: |  |  |
| 0.0\% to $6553.5 \%$ |  |  |
| Description |  |  |

LC-05 Current loop saturation voltage
Address: 0x9C05
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:	
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

- 

LC-06 Torque reference
Address: 0x9C06
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

LC-07 Final flux reference
Address: 0x9C07
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

LC-08 Excitation current reference

Address:	$0 \times 9 \mathrm{C} 08$
Min.:	0.0
Max.:	6553.5
Default:	0.0

## Value Range:

0.0\% to 6553.5\%

## Description

## LC-09 Torque current reference

Address: 0x9C09

Min.: $\quad 0.0$
Max.: 6553.5

Effective mode:	-
Unit:	\%
Data type:	Int16
Change:	Unchangeable

Effective mode:

Data type: Int16
Change: Unchangeable

Default: 0.0 Change: Unchangeable
Value Range:
0.0\% to 6553.5\%

Description

LC-10 Rotor speed
Address: 0x9C0A
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LC-11 Encoder speed
Address: 0x9C0B
Min.: 0.0
Max.: $\quad 6553.5$
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LC-12 Output torque
Address: 0x9C0C
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

## LC-13 Flux amplitude

Address:	$0 \times 9$ C0D
Min.:	0.0
Max.:	6553.5
Default:	0.0

## Value Range:

0.0\% to 6553.5\%

## Description

## LC-14 Flux angle

Address:	$0 \times 9 \mathrm{COE}$
Min.:	0.0
Max.:	6553.5
Default:	0.0

## Value Range:

Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

Unit: \%

Change: Unchangeable

Effective mode:
Unit: \%

Data type: Int16
Change: Unchangeable

Effective mode:
Unit: $\%$
Data type: Int16
Change: Unchangeable

Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable

## 0.0\% to 6553.5\%

## Description

LC-15 Synchronization frequency
Address: 0x9C0F
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LC-16 Synchronous rotation angle

Address:	$0 \times 9 \mathrm{Cl} 10$
Min.:	0.0
Max.:	6553.5
Default:	0.0

Effective mode: -
Unit: \%
Data type: Int16
Change: Unchangeable

## Value Range:

0.0\% to 6553.5\%

## Description

LC-17 Motor object output power

Address:	$0 \times 9 \mathrm{C} 11$
Min.:	0.0
Max.:	6553.5
Default:	0.0

## Value Range:

0.0\% to 6553.5\%

## Description

LC-18 Output voltage amplitude
Address: 0x9C12
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LC-19 Output current amplitude
Address: $0 \times 9 \mathrm{C} 13$
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LC-20 Actual excitation current of motor

Address:	$0 \times 9 \mathrm{Cl14}$	Effective mode: -	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default: 0.0	Change:	Unchangeable	
Value Range:			
$0.0 \%$ to $6553.5 \%$			
Description			

LC-21 Actual torque current of motor

Address:	$0 \times 9 \mathrm{C} 15$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

## Value Range:

0.0\% to 6553.5\%

## Description

LC-22 Output power
Address: 0x9C16
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

## LC-23 PWMU

Address:	$0 \times 9 \mathrm{C} 17$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

## Value Range:

0.0\% to 6553.5\%

## Description

## LC-24 PWMV

Address:	$0 \times 9 \mathrm{C} 18$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

## Value Range:

0.0\% to 6553.5\%

## Description

## LC-25 PWMW

Address:	$0 \times 9 \mathrm{C} 19$	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default: 0.0	Change:	Unchangeable	
Value Range:			
$0.0 \%$ to $6553.5 \%$			
Description			

LC-26 IU
Address: $0 \times 9 \mathrm{Cl}$ A
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable

LC-27 IV
Address: $0 \times 9 \mathrm{C} 1 \mathrm{~B}$
Min.: $\quad 0.0$
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable

LC-28 IW
Address: 0x9C1C
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable

LC-31 Drive bus voltage
Address: 0x9C1F
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

Effective mode: -
Unit: $\%$
Data type: Ulnt16
Change: Unchangeable

LC-32 Accumulative drive overload
Address: 0x9C20 Effective mode:

Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default: 0.0	Change:	Unchangeable	
Value Range:			
0.0\% to $6553.5 \%$			
Description			

LC-33 Accumulative motor overload

Address:	$0 \times 9$ C21	Effective mode:	-
Min.:	0.0	Unit:	\%
Max.:	6553.5	Data type:	Int16
Default: 0.0	Change:	Unchangeable	
Value Range:			
0.0\% to $6553.5 \%$			
Description			

LC-34 Output voltage phase
Address: 0x9C22
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

LC-35 Output current phase
Address: 0x9C23
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LC-36 General PID output
Address: 0x9C24
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

## LC-37 General PID error <br> Address: 0x9C25 <br> Min.: 0.0 <br> Max.: 6553.5

Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

Effective mode:
Unit: $\%$
Data type: Int16
Change: Unchangeable
Default: 0.0

Value Range:
0.0\% to 6553.5\%

Description

LC-38 General PID reference
Address: 0x9C26
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

## LC-39 General PID feedback

Address: 0x9C27
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable
-

LC-40 General PID proportional output
Address: 0x9C28
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LC-41 General PID integral output
Address: 0x9C29
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

LC-42 General PID derivative output

Address:	$0 \times 9 \mathrm{C} 2 \mathrm{~A}$
Min.:	0.0
Max.:	6553.5
Default:	0.0

## Value Range:



## Description

LC-92 Variable connector viewing output 1
Address: 0x9C5C
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LC-93 Variable connector viewing output 2

Value Range:
0.0\% to 6553.5\%

Description

LC-94 Variable connector viewing output 3
Address: 0x9C5
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LC-95 Variable connector viewing output 4
Address: 0x9C5
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LC-96 Variable connector viewing output 5
Address: 0x9C60
Min.: 0.0
Max.: 6553.5
Default: 0.0
0.0\% to 6553.5\%

Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable

Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable

Effective mode:
Unit: $\%$
Data type: Int16
Change: Unchangeable

Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable

## Description

LC-97 Variable connector viewing output 6
Address: 0x9C61
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

- 

LC-98 Variable connector viewing output 7
Address: 0x9C62
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

LC-99 Variable connector viewing output 8
Address: 0x9C63
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

```
Effective mode:
Unit: %
Data type: Int16
Change: Unchangeable
```

Effective mode:
Unit: $\%$
Data type: Int16
Change: Unchangeable

### 4.78 LD: Floating-point Connector 3 Parameters

LD-00 Output of floating-point selector module A

Address:	$0 \times 9$ D00	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

Value Range:
0.0\% to 6553.5\%

## Description

LD-01 Output of floating-point selector module B

Address:	$0 \times 9$ D01	Effective mode: -	
Min.:	0.0	Unit:	\%
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

## Value Range:

0.0\% to 6553.5\%

## Description

LD-02 Output of floating-point selector module C
Address: 0x9D02
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LD-03 Output of floating-point selector module D

Address:	$0 \times 9$ D03	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

## Value Range:

0.0\% to 6553.5\%

## Description

LD-04 Output of floating-point selector module E
Address: 0x9D04 Effective mode: -

Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

LD-05 Output of floating-point selector module F
Address: 0x9D05 Effective mode:

Min.: 0.0
Max.: $\quad 6553.5$
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LD-06 Output of floating-point selector module G
Address: 0x9D06
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

Effective mode: -
Unit: \%
Data type: Int16
Change: Unchangeable

Change. Unchangeable

Effective mode:
Unit: $\%$
Data type: Int16
Change: Unchangeable

Effective mode:
Unit: $\%$
Data type: Int16
Change: Unchangeable

Effective mode:
Unit: $\%$
Data type: Int16
Change: Unchangeable

## Description

LD-07 Output of floating-point selector module H
Address: 0x9D07 Effective mode: -
Min.: $0.0 \quad$ Unit: $\%$

Max.: $6553.5 \quad$ Data type: Int16
Default: 0.0
Change: Unchangeable
Value Range:
0.0\% to 6553.5\%

## Description

LD-08 Output of floating-point absolute value module $A$

Address:	$0 \times 9$ D08	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

## Value Range:

0.0\% to 6553.5\%

## Description

LD-09 Output of floating-point absolute value module B

Address:	$0 \times 9$ D09	Effective mode:	-
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

Value Range:
0.0\% to 6553.5\%

Description

LD-10 Output of floating-point absolute value module $C$
Address: 0x9D0A Effective mode:
Min.: $0.0 \quad$ Unit:
Max.: 6553.5 Data type: Int16

Default: 0.0 Change: Unchangeable
Value Range:
0.0\% to 6553.5\%

Description

LD-11 Output of floating-point absolute value module D
Address: 0x9D0B
Effective mode:
Min.: $0.0 \quad$ Unit:
Max.: 6553.5 Data type: Int16
Default: 0.0 Change: Unchangeable
Value Range:
0.0\% to 6553.5\%

Description
LD-12 Output of floating-point absolute value module E
Address: 0x9D0C
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%
Description

Value Range:
0.0\% to 6553.5\%

Description

Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable
LD-13 Output of floating-point ADD/SUBTRACT module A
Address: 0x9D0D
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%
Description
LD-14 Output of floating-point ADD/SUBTRACT module $B$
Address: 0x9D0E
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LD-15 Output of floating-point ADD/SUBTRACT module C

Address:	$0 \times 9$ D0F	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

## Value Range:

0.0\% to 6553.5\%

## Description

LD-16 Output of floating-point ADD/SUBTRACT module D
Address: 0x9D10
Min.: $0.0 \quad$ Unit: $\%$
Max.: $6553.5 \quad$ Data type: Int16
Default: 0.0 Change: Unchangeable
Value Range:
0.0\% to 6553.5\%
Description
LD-17 Output of floating-point ADD/SUBTRACT module E
Address: 0x9D11
Effective mode:

Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

Value Range:
0.0\% to 6553.5\%
Description
LD-18 Output of floating-point MULTIPLY/DIVIDE module A
Address: 0x9D12
Min.: 0.0
Max.: 6553.5
Effective mode:
Unit: \%
Data type: Int16
Default: 0.0
Change: Unchangeable
Value Range:
0.0\% to 6553.5\%
Description
LD-19 Output of floating-point MULTIPLY/DIVIDE module B
Address: 0x9D13
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LD-20 Output of floating-point MULTIPLY/DIVIDE module C
Address: 0x9D14 Effective mode:
Min.: $0.0 \quad$ Unit:
Max.: 6553.5 Data type: Int16
Default: 0.0 Change: Unchangeable
Value Range:
0.0\% to 6553.5\%
Description
LD-21 Output of floating-point MULTIPLY/DIVIDE module D
Address: 0x9D15 Effective mode: -
Min.: $0.0 \quad$ Unit:
Max.: 6553.5 Data type: Int16
Default: 0.0 Change: Unchangeable
Value Range:
0.0\% to 6553.5\%
Description
LD-22 Output of floating-point MULTIPLY/DIVIDE module E
Address: 0x9D16 Effective mode:
Min.: $0.0 \quad$ Unit:
Max.: 6553.5 Data type: Int16
Default: 0.0 Change: Unchangeable

Value Range:
0.0\% to 6553.5\%

Description

LD-23 Output of floating-point filter module A
Address: 0x9D17
Min.: 0.0
Max.: 6553.5
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

LD-24 Output of floating-point filter module B
Address: 0x9D18
Min.: 0.0
Max.: $\quad 6553.5$
Default: 0.0

## Value Range:

0.0\% to 6553.5\%

## Description

LD-25 Output of floating-point filter module C
Address: 0x9D19 Effective mode: -

Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LD-26 Output of floating-point filter module D
Address: 0x9D1A Effective mode: -

Min.: 0.0
Max.: $\quad 6553.5$
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description
Effective mode: -
Unit: $\%$
Data type: Int16
Change: Unchangeable

LD-27 Output of floating-point limiting module A
Address: 0x9D1B
Min.: $\quad 0.0$
Max.: 6553.5
Default: 0.0
Value Range:

Effective mode: -
Unit: $\%$
Data type: Int16
Change: Unchangeable

	0.0\% to 6553.5\%			
	Description			
	-			
LD-28	Output of floating-point limiting module B			
	Address:	0x9D1C	Effective mode:	
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	-			
LD-29	Output of floating-point limiting module C			
	Address:	0x9D1D	Effective mode:	
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	-			
LD-30	Output of floating-point limiting module D			
	Address:	0x9D1E	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
LD-31	Output of word-to-floating point module A			
	Address:	0x9D1F	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
LD-32	Output of word-to-floating point module B			
	Address:	0x9D20	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			


	Description			
LD-33	Output of word-to-floating point module C			
	Address:	0x9D21	Effective mode:	
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	-			
LD-34	Output of word-to-floating point module D			
	Address:	0x9D22	Effective mode:	
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
LD-35	Output of DWord-to-floating point module A			
	Address:	0x9D23	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
LD-36	Output of DWord-to-floating point module B			
	Address:	0x9D24	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
LD-37	Output of DWord-to-floating point module C			
	Address:	0x9D25	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			

LD-38 Output of DWord-to-floating point module D
Address: 0x9D26 Effective mode:
Min.: $0.0 \quad$ Unit:
Max.: $6553.5 \quad$ Data type: Int16
Default: 0.0
Change: Unchangeable
Value Range:
0.0\% to 6553.5\%
Description
LD-39 Force value of motor-driven potentiometer
Address: 0x9D27 Effective mode: -
Min.: $0.0 \quad$ Unit:
Max.: $6553.5 \quad$ Data type: Int16
Default: 0.0
Change: Unchangeable
Value Range:
0.0\% to 6553.5\%
Description
LD-40 Reset value of motor-driven potentiometer
Address: 0x9D28 Effective mode: -
Min.: $0.0 \quad$ Unit: $\%$
Max.: 6553.5 Data type: Int16
Default: 0.0
Change: Unchangeable
Value Range:
0.0\% to 6553.5\%

## Description

LD-41 Maximum value of motor-driven potentiometer

Address:	$0 \times 9$ D29	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default:	0.0	Change:	Unchangeable

Value Range:
0.0\% to 6553.5\%
Description
LD-42 Minimum value of motor-driven potentiometer
Address: 0x9D2A
Effective mode:
Min.: 0.0
Max.: 6553.5
Unit: \%
Default: 0.0
Data type: Int16
Change: Unchangeable

## Value Range:

0.0\% to 6553.5\%

## Description

LD-43 Initial value of motor-driven potentiometer
Address: 0x9D2B Effective mode:

	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Ra			
	0.0\% to	3.5\%		
	Descript			
	-			
LD-44	Process	eration out	iven potentiome	
	Address:	0x9D2C	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Ra			
	0.0\% to	3.5\%		
	Descript			
LD-45	Final ou	ut value of	meter	
	Address:	0x9D2D	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Ra			
	0.0\% to	3.5\%		
	Descript			
	-			
LD-46	Output	multi-poi		
	Address:	0x9D2E	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Ra			
	0.0\% to	3.5\%		
	Descript			
	-			
LD-47	Output	multi-poi		
	Address:	0x9D2F	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Ra			
	0.0\% to			
	Descript			
	-			
LD-48	Multi-re	ence sele		
	Address:	0x9D30	Effective mode:	
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16

Default: 0.0
Change: Unchangeable

Value Range:
0.0\% to 6553.5\%

Description

LD-49 Multi-reference 1 output
Address: 0x9D31 Effective mode:
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LD-50 Multi-reference 2 output
Address: 0x9D32
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LD-51 Multi-reference 3 output
Address: 0x9D33
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LD-52 Multi-reference 4 output
Address: 0x9D34
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LD-53 Multi-reference 5 output
Address: 0x9D35
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
Unit: \%

Data type: Int16
Change: Unchangeable

Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable

Effective mode:
Unit: \%
Data type: Int16
Change: Unchangeable

Effective mode:
Unit: $\%$
Data type: Int16
Change: Unchangeable

	0.0\% to 6553.5\%		
	Description		
	-		
LD-54	Multi-reference 6 output		
	Address: 0x9D36	Effective mode:	
	Min.: 0.0	Unit:	\%
	Max.: 6553.5	Data type:	Int16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0\% to 6553.5\%		
	Description		
LD-55	Multi-reference 7 output		
	Address: 0x9D37	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: 6553.5	Data type:	Int16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0\% to 6553.5\%		
	Description		
LD-56	Multi-reference 8 output		
	Address: 0x9D38	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: 6553.5	Data type:	Int16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0\% to 6553.5\%		
	Description		
LD-57	Multi-reference 9 output		
	Address: 0x9D39	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: 6553.5	Data type:	Int16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0\% to 6553.5\%		
	Description		
LD-58	Multi-reference 10 output		
	Address: 0x9D3A	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: 6553.5	Data type:	Int16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0\% to 6553.5\%		


	Description		
LD-59	Multi-reference 11 output		
	Address: 0x9D3B	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: 6553.5	Data type:	Int16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0\% to 6553.5\%		
	Description		
	-		
LD-60	Multi-reference 12 output		
	Address: 0x9D3C	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: 6553.5	Data type:	Int16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0\% to 6553.5\%		
	Description		
	-		
LD-61	Multi-reference 13 output		
	Address: 0x9D3D	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: 6553.5	Data type:	Int16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0\% to 6553.5\%		
	Description		
	-		
LD-62	Multi-reference 14 output		
	Address: 0x9D3E	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: 6553.5	Data type:	Int16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0\% to 6553.5\%		
	Description		
LD-63	Multi-reference 15 output		
	Address: 0x9D3F	Effective mode:	-
	Min.: 0.0	Unit:	\%
	Max.: 6553.5	Data type:	Int16
	Default: 0.0	Change:	Unchangeable
	Value Range:		
	0.0\% to 6553.5\%		
	Description		

Description

LD-64 Multi-reference 16 output
Address: 0x9D40 Effective mode:

Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LD-65 Per-unit constant value 1
Address: 0x9D41

Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:	-
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

LD-66 Per-unit constant value 2
Address: 0x9D42
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

Effective mode:	
Unit:	$\%$
Data type:	Int16
Change:	Unchangeable


Unit:	$\%$
Data type:	Int16
Change:	Unchangeable

## 雨

Unchangeable

## -

LD-67 Per-unit constant value 3
Address: 0x9D43
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LD-68 Per-unit constant value 4
Address: 0x9D44 Effective mode: -
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LD-69 Per-unit constant value 5
Address: 0x9D45 Effective mode:

Min.:	0.0
Max.:	6553.5
Default:	0.0

Value Range:
0.0\% to 6553.5\%

Description

LD-70 Per-unit constant value 6
Address: 0x9D46
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description
Unit: \%
Data type: Int16
Change: Unchangeable
-

LD-71 Per-unit constant value 7
Address: 0x9D47 Effective mode: -
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description
Unit: \%
Data type: Int16
Change: Unchangeable

LD-72 Per-unit constant value 8
Address: 0x9D48 Effective mode: -
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

Description

LD-73 Per-unit constant value 9
Address: 0x9D49 Effective mode: -
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LD-74 Per-unit constant value 10

Address:	$0 \times 9$ D4A	Effective mode:	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16


	Default: 0.0		Change:	Unchangeable		
	Value Range:					
	0.0\% to 6553.5\%					
	Description					
	-					
LD-75	Per-unit constant value 11					
	Address:	$0 \times 9 \mathrm{D} 4 \mathrm{~B}$		Effective mode:	-	
	Min.:	0.0		Unit:	\%	
	Max.:	6553.5	Data type:	Int16		
	Default:	0.0	Change:	Unchangeable		
	Value Range:					
	0.0\% to 6553.5\%					
	Description					
	-					
LD-76	Per-unit constant value 12					
	Address:	0x9D4C	Effective mode:	-		
	Min.:	0.0	Unit:	\%		
	Max.:	6553.5	Data type:	Int16		
	Default:	0.0	Change:	Unchangeable		
	Value Range:					
	0.0\% to 6553.5\%					
	Description					
	-					
LD-77	Per-unit constant value 13					
	Address:	0x9D4D	Effective mode:	-		
	Min.:	0.0	Unit:	\%		
	Max.:	6553.5	Data type:	Int16		
	Default:	0.0	Change:	Unchangeable		
	Value Range:					
	0.0\% to 6553.5\%					
	Description					
	-					
LD-78	Per-unit constant value 14					
	Address:	0x9D4E	Effective mode:	-		
	Min.:	0.0	Unit:	\%		
	Max.:	6553.5	Data type:	Int16		
	Default:	0.0	Change:	Unchangeable		
	Value Range:   0.0\% to 6553.5\%					
	Description					
	-					
LD-79	Per-unit constant value 15					
	Address:	0x9D4F	Effective mode:	-		
	Min.:	0.0	Unit:	\%		
	Max.:	6553.5	Data type:	Int16		
	Default:	0.0	Change:	Unchangeable		

Value Range:


	Description			
LD-85	Per-unit constant value 21			
	Address:	0x9D55	Effective mode:	
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
	-			
LD-86	Updown offset			
	Address:	0x9D56	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
LD-87	Percentage of current length relative to target length			
	Address:	0x9D57	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
LD-88	Percentage of current count value relative to target count value			
	Address:	0x9D58	Effective mode:	
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Int16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			
LD-89	Percentage of AO1 value written through communication			
	Address:	0x9D59	Effective mode:	-
	Min.:	0.0	Unit:	\%
	Max.:	6553.5	Data type:	Ulnt16
	Default:	0.0	Change:	Unchangeable
	Value Range:			
	0.0\% to 6553.5\%			
	Description			


LD-90	Percentage of AO2 value written through communication			
	Address:	$0 \times 9$ D5A	Effective mode:	
	Min.:	0.0	Unit:	$\%$
	Max.:	6553.5	Data type:	Ulnt16
	Default: 0.0	Change:	Unchangeable	
	Value Range:			
	0.0\% to $6553.5 \%$			
	Description			

LD-91 Percentage of HDO value written through communication
Address: 0x9D5B Effective mode:
Min.: $0.0 \quad$ Unit:
Max.: $6553.5 \quad$ Data type: Ulnt16

Default: 0.0
Change: Unchangeable
Value Range:
0.0\% to 6553.5\%

Description

LD-92 Current value based on the maximum 1000 A per-unit value
Address: 0x9D5C Effective mode:

Min.: $0.0 \quad$ Unit:
Max.: 6553.5 Data type: Int16
Default: 0.0
Change: Unchangeable
Value Range:
0.0\% to 6553.5\%

## Description

LD-93 Voltage value based on the maximum 1000 V per-unit value
Address: 0x9D5D
Min.: 0.0
Max.: 6553.5
Default: 0.0
Value Range:
0.0\% to 6553.5\%

## Description

LD-94 AO output torque absolute value output

Address:	$0 \times 9$ D5E	Effective mode: -	
Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Ulnt16
Default:	0.0	Change:	Unchangeable

Value Range:
0.0\% to 6553.5\%

Description

LD-95 AO output torque (-200.0\% to +200.0\%)
Address: 0x9D5F
Effective mode:

Min.:	0.0	Unit:	$\%$
Max.:	6553.5	Data type:	Int16
Default: 0.0	Change:	Unchangeable	
Value Range:			
0.0\% to $6553.5 \%$			
Description			

## 5 List of Parameters

### 5.1 List of Parameters

If FP-00 is set to a non-zero value (password protection is enabled), the parameter menu is accessible in parameter mode and user-modification mode only after the correct password is entered. To disable password protection, set FP-00 to 0.

If a password is set to lock the operating panel, password authentication is required every time you access the parameter menu for reading or writing parameter values using the operating panel. During communication control, the values of parameters (excluding parameters in groups FP and FF) can be read and written without password authentication.

Password protection is not available for the parameter menu in user-defined mode.
Groups $\mathrm{F}, \mathrm{A}, \mathrm{B}, \mathrm{C}$, and H are standard function parameters, group U is monitoring function parameters, and group L is connector function parameters. The following symbols are used in the parameter table:

Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F0-00	0xF000	Load type display	0 : Heavy load application   1: Light load application	0	-	Unchangea ble	"F0-00" on page 241
F0-01	0xF001	Motor 1 control mode	$\begin{aligned} & \text { 0: SVC } \\ & \text { 1: FVC } \\ & \text { 2: V/f } \end{aligned}$	2	-	Changeable only at stop	"F0-01" on page $241$
F0-02	0xF002	Operation command source	0 : Operating panel   1: Terminal   2: Communication   3: Customization	0	-	Changeable only at stop	"FO-02" on page $241$
F0-03	0xF003	Main frequency source X	0 : Digital setting (non-retentive at power failure)   1: Digital setting (retentive at power failure)   2: Al1   3: Al2   4: AI3   5: Pulse reference (DI5)   6: Multi-reference   7: Simple PLC   8: PID   9: Communication   Others: F connector	0	-	Changeable only at stop	"F0-03" on page $242$
F0-04	0xF004	Auxiliary frequency source $Y$	0 : Digital setting (non-retentive at power failure)   1: Digital setting (retentive at power failure)   2: AI1   3: Al2   4: AI3   5: Pulse reference (DI5)   6: Multi-reference   7: Simple PLC   8: PID   9: Communication   Others: F connector	0	-	Changeable only at stop	"F0-04" on page $243$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F0-05	0xF005	Base value of range of auxiliary frequency source for superposition	0 : Relative to maximum frequency   1: Relative to main frequency $X$	0		Changeable at any time	"F0-05" on page 245
F0-06	0xF006	Range of auxiliary frequency source $Y$ for superposition	0\% to 150\%	100	\%	Changeable at any time	"F0-06" on page 245
F0-07	0xF007	Frequency source superposition	Ones: Frequency reference   0 : Main frequency source $X$   1: Main and auxiliary operation result (based on tens)   2: Switchover between main frequency source $X$ and auxiliary frequency source $Y$   3: Switchover between main frequency source $X$ and the main and auxiliary operation result   4: Switchover between auxiliary frequency source Y and the main and auxiliary operation result   Tens: Main and auxiliary frequency reference operation   0: Main + Auxiliary   1: Main - Auxiliary   2: Max. (main, auxiliary)   3: Min. (main, auxiliary)   4: Main x Auxiliary	0	-	Changeable at any time	"F0-07" on page 245
F0-08	0xF008	Preset frequency	0.00 Hz to F0-10	50.00	Hz	Changeable at any time	"F0-08" on page $246$
F0-09	0xF009	Running direction	1: Default direction   1: Reverse to the default direction	0	-	Changeable at any time	"F0-09" on page $246$
F0-10	0xF00A	Maximum frequency	50.00 Hz to 500.00 Hz	50.00	Hz	Changeable only at stop	"F0-10" on page 247
F0-11	0xF00B	Source of frequency upper limit	0: F0-12   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   Others: F connector	0	-	Changeable only at stop	"F0-11" on page 247
F0-12	0xF00C	Frequency upper limit	F0-14 to F0-10	50.00	Hz	Changeable at any time	$\begin{aligned} & \text { "F0-12" on page } \\ & 248 \end{aligned}$
F0-13	0xFO0D	Frequency upper limit offset	0.00 Hz to F0-10	0.00	Hz	Changeable at any time	"F0-13" on page $248$
F0-14	0xF00E	Frequency lower limit	0.00 Hz to FO-12	0.00	Hz	Changeable at any time	"F0-14" on page 248
F0-15	0xF00F	Carrier frequency	0.5 kHz to 16.0 kHz	6.0	kHz	Changeable at any time	$\begin{aligned} & \text { "F0-15" on page } \\ & 248 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F0-16	0xF010	Carrier frequency adjusted with temperature	$\begin{aligned} & \text { 0: No } \\ & \text { 1: Yes } \end{aligned}$	0	-	Changeable at any time	"F0-16" on page 248
F0-17	0xF011	Acceleration time 1	0.0s to 6500.0s	20.0	s	Changeable at any time	$\begin{aligned} & \text { "F0-17" on page } \\ & 249 \end{aligned}$
F0-18	0xF012	Deceleration time 1	0.0 s to 6500.0s	20.0	s	Changeable at any time	"F0-18" on page $249$
F0-19	0xF013	Acceleration/ Deceleration time unit	$\begin{aligned} & 0: 1 \mathrm{~s} \\ & 1: 0.1 \mathrm{~s} \\ & 2: 0.01 \mathrm{~s} \end{aligned}$	1	-	Changeable only at stop	"F0-19" on page $249$
F0-20	0xF014	Offset frequency source	0: F0-21   1: AI1   2: AI2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable only at stop	"F0-20" on page $249$
F0-21	0xF015	Offset frequency	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"F0-21" on page $251$
F0-22	0xF016	Decimal places of frequency reference	$\begin{aligned} & \text { 1: } 0.1 \mathrm{~Hz} \\ & \text { 2: } 0.01 \mathrm{~Hz} \end{aligned}$	2	-	Changeable only at stop	"F0-22" on page 251
F0-23	0xF017	Retention of digital setting	0 : Non-retentive   1: Retentive	0	-	Changeable at any time	"F0-23" on page 251
F0-24	0xF018	Motor parameter group	0: Motor parameter group 1   1: Motor parameter group 2   2: Motor parameter group 3   3: Motor parameter group 4	0	-	Changeable only at stop	"F0-24" on page 251
F0-25	0xF019	Acceleration/ Deceleration time base frequency	0: F0-10 (maximum frequency)   1: Frequency reference   2: 100 Hz   3: Rated frequency	0	-	Changeable only at stop	"F0-25" on page 252
F0-26	0xF01A	Base frequency for UP/DOWN modification during running	0 : Running frequency   1: Frequency reference	0	-	Changeable only at stop	"F0-26" on page 252


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
F0-27	0xF01B	Frequency reference source bound to command source	Ones: Frequency reference source bound to operating panel control   0 : No binding   1: Digital setting   2: AI1   3: AI2   4: Al3   5: Pulse   6: Multi-reference   7: Simple PLC   8: PID   9: Communication   Tens: Frequency reference source bound to   terminal control   0 : No binding   1: Digital setting   2: AI1   3: AI2   4: Al3   5: Pulse   6: Multi-reference   7: Simple PLC   8: PID   9: Communication   Hundreds: Frequency reference source bound to   communication control   0 : No binding   1: Digital setting   2: Al1   3: Al2   4: Al3   5: Pulse   6: Multi-reference   7: Simple PLC   8: PID   9: Communication	0	-	Changeable at any time	"F0-27" on page 252
F0-28	0xF01C	Communication protocol	0 Modbus   1: Extended communication protocol	0	-	Changeable only at stop	"F0-28" on page 253
F0-29	0xF01D	Load type	0: Heavy load application   1: Light load application	0	-	Changeable only at stop	"F0-29" on page 254
F1-00	0xF100	Motor type	0: Common asynchronous motor   1: Variable frequency asynchronous motor   2: Permanent magnet synchronous motor	0	-	Changeable only at stop	"F1-00" on page 254
F1-01	0xF101	Rated motor power	0.1 kW to 1000.0 kW	3.7	kW	Changeable only at stop	"F1-01" on page 254
F1-02	0xF102	Rated motor voltage	1 V to 2000 V	380	V	Changeable only at stop	"F1-02" on page 254


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
F1-03	0xF103	Rated motor current	0.01 A to 655.35 A	9.00	A	Changeable only at stop	"F1-03" on page 255
F1-04	0xF104	Rated motor frequency	0.01 Hz to FO-10	50.00	Hz	Changeable only at stop	"F1-04" on page 255
F1-05	0xF105	Rated motor speed	1 RPM to 65535 RPM	1460	RPM	Changeable only at stop	"F1-05" on page 255
F1-06	0xF106	Asynchronous   motor stator   resistance	$0.001 \Omega$ to $65.535 \Omega$	1.204	$\Omega$	Changeable only at stop	"F1-06" on page 255
F1-07	0xF107	Asynchronous   motor rotor   resistance	$0.001 \Omega$ to $65.535 \Omega$	0.908	$\Omega$	Changeable only at stop	"F1-07" on page $255$
F1-08	0xF108	Asynchronous motor leakage inductance	0.01 mH to 655.35 mH	5.28	mH	Changeable only at stop	"F1-08" on page 255
F1-09	0xF109	Asynchronous motor mutual inductance	0.1 mH to 6553.5 mH	156.8	mH	Changeable only at stop	"F1-09" on page 256
F1-10	0xF10A	Asynchronous motor no-load current	0.01 A to F1-03	4.20	A	Changeable only at stop	"F1-10" on page $256$
F1-16	0xF110	Synchronous motor stator resistance	$0.001 \Omega$ to $65.535 \Omega$	1.204	$\Omega$	Changeable only at stop	"F1-16" on page $256$
F1-17	0xF111	Synchronous motor   D axis inductance	0.01 mH to 655.35 mH	5.28	mH	Changeable only at stop	"F1-17" on page $256$
F1-18	0xF112	Synchronous motor Q axis inductance	0.01 mH to 655.35 mH	5.28	mH	Changeable only at stop	"F1-18" on page $256$
F1-20	0xF114	Synchronous motor back EMF coefficient	0.0 V to 6553.5 V	300.0	V	Changeable only at stop	"F1-20" on page 257
F1-27	0xF11B	Encoder PPR	1 to 65535	1024	-	Changeable only at stop	"F1-27" on page 257
F1-28	0xF11C	Encoder type	0 : ABZ incremental encoder   1: 23-bit encoder   2: Resolver   3: External input	0	-	Changeable only at stop	"F1-28" on page 257
F1-29	0xF11D	Speed feedback PG card	0: Local PG card   1: Extension PG card	0	-	Changeable only at stop	"F1-29" on page 257
F1-30	0xF11E	A/B phase sequence of encoder	0: Forward   1: Reverse	0	-	Changeable only at stop	"F1-30" on page 258
F1-31	0xF11F	Encoder installation angle	$0.0^{\circ}$ to $359.9^{\circ}$	0.0	-	Changeable only at stop	"F1-31" on page 258
F1-34	0xF122	Number of resolver pole pairs	1 to 65535	1	-	Changeable only at stop	"F1-34" on page $258$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F1-36	0xF124	Speed feedback PG wire breakage detection time	0.0 s to 10.0 s	0.0	s	Changeable only at stop	"F1-36" on page 258
F1-37	0xF125	Auto-tuning	0: No operation   1: Static auto-tuning on partial parameters of asynchronous motor   2: Dynamic auto-tuning on asynchronous motor   3: Static auto-tuning on all parameters of asynchronous motor   4: Inertia auto-tuning   5: Deadzone auto-tuning   11: With-load auto-tuning on synchronous motor (excluding back EMF)   12: No-load dynamic auto-tuning on synchronous motor   13: Static auto-tuning on all parameters of synchronous motor (excluding zero point angle)	0	-	Changeable only at stop	"F1-37" on page 258
F2-00	0xF200	Speed loop proportional gain 1	1 to 300	30	-	Changeable at any time	"F2-00" on page $259$
F2-01	0xF201	Speed loop integral time 1	0.01s to 10.00 s	0.50	s	Changeable at any time	"F2-01" on page $259$
F2-02	0xF202	Switchover frequency 1	0.00 Hz to F2-05	5.00	Hz	Changeable at any time	"F2-02" on page 259
F2-03	0xF203	Speed loop   proportional gain 2	1 to 300	20	-	Changeable at any time	"F2-03" on page $260$
F2-04	0xF204	Speed loop integral time 2	0.01 s to 10.00 s	1.00	S	Changeable at any time	"F2-04" on page $260$
F2-05	0xF205	Switchover frequency 2	F2-02 to F0-10	10.00	Hz	Changeable at any time	"F2-05" on page $260$
F2-06	0xF206	Vector control slip gain	50\% to 200\%	100	\%	Changeable at any time	"F2-06" on page 261
F2-07	0xF207	Speed feedback   filter time in SVC   mode	0.000 s to 0.100s	0.015	s	Changeable at any time	"F2-07" on page $261$
F2-09	0xF209	Torque upper limit source in speed control mode (motoring)	0: Digital setting (F2-10)   1: AI1   2: AI2   3: Al3   4: Pulse reference   5: Communication   6: MIN (AI1, AI2)   7: MAX (AI1, AI2)   Others: F connector	0	-	Changeable at any time	"F2-09" on page $261$
F2-10	0xF20A	Torque upper limit in speed control mode	0.0\% to 200.0\%	150.0	\%	Changeable at any time	"F2-10" on page $262$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
F2-11	0xF20B	Torque upper limit source in speed control mode (generating)	0: Digital setting (F2-10)   1: Al1   2: Al2   3: Al3   4: Pulse reference (DI5)   5: Communication   6: MIN (AI1, AI2)   7: MAX (AI1, AI2)   8: Digital setting (F2-12)   Others: F connector	0	-	Changeable at any time	"F2-11" on page $263$
F2-12	0xF20C	Torque upper limit in speed control mode (generating)	0.0\% to 200.0\%	150.0	\%	Changeable at any time	"F2-12" on page   264
F2-18	0xF212	Field weakening mode	0 : No field weakening   1: Auto adjustment   2: Calculation+Auto adjustment	1	-	Changeable only at stop	"F2-18" on page   264
F2-19	0xF213	Field weakening gain	1 to 50	5	-	Changeable at any time	"F2-19" on page   264
F2-22	0xF216	Generating power limiting	0: Disabled   1: Enabled in the whole process   2: Enabled at constant speed   3: Enabled during deceleration	0	-	Changeable at any time	"F2-22" on page 265
F2-23	0xF217	Generating power upper limit	0.0\% to 200.0\%	20.0	\%	Changeable at any time	"F2-23" on page $265$
F2-24	0xF218	Initial position angle detection current of synchronous motor	50 to 180	80	-	Changeable only at stop	"F2-24" on page 265
F2-25	0xF219	Initial position angle detection of synchronous motor	0: Detected upon running   1: Not detected   2: Detected upon initial running after power-on	0	-	Changeable at any time	"F2-25" on page 265
F2-27	0xF21B	Salient pole rate adjustment gain of synchronous motor	0.20 to 3.00	1.00	-	Changeable at any time	"F2-27" on page 265
F2-28	0xF21C	Maximum torque-to-current ratio control of synchronous motor	0: Disabled   1: Enabled	1	-	Changeable at any time	"F2-28" on page   266
F2-32	0xF220	Z signal correction	0: Disabled   1: Enabled	1	-	Changeable at any time	"F2-32" on page   266
F2-37	0xF225	Low speed carrier frequency	0.8 kHz to FO-15	2.0	kHz	Changeable at any time	"F2-37" on page 266
F2-43	0xF22B	Position lock	0 to 1	0	-	Changeable at any time	"F2-43" on page $266$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F2-44	0xF22C	Switchover frequency	0.00 Hz to F2-02	0.30	Hz	Changeable at any time	"F2-44" on page 267
F2-45	0xF22D	Position lock speed loop proportional gain	1 to 100	10	-	Changeable at any time	"F2-45" on page 267
F2-46	0xF22E	Position lock speed loop integral time	0.01s to 10.00 s	0.50	s	Changeable at any time	"F2-46" on page 267
F2-49	0xF231	Auto-tuning free mode	0: Disabled   1: Auto-tuning upon initial running after poweron   2: Auto-tuning upon running	0	-	Changeable at any time	"F2-49" on page 267
F2-51	0xF233	Initial position compensation angle	0.0 to 359.9	0.0	-	Changeable at any time	"F2-51" on page 267
F3-00	0xF300	V/f curve	0 : Straight-line V/f curve   1: Multi-point V/f curve   2-9: Reserved   10: V/f complete separation mode   11: $\mathrm{V} / \mathrm{f}$ half separation mode	0	-	Changeable only at stop	"F3-00" on page $268$
F3-01	0xF301	Torque boost	0.0\% to 30.0\%	3.0	\%	Changeable at any time	"F3-01" on page $268$
F3-02	0xF302	Cut-off frequency of torque boost	0.00 Hz to F0-10	50.00	Hz	Changeable only at stop	"F3-02" on page $268$
F3-03	0xF303	Multi-point V/f frequency 1	0.00 Hz to F3-05	0.00	Hz	Changeable only at stop	"F3-03" on page $268$
F3-04	0xF304	Multi-point V/f voltage 1	0.0\% to $+100.0 \%$	0.0	\%	Changeable only at stop	"F3-04" on page $268$
F3-05	0xF305	Multi-point V/f frequency 2	F3-03 to F3-07	0.00	Hz	Changeable only at stop	"F3-05" on page $269$
F3-06	0xF306	Multi-point V/f voltage 2	0.0\% to +100.0\%	0.0	\%	Changeable only at stop	"F3-06" on page 269
F3-07	0xF307	Multi-point V/f frequency 3	F3-05 to F1-04	0.00	Hz	Changeable only at stop	"F3-07" on page $269$
F3-08	0xF308	Multi-point V/f voltage 3	0.0\% to +100.0\%	0.0	\%	Changeable only at stop	"F3-08" on page $269$
F3-09	0xF309	V/fslip compensation gain	0.0 to 200.0	0.0	-	Changeable at any time	"F3-09" on page $269$
F3-10	0xF30A	V/f overexcitation gain	0 to 200	64	-	Changeable at any time	"F3-10" on page $270$
F3-11	0xF30B	V/f oscillation suppression gain	0 to 100	40	-	Changeable at any time	"F3-11" on page $270$
F3-12	0xF30C	V/f oscillation suppression	0: Disabled   1: Enabled	1	-	Changeable at any time	$\begin{aligned} & \text { "F3-12" on page } \\ & 270 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F3-13	0xF30D	Voltage source for   V/f separation	0 : Digital setting (F3-14)   1: AI1   2: Al2   3: Al3   4: Pulse reference (DI5)   5: Multi-reference   6: Simple PLC   7: PID   8: Communication   Others: F connector	0	-	Changeable at any time	$\begin{aligned} & \text { "F3-13" on page } \\ & 270 \end{aligned}$
F3-14	0xF30E	V/f separation voltage	0 V to F1-02	0	V	Changeable at any time	"F3-14" on page $271$
F3-15	0xF30F	Voltage rise time of V/f separation	0.0 s to 1000.0 s	0.0	s	Changeable at any time	"F3-15" on page 271
F3-16	0xF310	Voltage fall time of   V/f separation	0.0 s to 1000.0 s	0.0	s	Changeable at any time	"F3-16" on page $272$
F3-17	0xF311	Stop mode for V/f separation	0 : Frequency and voltage decline to 0 independently   1: Frequency declines to 0 after voltage declines to 0   2: Coast to stop (new)	0	-	Changeable at any time	"F3-17" on page 272
F3-18	0xF312	Overcurrent stall suppression action current	$50 \%$ to $200 \%$	150	\%	Changeable only at stop	$\begin{aligned} & \text { "F3-18" on page } \\ & 272 \end{aligned}$
F3-19	0xF313	Overcurrent stall suppression	0: Disabled   1: Enabled	1	-	Changeable only at stop	"F3-19" on page $272$
F3-20	0xF314	Overcurrent stall suppression gain	1 to 100	20	-	Changeable at any time	$\begin{aligned} & \text { "F3-20" on page } \\ & 273 \\ & \hline \end{aligned}$
F3-21	0xF315	Compensation coefficient of speed multiplying overcurrent stall suppression action current	50\% to 200\%	100	\%	Changeable only at stop	"F3-21" on page 273
F3-22	0xF316	Overvoltage stall suppression action voltage	330.0 V to 800.0 V	770.0	V	Changeable at any time	"F3-22" on page $273$
F3-23	0xF317	Overvoltage stall suppression	0: Disabled   1: Enabled	1	-	Changeable only at stop	$\begin{aligned} & \text { "F3-23" on page } \\ & 273 \end{aligned}$
F3-24	0xF318	Overvoltage stall suppression frequency gain	1 to 100	30	-	Changeable at any time	"F3-24" on page $273$
F3-25	0xF319	Overvoltage stall suppression voltage gain	1 to 100	30	-	Changeable at any time	$\begin{aligned} & \text { "F3-25" on page } \\ & 274 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F3-26	0xF31A	Frequency rise threshold for overvoltage stall suppression	0 Hz to 50 Hz	5	Hz	Changeable only at stop	"F3-26" on page 274
F3-27	0xF31B	Slip compensation filter time	0.1 s to 10.0 s	0.5	s	Changeable only at stop	"F3-27" on page   274
F3-28	0xF31C	Multi-point curve source	0: 3-point curve   1: Multi-point curve module A   2: Multi-point curve module $B$	0	-	Changeable only at stop	"F3-28" on page   274
F3-33	0xF321	Online torque compensation gain	80 to 150	100	-	Changeable only at stop	"F3-33" on page 275
F3-34	0xF322	ImaxKi coefficient	10\% to $1000 \%$	100	\%	Changeable only at stop	"F3-34" on page 275
F3-35	0xF323	Overcurrent suppression threshold (relative to rated motor current)	80\% to 300\%	200	\%	Changeable only at stop	"F3-35" on page 275
F3-36	0xF324	Frequency threshold for overcurrent suppression field weakening	100\% to 500\%	100	\%	Changeable only at stop	"F3-36" on page 275
F3-37	0xF325	IT filter time	10 ms to 1000 ms	100	ms	Changeable only at stop	"F3-37" on page 275
F3-38	0xF326	Slip compensation mode	0 : Disabled   1: Slip compensation without PG   2: Slip compensation with PG	1	-	Changeable only at stop	$\begin{aligned} & \text { "F3-38" on page } \\ & 275 \end{aligned}$
F3-39	0xF327	VdcMaxCtrl allowed runtime	0.0 s to 100.0 s	0.0	S	Changeable only at stop	"F3-39" on page 276
F3-40	0xF328	Upper limit of V/f separation voltage	50.0\% to 200.0\%	100.0	\%	Changeable only at stop	"F3-40" on page $276$
F3-41	0xF329	RFG time of $\mathrm{V} / \mathrm{f}$ separation frequency	0 : RFG time forced to 0   1: Preset RFG time	0	-	Changeable only at stop	"F3-41" on page $276$
F3-42	0xF32A	Cut-off frequency of V/f oscillation suppression filter	1.0 Hz to 50.0 Hz	8.0	Hz	Changeable at any time	$\begin{aligned} & \text { "F3-42" on page } \\ & 276 \end{aligned}$
F3-43	0xF32B	Cut-off frequency threshold for V/f oscillation suppression	10 Hz to 3000 Hz	200	Hz	Changeable at any time	"F3-43" on page 277
F3-44	0xF32C	VdcMaxCtrl feedforward coefficient	0\% to 500\%	0	\%	Changeable at any time	"F3-44" on page 277


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F3-50	0xF332	PMVVC low-speed IF	0: Disabled   1: Enabled	1	-	Changeable only at stop	"F3-50" on page 277
F3-51	0xF333	PMVVC low-speed IF current	30 to 250	100	-	Changeable only at stop	"F3-51" on page $277$
F3-52	0xF334	PMVVC low-speed IF speed switching threshold	2.0\% to $100.0 \%$	10.0	\%	Changeable only at stop	"F3-52" on page 277
F3-53	0xF335	PMVVC oscillation suppression gain coefficient	0 to 500	100	-	Changeable at any time	$\begin{aligned} & \text { "F3-53" on page } \\ & 278 \end{aligned}$
F3-54	0xF336	PMVVC filter time coefficient	0 to 500	100	-	Changeable at any time	$\begin{aligned} & \text { "F3-54" on page } \\ & 278 \end{aligned}$
F3-55	0xF337	PMVVC energy conservation control mode	0 : Fixed straight-line V/f curve   1: Fixed $30 \%$ reactive current   2: MTPA control	2	-	Changeable only at stop	$\begin{aligned} & \text { "F3-55" on page } \\ & 278 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F4-00	0xF400	DII function	0 : No function   1: Forward RUN (IN1)   2: Reverse RUN (IN2)   3: Three-wire control (IN3)   4: Forward jog (FJOG)   5: Reverse jog (RJOG)   6: Terminal UP   7:Terminal DOWN   8: Coast to stop   9: Fault reset (RESET)   10: Running pause   11: External fault NO input   12: Multi-reference terminal 1   13: Multi-reference terminal 2   14: Multi-reference terminal 3   15: Multi-reference terminal 4   16: Acceleration/deceleration selection terminal   1   17: Acceleration/deceleration selection terminal   2   18: Frequency source switchover   19: UP and DOWN setting clear   20: Command source switchover terminal 1   21: Acceleration/Deceleration inhibition   22: PID pause   23: Simple PLC state reset   24: Wobble pause   25: Counter input   26: Counter reset   27: Length count input   28: Length reset   29: Torque control inhibition   30: Pulse frequency input   31: Reserved   32: Immediate DC braking   33: External fault NC input   34: Frequency modification enable   35: PID action direction reversal   (To be continued)	1		Changeable only at stop	"F4-00" on page $278$


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
(Con tinu ed)	(Contin ued)	(Continued)	(Continued)   36: External stop terminal 1   37: Command source switchover terminal 2   38: PID integral pause   39: Switchover between main frequency and preset frequency   40: Switchover between auxiliary frequency and preset frequency   41: Motor selection terminal 1   42: Reserved   43: PID parameter switchover   44: User-defined fault 1   45: User-defined fault 2   46: Switchover between speed control and torque control   47: Emergency stop   48: External stop terminal 2   49: Deceleration DC braking   50: Current running duration clear   51: Switchover between two-wire and three-wire control   52: Reverse running inhibition   53-69: Reserved   70: Control channel   71: Reference source (Reserved)   72: Terminal module   73: Startup mode bit0   74: Startup mode bit1   75: Command source switchover terminal 3   76: Motor selection terminal 2   77: Running enable   78: Forward RUN enable   79: Reverse RUN enable   80: RFG input set to 0	1		Changeable only at stop	"F4-00" on page $278$
F4-01	0xF401	DI2 function	Same as F4-00	4	-	Changeable only at stop	"F4-01" on page 285
F4-02	0xF402	DI3 function	Same as F4-00	9	-	Changeable only at stop	"F4-02" on page 285
F4-03	0xF403	DI4 function	Same as F4-00	12	-	Changeable only at stop	"F4-03" on page 285


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F4-04	0xF404	DI5 function	0 : No function   1: Forward RUN (IN1)   2: Reverse RUN (IN2)   3: Three-wire control (IN3)   4: Forward jog (FJOG)   5: Reverse jog (RJOG)   6: Terminal UP   7:Terminal DOWN   8: Coast to stop   9: Fault reset (RESET)   10: Running pause   11: External fault NO input   12: Multi-reference terminal 1   13: Multi-reference terminal 2   14: Multi-reference terminal 3   15: Multi-reference terminal 4   16: Acceleration/deceleration selection terminal   1   17: Acceleration/deceleration selection terminal   2   18: Frequency source switchover   19: UP and DOWN setting clear   20: Command source switchover terminal 1   21: Acceleration/Deceleration inhibition   22: PID pause   23: Simple PLC state reset   24: Wobble pause   25: Counter input   26: Counter reset   27: Length count input   28: Length reset   29: Torque control inhibition   31: Reserved   32: Immediate DC braking   33: External fault NC input   34: Frequency modification enable   35: PID action direction reversal	13		Changeable only at stop	"F4-04" on page 285


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   36: External stop terminal 1   37: Command source switchover terminal 2   38: PID integral pause   39: Switchover between main frequency and preset frequency   40: Switchover between auxiliary frequency and preset frequency   41: Motor selection terminal 1   42: Reserved   43: PID parameter switchover   44: User-defined fault 1   45: User-defined fault 2   46: Switchover between speed control and torque control   47: Emergency stop   48: External stop terminal 2   49: Deceleration DC braking   50: Current running duration clear   51: Switchover between two-wire and three-wire control   52: Reverse running inhibition   53-69: Reserved   70: Control channel   71: Reference source (Reserved)   72: Terminal module   73: Startup mode bit0   74: Startup mode bit1   75: Command source switchover terminal 3   76: Motor selection terminal 2   77: Running enable   78: Forward RUN enable   79: Reverse RUN enable   80: RFG input set to 0   (To be continued)	13	-	Changeable only at stop	"F4-04" on page $285$
F4-05	0xF405	DI6 function	Same as F4-00	0	-	Changeable only at stop	"F4-05" on page 287
F4-06	0xF406	DI7 function	Same as F4-00	0	-	Changeable only at stop	"F4-06" on page 288
F4-07	0xF407	DI8 function	Same as F4-00	0	-	Changeable only at stop	"F4-07" on page $288$
F4-08	0xF408	DI9 function	Same as F4-00	0	-	Changeable only at stop	"F4-08" on page $288$
F4-09	0xF409	DI10 function	Same as F4-00	0	-	Changeable only at stop	"F4-09" on page   288
F4-10	0xF40A	DI filter time	0.000 s to 1.000 s	0.010	s	Changeable at any time	"F4-10" on page   288


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F4-11	0xF40B	Terminal control mode	0 : Two-wire mode 1   1: Two-wire mode 2   2: Three-wire mode 1   3: Three-wire mode 2	0	-	Changeable only at stop	"F4-11" on page $288$
F4-12	0xF40C	Terminal UP/DOWN change rate	$0.001 \mathrm{~Hz} / \mathrm{s}$ to $65.535 \mathrm{~Hz} / \mathrm{s}$	1.000	Hz/s	Changeable at any time	"F4-12" on page $289$
F4-13	0xF40D	Minimum input of AI curve 1	-10 V to F4-15	0.00	V	Changeable   at any time	"F4-13" on page $289$
F4-14	0xF40E	Percentage corresponding to minimum input of Al curve 1	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"F4-14" on page $289$
F4-15	0xF40F	Maximum input of Al curve 1	F4-13 to 10.00 V	10.00	V	Changeable at any time	"F4-15" on page $290$
F4-16	0xF410	Percentage corresponding to maximum input of Al curve 1	$-100 \%$ to $+100.0 \%$	100.0	\%	Changeable at any time	"F4-16" on page $290$
F4-17	0xF411	Al1 filter time	0.00 s to 10.00 s	0.10	S	Changeable at any time	"F4-17" on page $290$
F4-18	0xF412	Minimum input of AI curve 2	-10 V to F4-20	0.00	V	Changeable at any time	"F4-18" on page $290$
F4-19	0xF413	Percentage corresponding to minimum input of Al curve 2	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"F4-19" on page $290$
F4-20	0xF414	Maximum input of Al curve 2	F4-18 to 10.00 V	10.00	V	Changeable at any time	"F4-20" on page $291$
F4-21	0xF415	Percentage corresponding to maximum input of Al curve 2	$-100 \%$ to $+100.0 \%$	100.0	\%	Changeable   at any time	"F4-21" on page $291$
F4-22	0xF416	Al2 filter time	0.00 s to 10.00 s	0.10	S	Changeable   at any time	"F4-22" on page $291$
F4-23	0xF417	Minimum input of AI curve 3	-10 V to F4-25	-10	V	Changeable at any time	"F4-23" on page   291
F4-24	0xF418	Percentage corresponding to minimum input of Al curve 3	$-100 \%$ to $+100.0 \%$	-100	\%	Changeable at any time	"F4-24" on page 291
F4-25	0xF419	Maximum input of Al curve 3	F4-23 to 10.00 V	10.00	V	Changeable   at any time	"F4-25" on page $291$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F4-26	0xF41A	Percentage corresponding to maximum input of Al curve 3	$-100 \%$ to $+100.0 \%$	100.0	\%	Changeable at any time	"F4-26" on page $292$
F4-27	0xF41B	Al3 fitter time	0.00 s to 10.00 s	0.10	s	Changeable at any time	"F4-27" on page $292$
F4-28	0xF41C	Minimum pulse input frequency	0.00 kHz to F4-30	0.00	kHz	Changeable at any time	"F4-28" on page $292$
F4-29	0xF41D	Percentage corresponding to minimum pulse input frequency	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"F4-29" on page $292$
F4-30	0xF41E	Maximum pulse input frequency	F4-28 to 100.00 kHz	50.00	kHz	Changeable at any time	"F4-30" on page $292$
F4-31	0xF41F	Percentage corresponding to maximum pulse input frequency	$-100 \%$ to $+100.0 \%$	100.0	\%	Changeable at any time	"F4-31" on page 293
F4-32	0xF420	Pulse filter time	0.00 s to 10.00 s	0.10	s	Changeable at any time	"F4-32" on page $293$
F4-33	0xF421	Al curve	Ones: All curve   1: Curve 1 (2 points, F4-13 to F4-16)   2: Curve 2 (2 points, F4-18 to F4-21)   3: Curve 3 (2 points, F4-23 to F4-26)   4: Curve 4 (4 points, A6-00 to A6-07)   5: Curve 5 (4 points, A6-08 to A6-15)   Tens: Al2 curve   1: Curve 1 (2 points, F4-13 to F4-16)   2: Curve 2 (2 points, F4-18 to F4-21)   3: Curve 3 (2 points, F4-23 to F4-26)   4: Curve 4 (4 points, A6-00 to A6-07)   5: Curve 5 (4 points, A6-08 to A6-15)   Hundreds: Al3 curve   1: Curve 1 (2 points, F4-13 to F4-16)   2: Curve 2 (2 points, F4-18 to F4-21)   3: Curve 3 (2 points, F4-23 to F4-26)   4: Curve 4 (4 points, A6-00 to A6-07)   5: Curve 5 (4 points, A6-08 to A6-15)	0x321	-	Changeable at any time	"F4-33" on page $293$
F4-34	0xF422	Al lower limit	Ones: Setting for AI1 less than minimum input   0 : Percentage corresponding to minimum input   1: 0.0\%   Tens: Setting for Al2 less than minimum input   0 : Percentage corresponding to minimum input   1: 0.0\%   Hundreds: Setting for AI3 less than minimum input   0 : Percentage corresponding to minimum input   1: 0.0\%	$0 \times 0$	-	Changeable at any time	"F4-34" on page $294$


Para.	Comm.   Addr.	Name		De   fault	Unit	Change	Page


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F4-46	0xF42E	DI3 switch-off delay	0.0s to 3600.0s	0.0	s	Changeable only at stop	"F4-46" on page $296$
F4-47	0xF42F	DI4 switch-on delay	0.0s to 3600.0s	0.0	S	Changeable only at stop	"F4-47" on page $297$
F4-48	0xF430	DI4 switch-off delay	0.0s to 3600.0s	0.0	s	Changeable only at stop	"F4-48" on page $297$
F4-49	0xF431	DI force data	Bit00: DI1   0 : Inactive   1: Active   Bit01: DI2   0 : Inactive   1: Active   Bit02: DI3   0 : Inactive   1: Active   Bit03: DI4   0 : Inactive   1: Active   Bit04: DI5/HDI   0 : Inactive   1: Active   Bit05: DI6   0 : Inactive   1: Active   Bit06: DI7   0 : Inactive   1: Active   Bit07: DI8   0 : Inactive   1: Active   Bit08: DI9   0 : Inactive   1: Active   Bit09: DIIO   0 : Inactive   1: Active   Bit10-15: Reserved	0x0	-	Changeable at any time	"F4-49" on page $297$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F4-50	0xF432	DI communication   data	Bit00: DI1   0 : Inactive   1: Active   Bit01: DI2   0 : Inactive   1: Active   Bit02: DI3   0 : Inactive   1: Active   Bit03: DI4   0 : Inactive   1: Active   Bit04: DI5/HDI   0 : Inactive   1: Active   Bit05: DI6   0 : Inactive   1: Active   Bit06: DI7   0 : Inactive   1: Active   Bit07: DI8   0 : Inactive   1: Active   Bit08: DI9   0 : Inactive   1: Active   Bit09: DII0   0 : Inactive   1: Active   Bit10: VDI1   0 : Inactive   1: Active   (To be continued)	$0 \times 0$	-	Changeable at any time	"F4-50" on page $298$
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   Bit11: VDI2   0 : Inactive   1: Active   Bit12: VDI3   0 : Inactive   1: Active   Bit13: VDI4   0 : Inactive   1: Active   Bit14: VDI5   0 : Inactive   1: Active   Bit15: VDI6   0 : Inactive   1: Active	$0 \times 0$	-	Changeable at any time	"F4-50" on page   298


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
F4-51	0xF433	DI1 hardware source	0: Hardware   1: Force value	0	-	Changeable only at stop	"F4-51" on page $300$
F4-52	0xF434	DI2 hardware source	0 : Hardware   1: Force value	0	-	Changeable only at stop	"F4-52" on page $300$
F4-53	0xF435	DI3 hardware source	0 : Hardware   1: Force value	0	-	Changeable only at stop	"F4-53" on page $300$
F4-54	0xF436	DI4 hardware source	0: Hardware   1: Force value	0	-	Changeable only at stop	"F4-54" on page   301
F4-55	0xF437	DI5/HDI hardware source	0: Hardware   1: Force value	0	-	Changeable only at stop	"F4-55" on page 301
F4-56	0xF438	DI6 hardware source	0: Hardware 1: Force value 2: Communication 4: AI1 5: AI2 6: Al3 11: DI1 12: DI2 13: DI3 14: DI4 15: DI5/HDI 17: DI7 18: DI8 19: DI9 20: DI10 21: VDI1 22: VDI2 23: VDI3 24: VDI4 25: VDI5 26: VDI6 31: Relay 1 32: Relay 2 33: DO1 (To be continued)	0	-	Changeable only at stop	"F4-56" on page   301


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   34: Expansion card relay   35: Expansion card DO2   36: VDO1   37: VDO2   38: VDO3   39: VDO4   40: VDO5   41: VDO6   42: VDO7   43: VDO8   44: VDO9   45: VDO10   46: VDO11	0	-	Changeable only at stop	"F4-56" on page   301
F4-57	0xF439	DI7 hardware source	Same as F4-56	0	-	Changeable only at stop	"F4-57" on page $302$
F4-58	0xF43A	DI8 hardware source	Same as F4-56	0	-	Changeable only at stop	"F4-58" on page $303$
F4-59	0xF43B	DI9 hardware source	Same as F4-56	0	-	Changeable only at stop	"F4-59" on page $303$
F4-60	0xF43C	DIIO hardware source	Same as F4-56	0	-	Changeable only at stop	"F4-60" on page $303$
F4-61	0xF43D	DI5/HDI terminal type	$\begin{aligned} & \text { 0: HDI } \\ & \text { 1: DI } \end{aligned}$	1	-	Unchangea ble	"F4-61" on page $303$
F4-62	0xF43E	HDI polarity	0: Normal   1: Absolute value   2: Negated value   3: Negated absolute value	0	-	Changeable at any time	"F4-62" on page $303$
F4-63	0xF43F	HDI input enable	0 : Disabled   1: Enabled   Others: B connector	0	-	Unchangea ble	"F4-63" on page   304
F4-64	0xF440	HDI hardware source	0 : Hardware sampling   1: Force setpoint	0	-	Changeable at any time	"F4-64" on page   304
F4-65	0xF441	HDI force setpoint	0.00 kHz to 100.00 kHz	1.00	kHz	Changeable at any time	"F4-65" on page $304$
F4-66	0xF442	Minimum input of 4point HDI curve	0.00 kHz to F4-68	10.00	kHz	Changeable at any time	"F4-66" on page $304$
F4-67	0xF443	Percentage corresponding to minimum input of 4-point HDI curve	$-100 \%$ to $+100.0 \%$	-100	\%	Changeable at any time	"F4-67" on page $305$
F4-68	0xF444	Inflection 1 input of 4-point HDI curve	F4-66 to F4-70	40.00	kHz	Changeable at any time	"F4-68" on page $305$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F4-69	0xF445	Percentage corresponding to inflection 1 input of 4-point HDI curve	$-100 \%$ to $+100.0 \%$	-30	\%	Changeable at any time	"F4-69" on page 305
F4-70	0xF446	Inflection 2 input of 4-point HDI curve	F4-68 to F4-72	70.00	kHz	Changeable at any time	"F4-70" on page $305$
F4-71	0xF447	Percentage corresponding to inflection 2 input of 4-point HDI curve	$-100 \%$ to $+100.0 \%$	30.0	\%	Changeable at any time	"F4-71" on page $305$
F4-72	0xF448	Maximum input of 4-point HDI curve	F4-70 to 100.00 kHz	100.00	kHz	Changeable at any time	"F4-72" on page $305$
F4-73	0xF449	Percentage corresponding to maximum input of 4-point HDI curve	$-100 \%$ to $+100.0 \%$	100.0	\%	Changeable at any time	"F4-73" on page $306$
F4-74	0xF44A	HDI curve setting	Ones: HDI curve   0: 2-point curve   1: 4-point curve	0	-	Changeable at any time	"F4-74" on page $306$
F4-75	0xF44B	HDI denoising threshold	0.0\% to 10.0\%	0.5	\%	Changeable at any time	"F4-75" on page $306$
F5-00	0xF500	FM multi-function terminal output	0 : Pulse output (FMP)   1: Digital output (FMR)	0	-	Changeable at any time	"F5-00" on page $306$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F5-01	0xF501	FMR output function	0: No output   1: AC drive in running   2: Fault output   3: Frequency-level detection 1 (FDT1)   4: Frequency reach   5: Zero-speed running (no output at stop)   6: Motor overload pre-warning   7: AC drive overload pre-warning   8: Reference count value reach   9: Designated count value reach   10: Length reach   11: Simple PLC cycle completion   12: Accumulative running duration reach   13: Wobble limit reach   14: Torque limit reach   15: Ready to run   16: AI1 > AI2   17: Frequency upper limit reach   18: Frequency lower limit reach (no output at stop)   19: Undervoltage state   20: Communication setting   21-22: Reserved   23: Running at zero speed 2 (output at stop)   24: Accumulative power-on duration reach   25: Frequency-level detection 2 (FDT2)   26: Frequency 1 reach   27: Frequency 2 reach   28: Current 1 reach   29: Current 2 reach   30: Timing reach   31: Al1 input overlimit   32: Load loss   33: Reverse running   (To be continued)	0		Changeable at any time	"F5-01" on page $307$
(Con   tinu   ed)	(Contin ued)	(Continued)	(continued)   34: Zero current state   35: IGBT temperature reach   36: Output overcurrent   37: Frequency lower limit reach (output at stop)   38: Alarm (all faults)   39: Motor overtemperature   40: Current running duration reach   41: Fault output (no output at undervoltage)   42: STO output   43: Running with limits   Others: B connector				


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
F5-02	0xF502	Control board relay (DO3) output function	Same as F5-01	2	-	Changeable at any time	"F5-02" on page   311
F5-03	0xF503	Expansion card relay (DO4) output function	Same as F5-01	0	-	Changeable at any time	"F5-03" on page   311
F5-04	0xF504	DO1 function	Same as F5-01	1	-	Changeable at any time	"F5-04" on page   311
F5-05	0xF505	Expansion card DO2 function	Same as F5-01	4	-	Changeable at any time	"F5-05" on page   311
F5-06	0xF506	FMP output function	0 : Running frequency   1: Frequency reference   2: Output current   3: Output torque (absolute value)   4: Output power   5: Output voltage   6: Pulse input   7: Al1   8: Al2   9: Al3   10: Length   11: Count value   12: Communication setting   13: Motor speed   14: Output current   15: Bus voltage   16: Output torque (actual value)   Others: F connector	0	-	Changeable at any time	"F5-06" on page $312$
F5-07	0xF507	AO1 function	Same as F5-06	0	-	Changeable at any time	"F5-07" on page $312$
F5-08	0xF508	Expansion card AO2 function	Same as F5-06	1	-	Changeable at any time	"F5-08" on page $312$
F5-09	0xF509	Maximum FMP output frequency	0.01 kHz to 100.00 kHz	50.00	kHz	Changeable at any time	"F5-09" on page $312$
F5-10	0xF50A	AO1 zero offset coefficient	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"F5-10" on page $313$
F5-11	0xF50B	AO1 gain	-10 to +10.00	1.00	-	Changeable at any time	"F5-11" on page $313$
F5-12	0xF50C	AO2 zero offset coefficient	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"F5-12" on page $313$
F5-13	0xF50D	AO2 gain	-10 to +10.00	1.00	-	Changeable at any time	"F5-13" on page $313$
F5-14	0xF50E	HDO output filter time	0 to 1000	0	-	Changeable at any time	"F5-14" on page   313
F5-15	0xF50F	AO1 output filter time	0 to 1000	0	-	Changeable at any time	"F5-15" on page $314$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F5-16	0xF510	AO2 output filter time	0 to 1000	0	-	Changeable at any time	"F5-16" on page   314
F5-17	0xF511	FMR output delay (invalid)	0.0s to 3600.0 s	0.0	s	Changeable at any time	"F5-17" on page $314$
F5-18	0xF512	Relay 1 (DO3) output delay (invalid)	0.0s to 3600.0 s	0.0	s	Changeable at any time	"F5-18" on page $314$
F5-19	0xF513	Relay 2 (DO4)   output delay   (invalid)	0.0s to 3600.0 s	0.0	s	Changeable at any time	"F5-19" on page $314$
F5-20	0xF514	DO1 output delay (invalid)	0.0s to 3600.0 s	0.0	s	Changeable at any time	"F5-20" on page $315$
F5-21	0xF515	DO2 output delay (invalid)	0.0s to 3600.0 s	0.0	s	Changeable at any time	"F5-21" on page $315$
F5-22	0xF516	DO active mode	Ones: FMR   0 : Positive logic active   1: Negative logic active   Tens: Relay 1 (DO3)   0 : Positive logic active   1: Negative logic active   Hundreds: Relay 2 (DO4)   0 : Positive logic active   1: Negative logic active   Thousands: DO1   0 : Positive logic active   1: Negative logic active   Ten thousands: DO2   0 : Positive logic active   1: Negative logic active	0	-	Changeable at any time	"F5-22" on page $315$
F5-24	0xF518	Control board relay (DO3) switch-on delay	0.0s to 3600.0s	0.0	s	Changeable at any time	"F5-24" on page $315$
F5-25	0xF519	Control board relay (DO3) switch-off delay	0.0s to 3600.0s	0.0	S	Changeable at any time	"F5-25" on page $316$
F5-26	0xF51A	FMR output switchon delay	0.0s to 3600.0 s	0.0	s	Changeable at any time	"F5-26" on page $316$
F5-27	0xF51B	FMR output switchoff delay	0.0s to 3600.0s	0.0	s	Changeable at any time	"F5-27" on page $316$
F5-28	0xF51C	DO1 output switchon delay	0.0s to 3600.0s	0.0	S	Changeable at any time	"F5-28" on page $316$
F5-29	0xF51D	DO1 output switchoff delay	0.0s to 3600.0s	0.0	s	Changeable at any time	"F5-29" on page $316$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F5-30	0xF51E	Expansion card relay (DO4) switchon delay	0.0 s to 3600.0 s	0.0	s	Changeable at any time	"F5-30" on page   317
F5-31	0xF51F	Expansion card relay (DO4) switchoff delay	0.0 s to 3600.0 s	0.0	s	Changeable at any time	"F5-31" on page $317$
F5-32	0xF520	Expansion card DO2 output switch-on delay	0.0s to 3600.0s	0.0	s	Changeable at any time	"F5-32" on page 317
F5-33	0xF521	Expansion card DO2 output switch-off delay	0.0s to 3600.0s	0.0	s	Changeable at any time	"F5-33" on page $317$
F5-34	0xF522	DO/RO source	Bit00: Relay 1 (DO3) output source   0: Output function   1: Communication   Bit01: FMR output source   0: Output function   1: Communication   Bit02: DO1 output source   0 : Output function   1: Communication   Bit03: Relay 2 (DO4) output source   0 : Output function   1: Communication   Bit04: DO2 output source   0 : Output function   1: Communication   Bit05: VDO1 output source   0 : Output function   1: Communication   Bit06: VDO2 output source   0 : Output function   1: Communication   Bit07: VDO3 output source   0 : Output function   1: Communication   Bit08: VDO4 output source   0 : Output function   1: Communication   (To be continued)	0x0	-	Changeable at any time	"F5-34" on page   317


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   Bit09: VDO5 output source   0 : Output function   1: Communication   Bit10: VDO6 output source   0 : Output function   1: Communication   Bit11: VDO7 output source   0 : Output function   1: Communication   Bit12: VDO8 output source   0 : Output function   1: Communication   Bit13: VD09 output source   0 : Output function   1: Communication   Bit14: VDO10 output source   0 : Output function   1: Communication   Bit15: VDO11 output source   0 : Output function   1: Communication				
F5-35	0xF523	DO/RO terminal communication control	Same as F5-34	$0 \times 0$		Changeable at any time	"F5-35" on page $319$
F5-36	0xF524	Minimum input of AO1 curve	-100.0\% to F5-38	0.0	\%	Changeable at any time	"F5-36" on page $321$
F5-37	0xF525	Setpoint corresponding to minimum input of AO1 curve	0.00 V to 10.00 V	0.00	V	Changeable at any time	"F5-37" on page $321$
F5-38	0xF526	Maximum input of AO1 curve	F5-36 to 100.0\%	100.0	\%	Changeable at any time	"F5-38" on page $322$
F5-39	0xF527	Setpoint corresponding to maximum input of AO1 curve	0.00 V to 10.00 V	10.00	V	Changeable at any time	"F5-39" on page $322$
F5-40	0xF528	AO1 output offset	-10 V to +10.00 V	0.00	V	Changeable at any time	"F5-40" on page $322$
F5-41	0xF529	Minimum input of AO2 curve	-100.0\% to F5-43	0.0	\%	Changeable at any time	"F5-41" on page $322$
F5-42	0xF52A	Setpoint   corresponding to minimum input of AO2 curve	0.00 V to 10.00 V	0.00	V	Changeable at any time	"F5-42" on page $322$
F5-43	0xF52B	Maximum input of AO2 curve	F5-41 to 100.0\%	100.0	\%	Changeable at any time	"F5-43" on page $323$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F5-44	0xF52C	Setpoint corresponding to maximum input of AO2 curve	0.00 V to 10.00 V	10.00	V	Changeable at any time	"F5-44" on page $323$
F5-45	0xF52D	AO2 output offset	-10 V to +10.00 V	0.00	V	Changeable at any time	"F5-45" on page $323$
F5-46	0xF52E	AO curve	Ones: AO1 curve   0: 2-point curve   1: Gain+Offset   Tens: AO2 curve   0: 2-point curve   1: Gain+Offset	11	-	Changeable at any time	"F5-46" on page $323$
F5-47	0xF52F	AO polarity	Ones: AO1   0: Normal   1: Absolute value   2: Negated value   3: Negated absolute value   Tens: AO2   0: Normal   1: Absolute value   2: Negated value   3: Negated absolute value	0	-	Changeable at any time	"F5-47" on page $323$
F5-48	0xF530	AO hardware source	Ones: AO1 source   0 : Output function   1: Force setpoint   Tens: AO2 source   0 : Output function   1: Force setpoint	0	-	Changeable at any time	"F5-48" on page   324
F5-49	0xF531	AO force setpoint 1	0.00 V to 10.00 V	0.00	V	Changeable at any time	"F5-49" on page $324$
F5-50	0xF532	AO force setpoint 2	0.00 V to 10.00 V	0.00	V	Changeable at any time	"F5-50" on page $324$
F5-51	0xF533	Minimum input of HDO curve	$-100.0 \%$ to F5-53	0.00	\%	Changeable at any time	"F5-51" on page $325$
F5-52	0xF534	Percentage   corresponding to minimum input of HDO curve	0.00\% to $100.00 \%$	0.00	\%	Changeable at any time	"F5-52" on page $325$
F5-53	0xF535	Maximum input of HDO curve	F5-51 to 100.00\%	100.00	\%	Changeable at any time	"F5-53" on page $325$
F5-54	0xF536	Percentage corresponding to maximum input of HDO curve	0.00\% to 100.00\%	100.00	\%	Changeable at any time	"F5-54" on page $325$


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
F5-55	0xF537	HDO polarity	Ones: HDO   0: Normal   1: Absolute value   2: Negated value   3: Negated absolute value	0	-	Changeable at any time	"F5-55" on page $325$
F5-56	0xF538	HDO hardware source	0 : Output function   1: Force value	0	-	Changeable at any time	"F5-56" on page $326$
F5-57	0xF539	HDO force setpoint	0.00\% to $100.00 \%$	0.00	\%	Changeable at any time	"F5-57" on page $326$
F6-00	0xF600	Startup mode	0: Direct start   1: Flying start   2: Pre-excitation start (AC asynchronous motor)   3: SVC quick start	0	-	Changeable at any time	"F6-00" on page $326$
F6-01	0xF601	Speed tracking mode	0 : From the stop frequency   1: From the power frequency   2: From the maximum frequency   3: Reserved   4: Magnetic field directional speed tracking (MD290)	0	-	Changeable at any time	"F6-01" on page $326$
F6-02	0xF602	Speed of speed tracking	1 to 100	20	-	Changeable at any time	"F6-02" on page 327
F6-03	0xF603	Startup frequency	0.00 Hz to 10.00 Hz	0.00	Hz	Changeable at any time	"F6-03" on page $327$
F6-04	0xF604	Startup frequency hold time	0.0 s to 100.0 s	0.0	s	Changeable only at stop	"F6-04" on page 327
F6-05	0xF605	DC braking current at startup	0\% to 100\%	50	\%	Changeable only at stop	"F6-05" on page $327$
F6-06	0xF606	DC braking time at startup	0.0 s to 100.0 s	0.0	s	Changeable only at stop	"F6-06" on page $328$
F6-07	0xF607	Acceleration/   Deceleration mode	0: Straight-line acceleration/deceleration   1: S-curve acceleration/deceleration	0	-	Changeable only at stop	"F6-07" on page $328$
F6-08	0xF608	Time proportion of S-curve start segment	0.0\% to $+100.0 \%$	30.0	\%	Changeable only at stop	$\begin{aligned} & \text { "F6-08" on page } \\ & 328 \end{aligned}$
F6-09	0xF609	Time proportion of S-curve end segment	0.0\% to +100.0\%	30.0	\%	Changeable only at stop	"F6-09" on page $328$
F6-10	0xF60A	Stop mode	0: Decelerate to stop   1: Coast to stop   2: Stop at maximum capability	0	-	Changeable at any time	"F6-10" on page $328$
F6-11	0xF60B	Start frequency of DC braking at stop	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"F6-11" on page $329$
F6-12	0xF60C	DC braking delay at stop	0.0s to 100.0 s	0.0	s	Changeable at any time	"F6-12" on page $329$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F6-13	0xF60D	DC braking current at stop	0\% to 100\%	50	\%	Changeable at any time	"F6-13" on page $329$
F6-14	0xF60E	DC braking time at stop	0.0 s to 100.0 s	0.0	s	Changeable at any time	"F6-14" on page $329$
F6-15	0xF60F	Braking transistor usage	0\% to 100\%	100	\%	Changeable at any time	"F6-15" on page $329$
F6-16	0xF610	Speed tracking sweep current limit closed loop Kp	0 to 1000	500	-	Changeable at any time	"F6-16" on page $330$
F6-17	0xF611	Speed tracking sweep current limit closed loop Ki	0 to 1000	800	-	Changeable at any time	"F6-17" on page $330$
F6-18	0xF612	Speed tracking current	$30 \%$ to 200\%	80	\%	Changeable only at stop	"F6-18" on page $330$
F6-19	0xF613	Current loop multiple	10\% to 600\%	100	\%	Changeable at any time	$\begin{aligned} & \text { "F6-19" on page } \\ & 330 \end{aligned}$
F6-20	0xF614	S-curve setting mode	0 : Symmetrical mode   1: Separate setting of acceleration and deceleration arcs	0	-	Changeable only at stop	"F6-20" on page $330$
F6-21	0xF615	Demagnetization time (valid for asynchronous motors)	0.00 s to 5.00 s	0.50	s	Changeable at any time	"F6-21" on page   331
F6-23	0xF617	Overexcitation enable	0: Disabled   2: Enabled during deceleration   3: Enabled always	0	-	Changeable at any time	"F6-23" on page   331
F6-24	0xF618	Overexcitation suppression current	0\% to $150 \%$	100	\%	Changeable at any time	"F6-24" on page $331$
F6-25	0xF619	Overexcitation gain	0.01 to 2.50	1.25	-	Changeable at any time	"F6-25" on page   331
F6-26	0xF61A	Forced switch-on of braking transistor	0: Switch-off   1: Switch-on	0	-	Changeable only at stop	"F6-26" on page $332$
F6-28	0xF61C	Manual self-check enable	Bit00: IGBT shoot-through self-check upon startup   0 : Disabled   1: Enabled   Bit01: Short-to-ground self-check upon startup   0: Disabled   1: Enabled   Bit02: Phase loss self-check upon startup   0 : Disabled   1: Enabled   Bit03: Reserved	0x7	-	Changeable only at stop	$\begin{aligned} & \text { "F6-28" on page } \\ & 332 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F6-29	0xF61D	Manual self-check command	0 : None   1: Static self-check   2: Full self-check	0	-	Changeable only at stop	"F6-29" on page $332$
F7-00	0xF700	LED segment missing check	0 : Disabled   1: All indicators of the LED operating panel are steady on.   2: All indicators of the LED operating panel are off.   3: All indicators of the LED operating panel blink.	0	-	Changeable only at stop	"F7-00" on page $333$
F7-01	0xF701	MF.K key function	0: MF.K key disabled   1: Forced operating panel control   2: Switchover between forward and reverse run   3: Forward jog   4: Reverse jog	0	-	Changeable only at stop	"F7-01" on page 333
F7-02	0xF702	STOP/RESET key function	0 : Valid only under operating panel control   1: Valid under any control (OFF1)   2: Valid under any control (OFF2)   3: Valid under any control (OFF3)	1	-	Changeable at any time	"F7-02" on page $334$
F7-03	0xF703	LED display 1 in running state	Bit00: Running frequency (Hz)   Bit01: Reference frequency (Hz)   Bit02: Bus voltage (V)   Bit03: Output voltage (V)   Bit04: Output current (A)   Bit05: Output power (kW)   Bit06: Output torque (\%)   Bit07: DI state   Bit08: DO state   Bit09: Al1 voltage (V)   Bit10: Al2 voltage (V)   Bit11: Al3 voltage (V)   Bit12: Count value   Bit13: Length value   Bit14: Load speed   Bit15: PID reference	$0 \times 1 \mathrm{~F}$	-	Changeable at any time	"F7-03" on page $334$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F7-04	0xF704	LED display 2 in running state	Bit00: PID feedback   Bit01: PLC stage   Bit02: Input pulse frequency (kHz)   Bit03: Running frequency $2(\mathrm{~Hz})$   Bit04: Remaining running time   Bit05: Al1 voltage before correction (V)   Bit06: Free mapping 0   Bit07: Free mapping 1   Bit08: Motor speed   Bit09: Current power-on duration (Hour)   Bit10: Current running duration (min)   Bit11: Input pulse frequency (Hz)   Bit12: Communication setpoint   Bit13: Encoder feedback speed   Bit14: Main frequency $X$   Bit15: Auxiliary frequency $Y$	0x0		Changeable at any time	"F7-04" on page $334$
F7-05	0xF705	LED display in stop state	Bit00: Reference frequency ( Hz )   Bit01: Bus voltage (V)   Bit02: DI state   Bit03: DO state   Bit04: Al1 voltage (V)   Bit05: Al2 voltage (V)   Bit06: Al3 voltage (V)   Bit07: Count value   Bit08: Length value   Bit09: PLC stage   Bit10: Load speed   Bit11: PID reference   Bit12: Input pulse frequency (kHz)   Bit13: Reserved   Bit14: Free mapping 0   Bit15: Free mapping 1	$0 \times 33$		Changeable at any time	"F7-05" on page $335$
F7-06	0xF706	Load speed display coefficient	1.0E-4 to 6.5000	1.0000	-	Changeable at any time	"F7-06" on page $336$
F7-07	0xF707	IGBT heatsink temperature	$-20^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$	0	${ }^{\circ} \mathrm{C}$	Unchangea ble	"F7-07" on page $336$
F7-08	0xF708	Product SN	0 to 65535	0	-	Unchangea ble	"F7-08" on page $336$
F7-09	0xF709	Accumulative running duration (hour)	0 h to 65535 h	0	h	Unchangea ble	"F7-09" on page 336
F7-10	0xF70A	Performance software version	0.00 to 655.35	0.00	-	Unchangea ble	"F7-10" on page $336$
F7-11	0xF70B	Function software version	0.00 to 655.35	0.00	-	Unchangea ble	"F7-11" on page $337$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F7-12	0xF70C	Number of decimal places for load speed display	Ones: Decimal places of U0-14/U0-24   0 : No decimal place   1: One decimal place   2: Two decimal places   Tens: Decimal places of U0-19/U0-29   0 : No decimal place   1: One decimal place   2: Two decimal places   Hundreds: Decimal places of U0-30/U0-31   0 : No decimal place   1: One decimal place   2: Two decimal places	220	-	Changeable at any time	"F7-12" on page 337
F7-13	0xF70D	Accumulative power-on duration (hour)	0 h to 65535 h	0	h	Unchangea ble	"F7-13" on page 337
F7-14	0xF70E	Accumulative power consumption	$0 \mathrm{~kW} \cdot \mathrm{~h}$ to $65535 \mathrm{~kW} \cdot \mathrm{~h}$	0	kW•h	Unchangea ble	"F7-14" on page $337$
F7-15	0xF70F	Temporary performance software version	0.00 to 655.35	0.00	-	Unchangea ble	"F7-15" on page $338$
F7-16	0xF710	Temporary function software version	0.00 to 655.35	0.00	-	Unchangea ble	"F7-16" on page $338$
F7-17	0xF711	Low-order bits of level-0 menu display address	0 : Invalid address   Others: K connector	0	-	Changeable at any time	"F7-17" on page $338$
F7-18	0xF712	High-order bits of level-0 menu display address	0 : Invalid address   Others: K connector	0	-	Changeable at any time	$\begin{aligned} & \text { "F7-18" on page } \\ & 338 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F7-19	0xF713	Low-order bits of level-0 menu display format	Ones: Unit   0 : None   1: HZ   2: A   3: RPM   4: V   5: Link   6: \%   7: s   8: h   9: kW   10: kW/h   11: ${ }^{\circ} \mathrm{C}$   Tens: Decimal places   0 : No decimal place   1: One decimal place   2: Two decimal places   3: Three decimal places   4: Four decimal places   Hundreds: Enable   0: Disabled   1: Enabled	0x0	-	Changeable at any time	$\begin{aligned} & \text { "F7-19" on page } \\ & 339 \end{aligned}$
F7-20	0xF714	High-order bits of level-0 menu display format	Ones: Unit   0: None   1: HZ   2: A   3: RPM   4: V   5: Link   6: \%   7: s   8: h   9: kW   10: kW/h   11: ${ }^{\circ} \mathrm{C}$   Tens: Decimal places   0 : No decimal place   1: One decimal place   2: Two decimal places   3: Three decimal places   4: Four decimal places   Hundreds: Enable   0 : Disabled   1: Enabled	0x0	-	Changeable at any time	$\begin{aligned} & \text { "F7-20" on page } \\ & 339 \end{aligned}$
F7-21	0xF715	LED operating panel key test	0 : Disabled   1: Enabled	0	-	Changeable only at stop	"F7-21" on page $340$
F7-22	0xF716	LED display update cycle	10 to 300	10	-	Changeable at any time	$\begin{aligned} & \text { "F7-22" on page } \\ & 340 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F7-23	0xF717	LED display of direction	Ones: Direction display at stop   0: Not displayed   1: Displayed   Tens: Reserved   0 : Reserved   1: Reserved	1	-	Changeable at any time	$\begin{aligned} & \text { "F7-23" on page } \\ & 341 \end{aligned}$
F7-24	0xF718	Decimal places of floating-point connector values after conversion	0 : Two decimal places   1: One decimal place	1	-	Changeable at any time	"F7-24" on page   341
F7-25	0xF719	Fault display	0 to 1	0	-	Changeable at any time	"F7-25" on page   341
F7-26	0xF71A	Storage of LED display in running state	0 to 31	0	-	Unchangea ble	"F7-26" on page   341
F7-27	0xF71B	Storage of LED display in stop state	0 to 15	0	-	Unchangea ble	"F7-27" on page $342$
F7-28	0xF71C	Accumulative running duration (second)	Os to 3599s	0	s	Unchangea ble	"F7-28" on page $342$
F7-29	0xF71D	Accumulative power-on duration (second)	Os to 3599s	0	s	Unchangea ble	"F7-29" on page   342
F7-30	0xF71E	Auxiliary calculation of accumulative power consumption	0 to 65535	0	-	Unchangea ble	"F7-30" on page $342$
F7-31	0xF71F	Auxiliary calculation of accumulative power consumption of group U0	0 to 65535	0	-	Unchangea ble	"F7-31" on page $342$
F7-32	0xF720	Low-order bits of accumulative power consumption	$0.0 \mathrm{~kW} \cdot \mathrm{~h}$ to $6553.5 \mathrm{~kW} \cdot \mathrm{~h}$	0.0	kW•h	Unchangea ble	"F7-32" on page $343$
F7-33	0xF721	High-order bits of accumulative power consumption	$0 \mathrm{~kW} \cdot \mathrm{~h}$ to $65535 \mathrm{~kW} \cdot \mathrm{~h}$	0	kW•h	Unchangea ble	"F7-33" on page $343$
F8-00	0xF800	Jog frequency	0.00 Hz to F0-10	2.00	Hz	Changeable at any time	"F8-00" on page $343$
F8-01	0xF801	Jog acceleration time	0.0s to 6500.0s	20.0	s	Changeable at any time	"F8-01" on page $343$
F8-02	0xF802	Jog deceleration time	0.0s to 6500.0s	20.0	s	Changeable at any time	"F8-02" on page $343$
F8-03	0xF803	Acceleration time 2	0.0s to 6500.0s	0.0	s	Changeable at any time	"F8-03" on page   344


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
F8-04	0xF804	Deceleration time 2	0.0s to 6500.0s	0.0	S	Changeable at any time	"F8-04" on page   344
F8-05	0xF805	Acceleration time 3	0.0s to 6500.0s	0.0	S	Changeable at any time	"F8-05" on page   344
F8-06	0xF806	Deceleration time 3	0.0s to 6500.0s	0.0	s	Changeable at any time	"F8-06" on page   344
F8-07	0xF807	Acceleration time 4	0.0s to 6500.0s	0.0	s	Changeable at any time	"F8-07" on page $345$
F8-08	0xF808	Deceleration time 4	0.0s to 6500.0s	0.0	s	Changeable at any time	"F8-08" on page $345$
F8-09	0xF809	Skip frequency 1	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"F8-09" on page $345$
F8-10	0xF80A	Skip frequency 2	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"F8-10" on page $345$
F8-11	0xF80B	Skip frequency band	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"F8-11" on page 345
F8-12	0xF80C	FWD/REV   switchover   deadzone time	0.0s to 3000.0s	0.0	s	Changeable at any time	"F8-12" on page $346$
F8-13	0xF80D	Reverse frequency inhibition	0: Disabled   1: Enabled	0	-	Changeable at any time	"F8-13" on page $346$
F8-14	0xF80E	Running mode when frequency reference below lower limit	0 : Run at frequency lower limit   1: Stop   2: Run at zero speed   3: Coast to stop	0	-	Changeable at any time	"F8-14" on page $346$
F8-15	0xF80F	Droop rate	0.00\% to $10.00 \%$	0.00	\%	Changeable at any time	"F8-15" on page   347
F8-16	0xF810	Power-on duration threshold (hour)	0 h to 65535 h	0	h	Changeable at any time	"F8-16" on page $347$
F8-17	0xF811	Running duration threshold (hour)	0 h to 65535 h	0	h	Changeable at any time	"F8-17" on page $347$
F8-18	0xF812	Startup protection	0: Disabled   1: Enabled	1	-	Changeable at any time	"F8-18" on page $347$
F8-19	0xF813	Frequency detection value (FDT1)	0.00 Hz to FO-10	50.00	Hz	Changeable at any time	$\begin{aligned} & \text { "F8-19" on page } \\ & 347 \end{aligned}$
F8-20	0xF814	Frequency   detection hysteresis (FDT1)	0.0\% to +100.0\%	5.0	\%	Changeable at any time	"F8-20" on page $348$
F8-21	0xF815	Frequency reach detection range	0.0\% to +100.0\%	0.0	\%	Changeable at any time	"F8-21" on page $348$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F8-22	0xF816	Skip frequency enable during acceleration/ deceleration	0 : Disabled   1: Enabled	0	-	Changeable at any time	"F8-22" on page 348
F8-25	0xF819	Switchover frequency of acceleration time 1 and acceleration time 2	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"F8-25" on page $349$
F8-26	0xF81A	Switchover frequency of deceleration time 1 and deceleration time 2	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"F8-26" on page   349
F8-27	0xF81B	Jog priority mode	0: No priority   1: Jog preferred   2: OFF1 preferred	0	-	Changeable at any time	"F8-27" on page $349$
F8-28	0xF81C	Frequency detection value (FDT2 level)	0.00 Hz to FO-10	50.00	Hz	Changeable at any time	"F8-28" on page   349
F8-29	0xF81D	Frequency   detection hysteresis   (FDT2)	0.0\% to +100.0\%	5.0	\%	Changeable at any time	"F8-29" on page $350$
F8-30	0xF81E	Frequency reach detection value 1	0.00 Hz to F0-10	50.00	Hz	Changeable at any time	"F8-30" on page $350$
F8-31	0xF81F	Frequency reach detection range 1	0.1\% to $+100.0 \%$	0.1	\%	Changeable at any time	"F8-31" on page $350$
F8-32	0xF820	Frequency reach detection value 2	0.00 Hz to FO-10	50.00	Hz	Changeable at any time	"F8-32" on page $350$
F8-33	0xF821	Frequency reach detection range 2	0.1\% to $+100.0 \%$	0.1	\%	Changeable at any time	"F8-33" on page $351$
F8-34	0xF822	Zero current detection level	0.0\% to 300.0\%	5.0	\%	Changeable at any time	"F8-34" on page $351$
F8-35	0xF823	Zero current detection delay	0.01 s to 600.00 s	0.10	s	Changeable at any time	"F8-35" on page $351$
F8-36	0xF824	Output overcurrent threshold	0.0\% to 300.0\%	5.0	\%	Changeable at any time	"F8-36" on page $351$
F8-37	0xF825	Output overcurrent detection delay	0.00 s to 600.00 s	0.00	s	Changeable at any time	"F8-37" on page $352$
F8-38	0xF826	Detection level of current 1	0.0\% to 300.0\%	100.0	\%	Changeable at any time	"F8-38" on page $352$
F8-39	0xF827	Detection width of current 1	0.0\% to 300.0\%	0.0	\%	Changeable at any time	"F8-39" on page $352$


Para.	Comm.   Addr.	Name		De   fault	Unit	Change	Page


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F8-56	0xF838	Real-time target speed source	0: RFG output (default)   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable only at stop	"F8-56" on page $356$
F8-57	0xF839	Undervoltage percentage for storage upon undervoltage	70\% to $120 \%$	100	\%	Changeable at any time	"F8-57" on page $356$
F8-58	0xF83A	Number of E2P operations per unit time	0 to 100	0	-	Changeable at any time	"F8-58" on page $356$
F8-59	0xF83B	DI force function	0: The DI functions of group F4 are not enforced. (you need to set the corresponding function connection parameter to 2 to activate the DI function)   1: The DI functions of group F4 are enforced.	1	-	Changeable at any time	"F8-59" on page $357$
F8-60	0xF83C	Main status word 1	0 : Invalid   1: Set to 1   Others: B connector	0	-	Changeable at any time	"F8-60" on page 357
F8-61	0xF83D	Main status word 2	0 : Invalid   1: Set to 1   Others: B connector	0	-	Changeable at any time	"F8-61" on page $357$
F8-62	0xF83E	Target speed reach hysteresis	0.0\% to 600.0\%	3.0	\%	Changeable at any time	"F8-62" on page $357$
F8-63	0xF83F	Target speed reach time	0.00s to 100.00s	3.00	s	Changeable at any time	"F8-63" on page $357$
F8-64	0xF840	Speed comparison reach threshold 1	0.0\% to 600.0\%	100.0	\%	Changeable at any time	"F8-64" on page $358$
F8-65	0xF841	Speed comparison reach hysteresis 1	0.0\% to 600.0\%	3.0	\%	Changeable at any time	"F8-65" on page $358$
F8-66	0xF842	Speed comparison reach time 1	0.00 s to 100.00 s	3.00	S	Changeable at any time	"F8-66" on page $358$
F8-67	0xF843	Speed comparison reach threshold 2	0.0\% to 600.0\%	100.0	\%	Changeable at any time	"F8-67" on page $358$
F8-68	0xF844	Speed comparison reach hysteresis 2	0.0\% to 600.0\%	3.0	\%	Changeable at any time	"F8-68" on page $358$
F8-69	0xF845	Speed comparison reach time 2	0.00 s to 100.00 s	3.00	s	Changeable at any time	"F8-69" on page $359$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F8-72	0xF848	Skip frequency 3	0.00 Hz to F0-10	0.00	Hz	Changeable at any time	"F8-72" on page 359
F8-73	0xF849	Skip frequency 4	0.00 Hz to F0-10	0.00	Hz	Changeable at any time	"F8-73" on page $359$
F8-74	0xF84A	Power-on duration threshold (second)	Os to 3599s	0	s	Changeable at any time	"F8-74" on page   359
F8-75	0xF84B	Running duration threshold (second)	Os to 3599s	0	s	Changeable   at any time	"F8-75" on page $360$
F9-00	0xF900	Motor overload protection	0 : Disabled   1: Enabled	1	-	Changeable at any time	"F9-00" on page $360$
F9-01	0xF901	Motor overload protection gain	0.20 to 10.00	1.00	-	Changeable at any time	"F9-01" on page $360$
F9-02	0xF902	Motor overload prewarning coefficient	50\% to $100 \%$	80	\%	Changeable at any time	"F9-02" on page $360$
F9-03	0xF903	Overvoltage stall suppression gain	1 to 100	30	-	Changeable   at any time	"F9-03" on page $360$
F9-04	0xF904	Overvoltage stall protection voltage	330.0 V to 800.0 V	770.0	V	Changeable at any time	"F9-04" on page   361
F9-07	0xF907	Short-to-ground detection	Ones: Short-to-ground detection upon power-on   0 : Disabled   1: Enabled   Tens: Short-to-ground detection before running   0 : Disabled   1: Enabled	1	-	Changeable at any time	"F9-07" on page $361$
F9-08	0xF908	Braking unit applied voltage	330.0 V to 800.0 V	760.0	V	Changeable only at stop	"F9-08" on page   361
F9-09	0xF909	Auto reset attempts	0 to 100	0	-	Changeable at any time	"F9-09" on page   361
F9-10	0xF90A	Relay action during auto reset	0: Disabled   1: Enabled	0	-	Changeable at any time	"F9-10" on page   362
F9-11	0xF90B	Auto reset interval	0.1 s to 600.0 s	1.0	s	Changeable at any time	"F9-11" on page $362$
F9-12	0xF90C	Input phase loss/   Contactor pickup protection	Ones: Input phase loss protection   0 : Disabled   1: Protection enabled when both software and hardware input phase loss conditions are met   2: Protection enabled when software input phase loss conditions are met   3: Protection enabled when hardware input phase loss conditions are met   Tens: Contactor pickup protection   0 : Disabled   1: Enabled	11	-	Changeable at any time	"F9-12" on page $362$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F9-13	0xF90D	Output phase loss protection	Ones: Output phase loss protection during running   0: Disabled   1: Enabled   Tens: Output phase loss protection before running   0 : Disabled   1: Enabled	1		Changeable at any time	"F9-13" on page   362
F9-14	0xF90E	1st fault type	0 : No fault   1: Reserved   2: Overcurrent (Err02)   5: Overvoltage (Err05)   8: Pre-charge resistor overload (Err08)   9: Undervoltage (Err09)   10: AC drive overload (Err10)   11: Motor overload (Err11)   12: Input phase loss (Err12)   13: Output phase loss (Err13)   14: IGBT overheat (Err14)   15: External fault (Err15)   16: Communication exception (Err16)   17: Contactor exception (Err17)   18: Current detection exception (Err18)   19: Motor auto-tuning exception (Err19)   20: Encoder/PG card exception   21: Parameter read/write exception (Err21)   22: Encoder card exception (Err22)   23: Motor short-to-ground (Err23)   26: Accumulative running duration reach (Err26)   27: User-defined fault   28: User-defined alarm   29: Accumulative power-on duration reach   (Err29)   30: Load loss (Err30)   31: PID feedback loss (Err31)   32: Parameter exception (Err32)	0		Unchangea ble	"F9-14" on page   363


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
(Con tinu ed)	(Contin ued)	(Continued)	40: Pulse-by-pulse current limit fault (Err40)   41: Reserved (Err41)   42: Excessive speed deviation (Err42)   43: Motor overspeed (Err43)   45: Motor overtemperature (Err45)   47: STO fault (Err47)   55: Slave fault under master-slave control   (Err55)   56: Self-check fault (Err56)   57: IGBT fault (Err57)   58: Hardware sensor fault (Err58)   59: Two-phase imbalance (Err59)   61: Braking overload (Err61)   62: Braking module exception (Err62)   63: External alarm (Err63)   82: Pre-charge contactor feedback exception   (Err82)   85: Timing exception (Err85)   93: Motor control exception (Err93)   94: Motor parameter exception (Err94)   169: Fault reset fault (Err169)   174: Wire breakage (Err174)				
F9-15	0xF90F	2nd fault type	Same as F9-15	0	-	Unchangea ble	"F9-15" on page $364$
F9-16	0xF910	3rd (latest) fault type	Same as F9-15	0	-	Unchangea ble	"F9-16" on page   364
F9-17	0xF911	Frequency upon the 3rd (latest) fault	0.00 Hz to 655.35 Hz	0.00	Hz	Unchangea ble	"F9-17" on page $365$
F9-18	0xF912	Current upon the 3rd (latest) fault	0.00 A to 655.35 A	0.00	A	Unchangea ble	"F9-18" on page $365$
F9-19	0xF913	Bus voltage upon the 3rd (latest) fault	0.0 V to 6553.5 V	0.0	V	Unchangea ble	"F9-19" on page $365$
F9-20	0xF914	DI state upon the 3rd (latest) fault	0x0 to 0xFFFF	$0 \times 0$	-	Unchangea ble	"F9-20" on page $365$
F9-21	0xF915	DO state upon the 3rd (latest) fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"F9-21" on page $365$
F9-22	0xF916	AC drive state upon the 3rd (latest) fault	0 to 65535	0	-	Unchangea ble	"F9-22" on page $366$
F9-23	0xF917	Power-on duration upon the 3rd (latest) fault	0 min to 65535 min	0	min	Unchangea ble	"F9-23" on page $366$
F9-24	0xF918	Running duration upon the 3rd (latest) fault	0.0 min to 6553.5 min	0.0	min	Unchangea ble	"F9-24" on page $366$
F9-25	0xF919	Status word A upon the 3rd (latest) fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"F9-25" on page $366$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F9-26	0xF91A	Status word B upon the 3rd (latest) fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"F9-26" on page   366
F9-27	0xF91B	Frequency upon the 2nd fault	0.00 Hz to 655.35 Hz	0.00	Hz	Unchangea ble	"F9-27" on page $366$
F9-28	0xF91C	Current upon the 2nd fault	0.00 A to 655.35 A	0.00	A	Unchangea ble	"F9-28" on page   367
F9-29	0xF91D	Bus voltage upon the 2nd fault	0.0 V to 6553.5 V	0.0	V	Unchangea ble	"F9-29" on page 367
F9-30	0xF91E	DI state upon the 2nd fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"F9-30" on page 367
F9-31	0xF91F	DO state upon the 2nd fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"F9-31" on page 367
F9-32	0xF920	AC drive state upon the 2nd fault	0 to 65535	0	-	Unchangea ble	"F9-32" on page 367
F9-33	0xF921	Power-on duration upon the 2nd fault	0 min to 65535 min	0	min	Unchangea ble	"F9-33" on page $368$
F9-34	0xF922	Running duration upon the 2nd fault	0.0 min to 6553.5 min	0.0	min	Unchangea ble	"F9-34" on page $368$
F9-35	0xF923	Status word A upon the 2nd fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"F9-35" on page $368$
F9-36	0xF924	Status word B upon the 2 nd fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"F9-36" on page $368$
F9-37	0xF925	Frequency upon the 1st fault	0.00 Hz to 655.35 Hz	0.00	Hz	Unchangea ble	"F9-37" on page   368
F9-38	0xF926	Current upon the 1st fault	0.00 A to 655.35 A	0.00	A	Unchangea ble	"F9-38" on page $369$
F9-39	0xF927	Bus voltage upon the 1st fault	0.0 V to 6553.5 V	0.0	V	Unchangea ble	"F9-39" on page $369$
F9-40	0xF928	DI state upon the 1st fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"F9-40" on page $369$
F9-41	0xF929	DO state upon the 1st fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"F9-41" on page $369$
F9-42	0xF92A	AC drive state upon the 1st fault	0 to 65535	0	-	Unchangea ble	"F9-42" on page $369$
F9-43	0xF92B	Power-on duration upon the 1st fault	0 min to 65535 min	0	min	Unchangea ble	"F9-43" on page   370
F9-44	0xF92C	Running duration upon the 1st fault	0.0 min to 6553.5 min	0.0	min	Unchangea ble	"F9-44" on page $370$
F9-45	0xF92D	Status word A upon the 1st fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"F9-45" on page $370$
F9-46	0xF92E	Status word B upon the 1st fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"F9-46" on page $370$


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
F9-47	0xF92F	Fault protection action selection 1	Ones: Motor overload (Err11)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   5: Ignore   Tens: Input phase loss (Err12)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   5: Ignore   Hundreds: Output phase loss (Err13)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   Thousands: External fault (Err15)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   Ten thousands: Reserved	0		Changeable at any time	"F9-47" on page $370$
F9-48	0xF930	Fault protection action selection 2	Ones: Encoder/PG card exception (Err20)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   5: Ignore   Tens: Parameter read/write exception (Err21)   0: Coast to stop   1: Stop according to the stop mode   Hundreds: Reserved (Err24)   0 : Coast to stop   Thousands: Reserved (Err25)   0: Coast to stop   Ten thousands: Running duration reach (Err26)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit	0	-	Changeable at any time	"F9-48" on page $371$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
F9-49	0xF931	Fault protection action selection 3	Ones: User-defined fault 1 (Err27)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   Tens: User-defined fault 2 (Err28)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   Hundreds: Power-on duration reach (Err29)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   Thousands: Load loss (Err30)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   5: Ignore   Ten thousands: PID loss during running (Err31)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit	220		Changeable at any time	"F9-49" on page $372$
F9-50	0xF932	Fault protection action selection 4	Ones: Excessive speed deviation (Err42)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   5: Ignore   Tens: Motor overspeed (Err43)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   5: Ignore   Thousands: Magnetic pole position auto-tuning error (Err55)   0 : Coast to stop	2	-	Changeable at any time	"F9-50" on page $373$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F9-51	0xF933	Fault protection action selection 5	Ones: Modbus timeout (Err160)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   5: Ignore   Tens: CANOpen fault (Err161)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   5: Ignore   Hundreds: CANlink fault (Err162)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   5: Ignore   Thousands: Reserved   Ten thousands: Expansion card fault (Err164)   0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   5: Ignore	10111	-	Changeable at any time	"F9-51" on page   374
F9-54	0xF936	Frequency for continuing to run upon fault	0 : Current running frequency   1: Frequency reference   2: Frequency upper limit   3: Frequency lower limit   4: Alternative frequency upon exception	1	-	Changeable at any time	"F9-54" on page $375$
F9-55	0xF937	Alternative   frequency upon exception	0.0\% to +100.0\%	100.0	\%	Changeable at any time	"F9-55" on page $376$
F9-56	0xF938	Al3 temperature mode - motor temperature sensor type	0 : No temperature sensor (AI channel used as analog input)   1: PT100   2: PT1000	0	-	Changeable at any time	"F9-56" on page $376$
F9-57	0xF939	Al3 temperature mode - motor overheat protection threshold	F9-58 to $200^{\circ} \mathrm{C}$	110	${ }^{\circ} \mathrm{C}$	Changeable at any time	"F9-57" on page $376$
F9-58	0xF93A	Al3 temperature   mode - motor   overheat pre-   warning threshold	$0^{\circ} \mathrm{C}$ to F9-57	90	${ }^{\circ} \mathrm{C}$	Changeable at any time	"F9-58" on page $376$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
F9-59	0xF93B	Power dip ridethrough	0 : Disabled   1: Decelerate   2: Decelerate to stop   3: Suppress voltage dip	0	-	Changeable only at stop	"F9-59" on page $376$
F9-60	0xF93C	Voltage threshold for disabling power dip ride-through	$80 \%$ to $100 \%$	85	\%	Changeable only at stop	"F9-60" on page $377$
F9-61	0xF93D	Delay of voltage recovery from power dip	0.0 s to 100.0 s	0.5	s	Changeable only at stop	"F9-61" on page   377
F9-62	0xF93E	Voltage threshold for enabling power dip ride-through	60\% to $100 \%$	80	\%	Changeable only at stop	"F9-62" on page $378$
F9-63	0xF93F	Protection upon load loss	0: Disabled   1: Enabled	0	-	Changeable at any time	"F9-63" on page $378$
F9-64	0xF940	Load loss detection level	0.0\% to $+100.0 \%$	10.0	\%	Changeable at any time	"F9-64" on page $378$
F9-65	0xF941	Load loss detection time	0.0s to 60.0s	1.0	s	Changeable at any time	"F9-65" on page $378$
F9-67	0xF943	Overspeed detection level	0.0\% to 50.0\%	20.0	\%	Changeable at any time	"F9-67" on page $378$
F9-68	0xF944	Overspeed detection time	0.0s to 60.0s	1.0	s	Changeable at any time	"F9-68" on page $379$
F9-69	0xF945	Detection level of excessive speed deviation	0.0\% to 50.0\%	20.0	\%	Changeable at any time	"F9-69" on page $379$
F9-70	0xF946	Detection time of excessive speed deviation	0.0 s to 60.0 s	5.0	s	Changeable at any time	"F9-70" on page $379$
F9-71	0xF947	Power dip ridethrough gain Kp	1 to 100	40	-	Changeable at any time	"F9-71" on page $379$
F9-72	0xF948	Power dip ridethrough integral coefficient Ki	1 to 100	30	-	Changeable at any time	$\begin{aligned} & \text { "F9-72" on page } \\ & 379 \end{aligned}$
F9-73	0xF949	Deceleration time of power dip ridethrough	0.0s to 300.0 s	20.0	s	Changeable at any time	"F9-73" on page $380$
F9-74	0xF94A	Voltage dip suppression time	0.1s to 600.0s	0.5	s	Changeable at any time	"F9-74" on page $380$
F9-75	0xF94B	Al2 temperature mode - motor temperature sensor type	0 : No temperature sensor (Al channel used as analog input)   1: PT100   2: PT1000   3: KTY84-130   4: PTC130	0	-	Changeable at any time	"F9-75" on page $380$


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
F9-76	0xF94C	Al2 temperature mode - motor overheat protection threshold	F9-77 to $200^{\circ} \mathrm{C}$	110	${ }^{\circ} \mathrm{C}$	Changeable at any time	"F9-76" on page $380$
F9-77	0xF94D	Al2 temperature mode - motor overheat prewarning threshold	$0^{\circ} \mathrm{C}$ to F9-76	90	${ }^{\circ} \mathrm{C}$	Changeable at any time	"F9-77" on page $380$
F9-78	0xF94E	Al2 temperature mode - motor temperature reach	$0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	75	${ }^{\circ} \mathrm{C}$	Changeable at any time	"F9-78" on page   381
F9-79	0xF94F	Auto reset of STO state	0: Manual reset   1: Auto reset	0	-	Changeable at any time	"F9-79" on page   381
F9-80	0xF950	Al3 temperature mode - motor temperature reach	$0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$	75	${ }^{\circ} \mathrm{C}$	Changeable at any time	"F9-80" on page $381$
FA-00	0xFA00	PID reference source	$\begin{aligned} & \text { 0: FA-01 } \\ & \text { 1: Al1 } \\ & \text { 2: Al2 } \\ & \text { 3: Al3 } \end{aligned}$   4: Pulse input (DI5)   5: Communication   6: Multi-reference   Others: F connector	0	-	Changeable at any time	"FA-00" on page   381
FA-01	0xFA01	PID reference	0.0\% to +100.0\%	50.0	\%	Changeable at any time	"FA-01" on page $382$
FA-02	0xFA02	PID feedback source	$\begin{aligned} & \text { 0: Al1 } \\ & \text { 1: Al2 } \\ & \text { 2: Al3 } \\ & \text { 3: Al1-AI2 } \\ & \text { 4: Pulse reference (DIO1) } \\ & \text { 5: Communication } \\ & \text { 6: AI1+AI2 } \\ & \text { 7: MAX(\|AI1\|, \|AI2\|) } \\ & \text { 8: Min(\|AI1\|, \|AI2\|) } \\ & \text { Others: F connector } \end{aligned}$	0	-	Changeable at any time	"FA-02" on page $382$
FA-03	0xFA03	PID action direction	0 : Forward   1: Reverse   Others: B connector	0	-	Changeable at any time	"FA-03" on page $383$
FA-04	0xFA04	PID reference and feedback range	0 to 65535	1000	-	Changeable at any time	"FA-04" on page $383$
FA-05	0xFA05	Proportional gain Kp1	0.0 to 1000.0	20.0	-	Changeable at any time	"FA-05" on page $383$
FA-06	0xFA06	Integral time Ti1	0.01 s to 10.00 s	2.00	s	Changeable at any time	"FA-06" on page   384


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
FA-07	0xFA07	Derivative time Td1	0.000 s to 10.000 s	0.000	s	Changeable at any time	"FA-07" on page $384$
FA-08	0xFA08	PID cut-off frequency in reverse direction	0.00 Hz to FO-10	2.00	Hz	Changeable at any time	"FA-08" on page   384
FA-09	0xFA09	PID deviation limit	0.0\% to $+100.0 \%$	0.0	\%	Changeable at any time	"FA-09" on page   384
FA-10	OxFAOA	PID derivative limit	0.00\% to $100.00 \%$	0.10	\%	Changeable at any time	"FA-10" on page $385$
FA-11	0xFAOB	PID reference change time	0.00s to 650.00s	0.00	s	Changeable at any time	"FA-11" on page 385
FA-12	OxFAOC	PID feedback filter time	0.00 s to 60.00 s	0.00	s	Changeable at any time	"FA-12" on page 385
FA-13	OxFAOD	PID output filter time	0.00s to 60.00s	0.00	s	Changeable at any time	"FA-13" on page $385$
FA-15	OxFAOF	Proportional gain Kp2	0.0 to 1000.0	20.0	-	Changeable at any time	"FA-15" on page $385$
FA-16	0xFA10	Integral time Ti2	0.01 s to 10.00 s	2.00	s	Changeable at any time	"FA-16" on page $386$
FA-17	0xFA11	Derivative time Td2	0.000 s to 10.000 s	0.000	s	Changeable at any time	"FA-17" on page $386$
FA-18	0xFA12	PID parameter switchover condition	0: No switchover   1: Switchover by DI   2: Automatic switchover based on deviation   3: Automatic switchover based on running frequency	0	-	Changeable at any time	"FA-18" on page $386$
FA-19	0xFA13	PID parameter switchover deviation 1	0.0\% to FA-20	20.0	\%	Changeable at any time	"FA-19" on page $387$
FA-20	0xFA14	PID parameter switchover deviation 2	FA-19 to 100.0\%	80.0	\%	Changeable at any time	"FA-20" on page 387
FA-21	0xFA15	PID initial value	0.0\% to +100.0\%	0.0	\%	Changeable at any time	"FA-21" on page $387$
FA-22	0xFA16	Hold time of PID initial value	0.00s to 650.00s	0.00	s	Changeable at any time	"FA-22" on page 387
FA-23	0xFA17	Maximum deviation between two PID outputs	0.00\% to $100.00 \%$	1.00	\%	Changeable at any time	"FA-23" on page $388$
FA-24	0xFA18	Minimum deviation between two PID outputs	0.00\% to $100.00 \%$	1.00	\%	Changeable at any time	"FA-24" on page 388


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
FA-25	0xFA19	PID integral property	Ones: Integral separation   0 : Disabled   1: Enabled   Tens: Whether to stop integration when the output reaches the limit   0 : Continue integration   1: Stop integration	10	-	Changeable at any time	"FA-25" on page $388$
FA-26	0xFA1A	Lower threshold of detection on feedback loss	0.0\% to +100.0\%	0.0	\%	Changeable at any time	"FA-26" on page $389$
FA-27	$0 \times F A 1 B$	PID feedback loss detection time	0.0s to 20.0s	0.0	s	Changeable at any time	"FA-27" on page $389$
FA-28	0xFA1C	PID operation at stop	0: Disabled   1: Enabled   Others: B connector	0	-	Changeable at any time	"FA-28" on page $389$
FA-29	0xFA1D	Upper threshold of detection on feedback loss	0.0\% to +100.0\%	100.0	\%	Changeable at any time	"FA-29" on page $389$
FA-30	0xFA1E	Source of maximum output	0: [1]   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"FA-30" on page $390$
FA-31	0xFA1F	Source of minimum output	0 : [0]   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"FA-31" on page $390$
FA-32	0xFA20	Forced output value	Same as FA-31	0	-	Changeable at any time	"FA-32" on page $391$
FA-33	0xFA21	Forced output assignment	0: Disabled   1: Enabled   Others: B connector	0	-	Changeable at any time	"FA-33" on page   391
FA-34	0xFA22	General PID enable	0 : Disabled   1: Enabled   Others: B connector	1	-	Changeable at any time	"FA-34" on page   391


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
FB-00	0xFB00	Wobble setting mode	0 : Relative to center frequency   1: Relative to maximum frequency	0	-	Changeable at any time	"FB-00" on page $392$
FB-01	0xFB01	Wobble amplitude	0.0\% to +100.0\%	0.0	\%	Changeable at any time	"FB-01" on page $392$
FB-02	0xFB02	Wobble step	0.0\% to 50.0\%	0.0	\%	Changeable at any time	"FB-02" on page $392$
FB-03	0xFB03	Wobble cycle	0.1s to 3000.0s	10.0	s	Changeable at any time	"FB-03" on page $392$
FB-04	0xFB04	Triangular wave rise time coefficient	0.1\% to +100.0\%	50.0	\%	Changeable at any time	"FB-04" on page $393$
FB-05	0xFB05	Reference length	0 to 65535	1000	-	Changeable at any time	"FB-05" on page $393$
FB-06	0xFB06	Actual length	0 to 65535	0	-	Unchangea ble	"FB-06" on page $393$
FB-07	0xFB07	Number of pulses per meter	0.1 to 6553.5	100.0	-	Changeable at any time	"FB-07" on page $393$
FB-08	0xFB08	Reference count value	0 to 65535	1000	-	Changeable at any time	"FB-08" on page $393$
FB-09	0xFB09	Designated count value	0 to 65535	1000	-	Changeable at any time	"FB-09" on page $393$
FB-20	0xFB14	Motor-driven potentiometer enable	0: Disabled 1: Enabled 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"FB-20" on page $394$
FB-21	0xFB15	Memory retention at power failure of motor-driven potentiometer	0: Disabled   1: Enabled	0	-	Changeable at any time	"FB-21" on page   394
FB-22	0xFB16	Initial value of motor-driven potentiometer	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"FB-22" on page 395


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
FB-23	0xFB17	Value increase time base of motordriven potentiometer	0.00s to 655.35s	20.00	s	Changeable at any time	"FB-23" on page 395
FB-24	0xFB18	Value decrease time base of motordriven potentiometer	0.00 s to 655.35 s	20.00	s	Changeable at any time	"FB-24" on page 395
FB-25	0xFB19	Source of motordriven potentiometer increase command	0: Invalid 1: Valid 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"FB-25" on page $395$
FB-26	0xFB1A	Source of motordriven potentiometer decrease command	Same as FB-25	0	-	Changeable at any time	$\begin{aligned} & \text { "FB-26" on page } \\ & 396 \end{aligned}$
FB-27	0xFB1B	Maximum output value of motordriven potentiometer	$-600 \%$ to $+600.0 \%$	600.0	\%	Changeable at any time	"FB-27" on page 397
FB-28	0xFB1C	Minimum output value of motordriven potentiometer	$-600 \%$ to $+600.0 \%$	-600	\%	Changeable at any time	"FB-28" on page 397
FB-29	0xFB1D	Source 1 of motordriven potentiometer pause command	Same as FB-25	0	-	Changeable at any time	"FB-29" on page 397
FB-30	0xFB1E	Source 2 of motor-   driven   potentiometer   pause command	Same as FB-25	0	-	Changeable at any time	"FB-30" on page 398


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
FB-31	0xFB1F	Source 1 of motordriven potentiometer reset command	Same as FB-25	0	-	Changeable at any time	"FB-31" on page 399
FB-32	0xFB20	Source 2 of motordriven potentiometer reset command	Same as FB-25	0	-	Changeable at any time	"FB-32" on page $400$
FB-33	0xFB21	Source of motordriven potentiometer reset value	0 : Digital setting   1: AI1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"FB-33" on page $401$
FB-34	0xFB22	Reset value of motor-driven potentiometer	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"FB-34" on page $402$
FB-35	0xFB23	Source of motor-   driven   potentiometer force   command	Same as FB-25	0	-	Changeable at any time	"FB-35" on page $402$
FB-36	0xFB24	Source of motordriven potentiometer force value	0 : Digital setting   1: AI1   2: AI2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"FB-36" on page $403$
FB-37	0xFB25	Force value of motor-driven potentiometer	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"FB-37" on page $403$
FB-38	0xFB26	High-order bits of motor-driven potentiometer storage	0 to 65535	0	-	Changeable at any time	"FB-38" on page $403$
FB-39	0xFB27	Low-order bits of motor-driven potentiometer storage	0 to 65535	0	-	Changeable at any time	"FB-39" on page $404$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
FB-46	0xFB2E	Simple UP/DOWN output	-32767 to +32767	0	-	Unchangea ble	"FB-46" on page 404
FC-00	0xFC00	Multi-reference 1	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"FC-00" on page 404
FC-01	0xFC01	Multi-reference 2	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"FC-01" on page 405
FC-02	0xFC02	Multi-reference 3	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"FC-02" on page 405
FC-03	0xFC03	Multi-reference 4	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"FC-03" on page 405
FC-04	0xFC04	Multi-reference 5	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"FC-04" on page 405
FC-05	0xFC05	Multi-reference 6	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"FC-05" on page 405
FC-06	0xFC06	Multi-reference 7	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"FC-06" on page 405
FC-07	0xFC07	Multi-reference 8	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"FC-07" on page $406$
FC-08	0xFC08	Multi-reference 9	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "FC-08" on page } \\ & 406 \end{aligned}$
FC-09	0xFC09	Multi-reference 10	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "FC-09" on page } \\ & 406 \end{aligned}$
FC-10	0xFCOA	Multi-reference 11	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "FC-10" on page } \\ & 406 \end{aligned}$
FC-11	0xFCOB	Multi-reference 12	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"FC-11" on page $406$
FC-12	0xFCOC	Multi-reference 13	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "FC-12" on page } \\ & 407 \end{aligned}$
FC-13	0xFC0D	Multi-reference 14	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "FC-13" on page } \\ & 407 \end{aligned}$
FC-14	0xFC0E	Multi-reference 15	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "FC-14" on page } \\ & 407 \end{aligned}$
FC-15	0xFCOF	Multi-reference 16	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "FC-15" on page } \\ & 407 \end{aligned}$
FC-16	0xFC10	Simple PLC running mode	0 : Stop after running for one cycle   1: Keep final values after running for one cycle   2: Repeat after running for one cycle	0	-	Changeable at any time	$\begin{aligned} & \text { "FC-16" on page } \\ & 407 \end{aligned}$
FC-17	0xFC11	Simple PLC memory retention upon power failure	Ones: Retentive upon power failure   0 : No   1: Yes   Tens: Retentive upon stop   0 : No   1: Yes	0	-	Changeable at any time	"FC-17" on page   408


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
FC-18	0xFC12	Running time of PLC reference 0	0.0s (h) to 6553.5s (h)	0.0	s (h)	Changeable at any time	$\begin{aligned} & \text { "FC-18" on page } \\ & 408 \end{aligned}$
FC-19	$0 \times F C 13$	Acceleration/   Deceleration time of PLC reference 0	0 to 3	0	-	Changeable at any time	"FC-19" on page 408
FC-20	0xFC14	Running time of PLC reference 1	0.0s (h) to 6553.5s (h)	0.0	s (h)	Changeable at any time	"FC-20" on page 408
FC-21	0xFC15	Acceleration/   Deceleration time of PLC reference 1	0 to 3	0	-	Changeable at any time	"FC-21" on page 409
FC-22	0xFC16	Running time of PLC reference 2	0.0s (h) to 6553.5s (h)	0.0	s (h)	Changeable at any time	$\begin{aligned} & \text { "FC-22" on page } \\ & 409 \end{aligned}$
FC-23	0xFC17	Acceleration/   Deceleration time of PLC reference 2	0 to 3	0	-	Changeable at any time	"FC-23" on page 409
FC-24	0xFC18	Running time of PLC reference 3	0.0s (h) to 6553.5s (h)	0.0	s (h)	Changeable at any time	$\begin{aligned} & \text { "FC-24" on page } \\ & 409 \end{aligned}$
FC-25	0xFC19	Acceleration/   Deceleration time of PLC reference 3	0 to 3	0	-	Changeable at any time	"FC-25" on page 409
FC-26	0xFC1A	Running time of PLC reference 4	0.0s (h) to 6553.5s (h)	0.0	s (h)	Changeable at any time	"FC-26" on page 409
FC-27	$0 \times F C 1 B$	Acceleration/   Deceleration time of   PLC reference 4	0 to 3	0	-	Changeable at any time	"FC-27" on page $410$
FC-28	0xFC1C	Running time of PLC reference 5	0.0s (h) to 6553.5s (h)	0.0	s (h)	Changeable at any time	"FC-28" on page 410
FC-29	0xFC1D	Acceleration/   Deceleration time of   PLC reference 5	0 to 3	0	-	Changeable at any time	"FC-29" on page $410$
FC-30	0xFC1E	Running time of PLC reference 6	0.0s (h) to 6553.5s (h)	0.0	s (h)	Changeable at any time	"FC-30" on page 410
FC-31	0xFC1F	Acceleration/   Deceleration time of PLC reference 6	0 to 3	0	-	Changeable at any time	"FC-31" on page 410
FC-32	0xFC20	Running time of PLC reference 7	0.0s (h) to 6553.5s (h)	0.0	s (h)	Changeable at any time	"FC-32" on page 411
FC-33	0xFC21	Acceleration/   Deceleration time of PLC reference 7	0 to 3	0	-	Changeable at any time	"FC-33" on page   411
FC-34	0xFC22	Running time of PLC reference 8	0.0s (h) to 6553.5s (h)	0.0	$s$ (h)	Changeable at any time	"FC-34" on page 411
FC-35	0xFC23	Acceleration/   Deceleration time of   PLC reference 8	0 to 3	0	-	Changeable at any time	"FC-35" on page 411


Para.	Comm. Addr.	Name	Reference	De fault	Unit	Change	Page
FC-36	0xFC24	Running time of PLC reference 9	0.0s (h) to 6553.5s (h)	0.0	s (h)	Changeable at any time	"FC-36" on page   411
FC-37	0xFC25	Acceleration/   Deceleration time of PLC reference 9	0 to 3	0	-	Changeable at any time	"FC-37" on page   412
FC-38	0xFC26	Running time of PLC reference 10	0.0s (h) to 6553.5s (h)	0.0	s (h)	Changeable at any time	"FC-38" on page $412$
FC-39	0xFC27	Acceleration/   Deceleration time of PLC reference 10	0 to 3	0	-	Changeable at any time	"FC-39" on page   412
FC-40	0xFC28	Running time of PLC reference 11	0.0s (h) to 6553.5s (h)	0.0	$s$ (h)	Changeable at any time	"FC-40" on page $412$
FC-41	0xFC29	Acceleration/   Deceleration time of PLC reference 11	0 to 3	0	-	Changeable at any time	"FC-41" on page   412
FC-42	$0 \times F C 2 A$	Running time of PLC reference 12	0.0s (h) to 6553.5s (h)	0.0	s (h)	Changeable at any time	"FC-42" on page 413
FC-43	0xFC2B	Acceleration/   Deceleration time of PLC reference 12	0 to 3	0	-	Changeable at any time	"FC-43" on page   413
FC-44	0xFC2C	Running time of PLC reference 13	0.0s (h) to 6553.5s (h)	0.0	s (h)	Changeable at any time	"FC-44" on page $413$
FC-45	0xFC2D	Acceleration/   Deceleration time of PLC reference 13	0 to 3	0	-	Changeable at any time	"FC-45" on page 413
FC-46	0xFC2E	Running time of PLC reference 14	0.0s (h) to 6553.5s (h)	0.0	$s$ (h)	Changeable at any time	"FC-46" on page   413
FC-47	0xFC2F	Acceleration/   Deceleration time of PLC reference 14	0 to 3	0	-	Changeable at any time	"FC-47" on page $414$
FC-48	0xFC30	Running time of PLC reference 15	0.0s (h) to 6553.5s (h)	0.0	$s$ (h)	Changeable at any time	"FC-48" on page   414
FC-49	0xFC31	Acceleration/   Deceleration time of PLC reference 15	0 to 3	0	-	Changeable at any time	"FC-49" on page $414$
FC-50	0xFC32	PLC running time unit	$\begin{aligned} & \text { 0: s (second) } \\ & \text { 1: h (hour) } \end{aligned}$	0	-	Changeable at any time	"FC-50" on page   414
FC-51	0xFC33	Multi-reference 0 source	$\begin{aligned} & \text { 0: FC-00 } \\ & \text { 1: AI1 } \\ & \text { 2: Al2 } \\ & \text { 3: AI3 } \end{aligned}$   4: Pulse reference   5: PID   6: Preset frequency (F0-08)   Others: F connector	0	-	Changeable at any time	"FC-51" on page $414$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
FC-52	0xFC34	Current multireference	0 : Multi-reference 1   1: Multi-reference 2   2: Multi-reference 3   3: Multi-reference 4   4: Multi-reference 5   5: Multi-reference 6   6: Multi-reference 7   7: Multi-reference 8   8: Multi-reference 9   9: Multi-reference 10   10: Multi-reference 11   11: Multi-reference 12   12: Multi-reference 13   13: Multi-reference 14   14: Multi-reference 15   15: Multi-reference 16	0	-	Unchangea ble	"FC-52" on page 415
FC-53	0xFC35	Current multireference value	-600\% to $+600.0 \%$	0.0	\%	Unchangea ble	"FC-53" on page 415
FC-55	0xFC37	Multi-reference value bit0	0: 0 1: 1 2: Terminal function input 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16   Others: B connector	0	-	Changeable at any time	"FC-55" on page $415$
FC-56	0xFC38	Multi-reference value bit1	FC-55	0	-	Changeable at any time	"FC-56" on page   416
FC-57	0xFC39	Multi-reference value bit2	FC-55	0	-	Changeable at any time	"FC-57" on page 417
FC-58	0xFC3A	Multi-reference value bit3	FC-55	0	-	Changeable at any time	"FC-58" on page 418
FC-59	0xFC3B	Current STEP of PLC	0 to 65535	0	-	Unchangea ble	"FC-59" on page 419


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
FC-60	0xFC3C	High-order bits of PLC current STEP running time	0 to 65535	0	-	Unchangea ble	"FC-60" on page $419$
FC-61	0xFC3D	Low-order bits of PLC current STEP running time	0 to 65535	0	-	Unchangea ble	"FC-61" on page $419$
FD-00	0xFD00	Baud rate	Ones: Modbus   0: 300 bps   1: 600 bps   2: 1200 bps   3: 2400 bps   4: 4800 bps   5: 9600 bps   6: 19200 bps   7: 38400 bps   8: 57600 bps   9: 115200 bps   Tens: Reserved   Hundreds: Reserved   Thousands: CANLink/CANOpen   0: 20   1: 50   2: 100   3: 125   4: 250   5: 500   6: 1M	5005	-	Changeable only at stop	"FD-00" on page $420$
FD-01	0xFD01	Modbus data format	0 : No check (8-N-2)   1: Even parity (8-E-1)   2: Odd parity (8-0-1)   3: No check ( $8-\mathrm{N}-1$ )   4: No check (7-N-2)   5: Even parity (7-E-1)   6: Odd parity (7-0-1)   7: No check (7-N-1)	0	-	Changeable at any time	"FD-01" on page $420$
FD-02	0xFD02	Local address	1 to 247	1	-	Changeable only at stop	"FD-02" on page   421
FD-03	0xFD03	Modbus response delay	0 ms to 20 ms	2	ms	Changeable at any time	"FD-03" on page   421
FD-04	0xFD04	Communication timeout time	0.0 s to 60.0 s	0.0	s	Changeable at any time	"FD-04" on page   421
FD-06	0xFD06	Current resolution read by communication	$\begin{aligned} & \text { 0: } 0.01 \mathrm{~A} \text { (valid when } \leqslant 55 \mathrm{~kW}) \\ & 1: 0.1 \mathrm{~A} \end{aligned}$	0	-	Changeable at any time	"FD-06" on page 421


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
FD-08	0xFD08	Expansion card communication timeout time	0.0 s to 60.0s	0.0	s	Changeable at any time	"FD-08" on page 422
FD-10	0xFDOA	CANopen/CANlink switchover	1: CANopen   2: CANlink	2	-	Changeable at any time	"FD-10" on page   422
FD-14	0xFDOE	Number of frames received per unit time	0 to 65535	0	-	Unchangea ble	"FD-14" on page 422
FD-15	0xFDOF	Maximum RX error count	0 to 65535	0	-	Unchangea ble	"FD-15" on page   422
FD-16	0xFD10	Maximum TX error count	0 to 65535	0	-	Unchangea ble	"FD-16" on page   422
FD-17	0xFD11	Bus-off count per unit time	0 to 65535	0	-	Unchangea ble	"FD-17" on page 423
FD-19	0xFD13	CAN communication disconnection coefficient	1 to 15	3	-	Changeable only at stop	"FD-19" on page 423
FD-20	0xFD14	PROFIBUS DP communication address	0 to 125	0	-	Changeable only at stop	"FD-20" on page 423
FD-21	0xFD15	PROFIBUS DP communication disconnection coefficient	0 to 65535	350	-	Changeable only at stop	"FD-21" on page 423
FD-27	0xFD1B	Storage of parameters written through communication	0 to 1	0	-	Changeable at any time	"FD-27" on page 423
FD-28	0xFD1C	Auto reset upon communication fault	0 to 1	1	-	Changeable at any time	"FD-28" on page   424
FD-29	0xFD1D	Communication state	0 to 999	0	-	Unchangea ble	"FD-29" on page 424
FD-30	0xFD1E	Number of RPDO mapped bytes	0 to 65535	0	-	Changeable at any time	"FD-30" on page $424$
FD-31	0xFD1F	Number of TPDO mapped bytes	0 to 65535	0	-	Changeable at any time	"FD-31" on page 424
FD-32	0xFD20	Group AF mapping mode switchover	0 : Parameters written through communication are not saved   1: Parameters written through communication are saved	0	-	Changeable only at stop	"FD-32" on page   424
FD-37	0xFD25	DHCP function	0 : Disabled   1: Enabled	0	-	Changeable only at stop	"FD-37" on page 425


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
FD-38	0xFD26	MSB of IP address	0 to 255	0	-	Changeable only at stop	"FD-38" on page 425
FD-39	0xFD27	Second MSB of IP address	0 to 255	0	-	Changeable only at stop	"FD-39" on page 425
FD-40	0xFD28	Third byte of IP address	0 to 255	0	-	Changeable only at stop	"FD-40" on page 425
FD-41	0xFD29	LSB of IP address	0 to 255	0	-	Changeable only at stop	"FD-41" on page 425
FD-42	0xFD2A	MSB of subnet mask	0 to 255	0	-	Changeable only at stop	"FD-42" on page 426
FD-43	0xFD2B	Second MSB of subnet mask	0 to 255	0	-	Changeable only at stop	"FD-43" on page 426
FD-44	0xFD2C	Third byte of subnet mask	0 to 255	0	-	Changeable only at stop	"FD-44" on page 426
FD-45	0xFD2D	LSB of subnet mask	0 to 255	0	-	Changeable only at stop	"FD-45" on page 426
FD-46	0xFD2E	MSB of gateway	0 to 255	0	-	Changeable only at stop	"FD-46" on page 426
FD-47	0xFD2F	Second MSB of gateway	0 to 255	0	-	Changeable only at stop	"FD-47" on page $426$
FD-48	0xFD30	Third byte of gateway	0 to 255	0	-	Changeable only at stop	"FD-48" on page 427
FD-49	0xFD31	LSB of gateway	0 to 255	0	-	Changeable only at stop	"FD-49" on page 427
FD-58	0xFD3A	Ethernet/IP expansion card error code	0 to 255	0	-	Unchangea ble	"FD-58" on page 427
FD-61	0xFD3D	High-order byte of MAC address	0x0 to 0xFFFF	0x0	-	Changeable only at stop	"FD-61" on page 427
FD-62	0xFD3E	Middle byte of MAC address	0x0 to 0xFFFF	0x0	-	Changeable only at stop	"FD-62" on page 427
FD-63	0xFD3F	Low-order byte of MAC address	0x0 to 0xFFFF	0x0	-	Changeable only at stop	"FD-63" on page $428$
FD-92	0xFD5C	Slave alias backup	0 to 65535	0	-	Changeable at any time	"FD-92" on page 428
FD-93	0xFD5D	Null pointer	0 to 65535	0	-	Changeable at any time	"FD-93" on page 428
FD-94	0xFD5E	Communication software version	0.00 to 655.35	0.00	-	Unchangea ble	"FD-94" on page 428
FE-00	0x2F00	User-defined parameter 0	0 to 65535	0	-	Changeable at any time	"FE-00" on page $428$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
FE-01	0x2F01	User-defined parameter 1	0 to 65535	0	-	Changeable at any time	"FE-01" on page 429
FE-02	0x2F02	User-defined parameter 2	0 to 65535	0	-	Changeable at any time	"FE-02" on page $429$
FE-03	0x2F03	User-defined parameter 3	0 to 65535	0	-	Changeable at any time	"FE-03" on page $429$
FE-04	0x2F04	User-defined parameter 4	0 to 65535	0	-	Changeable at any time	"FE-04" on page $429$
FE-05	0x2F05	User-defined parameter 5	0 to 65535	0	-	Changeable at any time	"FE-05" on page $429$
FE-06	0x2F06	User-defined parameter 6	0 to 65535	0	-	Changeable at any time	"FE-06" on page $430$
FE-07	0x2F07	User-defined parameter 7	0 to 65535	0	-	Changeable at any time	"FE-07" on page $430$
FE-08	0x2F08	User-defined parameter 8	0 to 65535	0	-	Changeable at any time	"FE-08" on page $430$
FE-09	0x2F09	User-defined parameter 9	0 to 65535	0	-	Changeable at any time	"FE-09" on page $430$
FE-10	0x2F0A	User-defined parameter 10	0 to 65535	0	-	Changeable at any time	"FE-10" on page $430$
FE-11	0x2F0B	User-defined parameter 11	0 to 65535	0	-	Changeable at any time	"FE-11" on page $431$
FE-12	0x2F0C	User-defined parameter 12	0 to 65535	0	-	Changeable at any time	"FE-12" on page 431
FE-13	0x2F0D	User-defined parameter 13	0 to 65535	0	-	Changeable at any time	"FE-13" on page   431
FE-14	0x2F0E	User-defined parameter 14	0 to 65535	0	-	Changeable at any time	"FE-14" on page   431
FE-15	0x2F0F	User-defined parameter 15	0 to 65535	0	-	Changeable at any time	"FE-15" on page   431
FE-16	0×2F10	User-defined parameter 16	0 to 65535	0	-	Changeable at any time	"FE-16" on page $432$
FE-17	0x2F11	User-defined parameter 17	0 to 65535	0	-	Changeable at any time	"FE-17" on page $432$
FE-18	0x2F12	User-defined parameter 18	0 to 65535	0	-	Changeable at any time	"FE-18" on page $432$
FE-19	0x2F13	User-defined parameter 19	0 to 65535	0	-	Changeable at any time	"FE-19" on page $432$
FE-20	0x2F14	User-defined parameter 20	0 to 65535	0	-	Changeable at any time	"FE-20" on page $432$
FE-21	0x2F15	User-defined parameter 21	0 to 65535	0	-	Changeable at any time	"FE-21" on page $433$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
FE-22	0x2F16	User-defined parameter 22	0 to 65535	0	-	Changeable at any time	"FE-22" on page 433
FE-23	0x2F17	User-defined parameter 23	0 to 65535	0	-	Changeable at any time	"FE-23" on page 433
FE-24	0x2F18	User-defined parameter 24	0 to 65535	0	-	Changeable at any time	"FE-24" on page $433$
FE-25	0x2F19	User-defined parameter 25	0 to 65535	0	-	Changeable at any time	"FE-25" on page 433
FE-26	0x2F1A	User-defined parameter 26	0 to 65535	0	-	Changeable at any time	"FE-26" on page $433$
FE-27	0x2F1B	User-defined parameter 27	0 to 65535	0	-	Changeable at any time	"FE-27" on page 434
FE-28	0x2F1C	User-defined parameter 28	0 to 65535	0	-	Changeable at any time	"FE-28" on page 434
FE-29	0x2F1D	User-defined parameter 29	0 to 65535	0	-	Changeable at any time	"FE-29" on page 434
FE-30	0x2F1E	User-defined parameter 30	0 to 65535	0	-	Changeable at any time	"FE-30" on page 434
FE-31	0x2F1F	User-defined parameter 31	0 to 65535	0	-	Changeable at any time	"FE-31" on page 434
FP-00	0x1F00	User password	0 to 65535	0	-	Changeable at any time	"FP-00" on page 435
FP-01	0x1F01	Parameter initialization	0 : No operation   1: Restore default settings (excluding motor parameters)   2: Clear records   4: Back up current user parameters   501: Restore user parameters from backup   503: Restore default settings (including motor parameters)	0	-	Changeable only at stop	"FP-01" on page $435$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
FP-02	0x1F02	Parameter display	Bit00: Group U   0: Hidden   1: Displayed   Bit01: Group A   0: Hidden   1: Displayed   Bit02: Group B   0: Hidden   1: Displayed   Bit03: Group C   0: Hidden   1: Displayed   Bit04: Group H   0: Hidden   1: Displayed   Bit05: Group L   0: Hidden   1: Displayed	63	-	Changeable at any time	"FP-02" on page $435$
FP-03	0x1F03	Display of individualized parameters	Ones: User mode   0: Hidden   1: Displayed   Tens: Correction mode   0: Hidden   1: Displayed   Hundreds: Error menu   0: Hidden   1: Displayed	111	-	Changeable at any time	"FP-03" on page $436$
FP-04	0x1F04	Parameter modification	0 : Modification allowed   1: Modification prohibited	0	-	Changeable at any time	"FP-04" on page $436$
FP-06	0x1F06	Monitoring password	0 to 65535	0	-	Changeable at any time	"FP-06" on page   437
FP-07	0x1F07	Expert password	0 to 65535	0	-	Changeable at any time	"FP-07" on page   437
FP-08	0x1F08	Factory password	0 to 65535	0	-	Changeable at any time	"FP-08" on page $437$
FP-09	0x1F09	Password input window	0 to 65535	0	-	Changeable at any time	"FP-09" on page $437$
FP-14	0x1F0E	Parameter clearing	0 : No operation   1: Clear all record (faults and time) parameters   2: Clear fault information   500: Clear all backup user parameters   1000: Clear all backup motor parameters	0	-	Changeable only at stop	"FP-14" on page $438$


Para.	Comm. Addr.	Name	Reference	De fault	Unit	Change	Page
FP-15	0x1F0F	Parameter restoration	0: No operation   500: Restore user backup   501: Restore user macro backup 1   502: Restore user macro backup 2   503: Restore user macro backup 3   504: Restore user macro backup 4   505: Restore user macro backup 5   506: Restore user macro backup 6   2011: Restore motor macro backup parameter 1 to motor 1   2012: Restore motor macro backup parameter 1 to motor 2   (To be continued)	0		Changeable only at stop	"FP-15" on page $438$
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   2013: Restore motor macro backup parameter 1 to motor 3   2014: Restore motor macro backup parameter 1 to motor 4   2021: Restore motor macro backup parameter 2 to motor 1   2022: Restore motor macro backup parameter 2 to motor 2   2023: Restore motor macro backup parameter 2 to motor 3   2024: Restore motor macro backup parameter 2 to motor 4   2031: Restore motor macro backup parameter 3 to motor 1   2032: Restore motor macro backup parameter 3 to motor 2   2033: Restore motor macro backup parameter 3 to motor 3   2034: Restore motor macro backup parameter 3   to motor 4   (To be continued)	0		Changeable only at stop	"FP-15" on page $438$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   2041: Restore motor macro backup parameter 4 to motor 1   2042: Restore motor macro backup parameter 4 to motor 2   2043: Restore motor macro backup parameter 4 to motor 3   2044: Restore motor macro backup parameter 4 to motor 4   2051: Restore motor macro backup parameter 5 to motor 1   2052: Restore motor macro backup parameter 5 to motor 2   2053: Restore motor macro backup parameter 5 to motor 3   2054: Restore motor macro backup parameter 5 to motor 4   2061: Restore motor macro backup parameter 6 to motor 1   2062: Restore motor macro backup parameter 6 to motor 2   2063: Restore motor macro backup parameter 6 to motor 3   (To be continued)	(Con   tinu   ed)	(Con   tinu   ed)	(Continued)	(Continued)
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   2064: Restore motor macro backup parameter 6 to motor 4   2071: Restore motor macro backup parameter 7 to motor 1   2072: Restore motor macro backup parameter 7 to motor 2   2073: Restore motor macro backup parameter 7 to motor 3   2074: Restore motor macro backup parameter 7 to motor 4   2081: Restore motor macro backup parameter 8 to motor 1   2082: Restore motor macro backup parameter 8 to motor 2   2083: Restore motor macro backup parameter 8 to motor 3   2084: Restore motor macro backup parameter 8 to motor 4   2091: Restore motor macro backup parameter 9 to motor 1   (To be continued)	(Con   tinu   ed)	(Con   tinu   ed)	(Continued)	(Continued)


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   2092: Restore motor macro backup parameter 9 to motor 2   2093: Restore motor macro backup parameter 9 to motor 3   2094: Restore motor macro backup parameter 9 to motor 4   2101: Restore motor macro backup parameter   10 to motor 1   2102: Restore motor macro backup parameter   10 to motor 2   2103: Restore motor macro backup parameter   10 to motor 3   2104: Restore motor macro backup parameter   10 to motor 4   2111: Restore motor macro backup parameter   11 to motor 1   (To be continued)	(Con   tinu   ed)	(Con   tinu   ed)	(Continued)	(Continued)
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   2112: Restore motor macro backup parameter   11 to motor 2   2113: Restore motor macro backup parameter   11 to motor 3   2114: Restore motor macro backup parameter   11 to motor 4   2121: Restore motor macro backup parameter   12 to motor 1   2122: Restore motor macro backup parameter   12 to motor 2   2123: Restore motor macro backup parameter   12 to motor 3   2124: Restore motor macro backup parameter   12 to motor 4   2131: Restore motor macro backup parameter   13 to motor 1   2132: Restore motor macro backup parameter 13 to motor 2   (To be continued)	0	-	Changeable only at stop	"FP-15" on page 438


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   2133: Restore motor macro backup parameter   13 to motor 3   2134: Restore motor macro backup parameter   13 to motor 4   2141: Restore motor macro backup parameter   14 to motor 1   2142: Restore motor macro backup parameter   14 to motor 2   2143: Restore motor macro backup parameter   14 to motor 3   2144: Restore motor macro backup parameter   14 to motor 4   2151: Restore motor macro backup parameter   15 to motor 1   2152: Restore motor macro backup parameter   15 to motor 2   2153: Restore motor macro backup parameter   15 to motor 3   2154: Restore motor macro backup parameter   15 to motor 4   2161: Restore motor macro backup parameter   16 to motor 1   2162: Restore motor macro backup parameter   16 to motor 2   2163: Restore motor macro backup parameter   16 to motor 3   (To be continued)	(Con tinu ed)	(Con tinu ed)	(Continued)	(Continued)
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   2164: Restore motor macro backup parameter   16 to motor 4   2171: Restore motor macro backup parameter   17 to motor 1   2172: Restore motor macro backup parameter   17 to motor 2   2173: Restore motor macro backup parameter   17 to motor 3   2174: Restore motor macro backup parameter   17 to motor 4   2181: Restore motor macro backup parameter   18 to motor 1   2182: Restore motor macro backup parameter   18 to motor 2   2183: Restore motor macro backup parameter   18 to motor 3   (To be continued)	(Con   tinu   ed)	(Con tinu ed)	(Continued)	(Continued)


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   2184: Restore motor macro backup parameter   18 to motor 4   2191: Restore motor macro backup parameter   19 to motor 1   2192: Restore motor macro backup parameter   19 to motor 2   2193: Restore motor macro backup parameter   19 to motor 3   2194: Restore motor macro backup parameter   19 to motor 4   2201: Restore motor macro backup parameter   20 to motor 1   2202: Restore motor macro backup parameter   20 to motor 2   2203: Restore motor macro backup parameter   20 to motor 3   2204: Restore motor macro backup parameter   20 to motor 4	(Con   tinu   ed)	(Con tinu ed)	(Continued)	(Continued)
FP-16	0x1F10	User backup	0 : No operation   400: Back up user parameters   401: Back up user macro parameters to address   1   402: Back up user macro parameters to 2   403: Back up user macro parameters to 3   404: Back up user macro parameters to 4   405: Back up user macro parameters to 5   406: Back up user macro parameters to 6   1011: Back up parameters of motor 1 to address   1   1012: Back up parameters of motor 2 to address   1   1013: Back up parameters of motor 3 to address 1   1014: Back up parameters of motor 4 to address   1   1021: Back up parameters of motor 1 to address   2   1022: Back up parameters of motor 2 to address   2   1023: Back up parameters of motor 3 to address   2   1024: Back up parameters of motor 4 to address   2   1031: Back up parameters of motor 1 to address 3   (To be continued)	0	-	Changeable only at stop	"FP-16" on page 440


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   1032: Back up parameters of motor 2 to address   3   1033: Back up parameters of motor 3 to address   3   1034: Back up parameters of motor 4 to address   3   1041: Back up parameters of motor 1 to address   4   1042: Back up parameters of motor 2 to address   4   1043: Back up parameters of motor 3 to address   4   1044: Back up parameters of motor 4 to address   4   1051: Back up parameters of motor 1 to address 5   1052: Back up parameters of motor 2 to address   5   1053: Back up parameters of motor 3 to address   5   1054: Back up parameters of motor 4 to address 5   1061: Back up parameters of motor 1 to address   6   1062: Back up parameters of motor 2 to address   6   1063: Back up parameters of motor 3 to address   6   1064: Back up parameters of motor 4 to address   6   (To be continued)	(Con tinu ed)	(Con tinu ed)	(Continued)	(Continued)


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   1071: Back up parameters of motor 1 to address 7   1072: Back up parameters of motor 2 to address 7   1073: Back up parameters of motor 3 to address 7   1074: Back up parameters of motor 4 to address 7   1081: Back up parameters of motor 1 to address   8   1082: Back up parameters of motor 2 to address   8   1083: Back up parameters of motor 3 to address   8   1084: Back up parameters of motor 4 to address   8   1091: Back up parameters of motor 1 to address   9   1092: Back up parameters of motor 2 to address 9   1093: Back up parameters of motor 3 to address   9   1094: Back up parameters of motor 4 to address   9   1101: Back up parameters of motor 1 to address 10   (To be continued)	(Con   tinu   ed)	(Con tinu ed)	(Continued)	(Continued)


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   1102: Back up parameters of motor 2 to address 10   1103: Back up parameters of motor 3 to address 10   1104: Back up parameters of motor 4 to address 10   1111: Back up parameters of motor 1 to address 11   1112: Back up parameters of motor 2 to address 11   1113: Back up parameters of motor 3 to address 11   1114: Back up parameters of motor 4 to address 11   1121: Back up parameters of motor 1 to address 12   1122: Back up parameters of motor 2 to address 12   1123: Back up parameters of motor 3 to address 12   1124: Back up parameters of motor 4 to address 12   1131: Back up parameters of motor 1 to address 13   1132: Back up parameters of motor 2 to address 13   1133: Back up parameters of motor 3 to address 13   1134: Back up parameters of motor 4 to address 13   1141: Back up parameters of motor 1 to address 14   1142: Back up parameters of motor 2 to address 14   1143: Back up parameters of motor 3 to address 14   1144: Back up parameters of motor 4 to address 14   (To be continued)	(Con tinu ed)	(Con tinu ed)	(Continued)	(Continued)


Para.	Comm. Addr.	Name	Reference	De fault	Unit	Change	Page
(Con   tinu   ed)	(Contin   ued)	(Continued)	(Continued)   1151: Back up parameters of motor 1 to address 15   1152: Back up parameters of motor 2 to address 15   1153: Back up parameters of motor 3 to address 15   1154: Back up parameters of motor 4 to address 15   1161: Back up parameters of motor 1 to address 16   1162: Back up parameters of motor 2 to address 16   1163: Back up parameters of motor 3 to address 16   1164: Back up parameters of motor 4 to address 16   1171: Back up parameters of motor 1 to address 17   1172: Back up parameters of motor 2 to address 17   (To be continued)	(Con   tinu   ed)	(Con   tinu   ed)	(Continued)	(Continued)


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
(Con   tinu   ed)	(Contin ued)	(Continued)	(Continued)   1173: Back up parameters of motor 3 to address 17   1174: Back up parameters of motor 4 to address 17   1181: Back up parameters of motor 1 to address 18   1182: Back up parameters of motor 2 to address 18   1183: Back up parameters of motor 3 to address 18   1184: Back up parameters of motor 4 to address 18   1191: Back up parameters of motor 1 to address 19   1192: Back up parameters of motor 2 to address 19   1193: Back up parameters of motor 3 to address 19   1194: Back up parameters of motor 4 to address 19   1201: Back up parameters of motor 1 to address   20   1202: Back up parameters of motor 2 to address   20   1203: Back up parameters of motor 3 to address   20   1204: Back up parameters of motor 4 to address 20   (To be continued)	(Con   tinu   ed)	(Con   tinu   ed)	(Continued)	(Continued)
A0-00	0xA000	Speed/Torque control mode	0 : Speed control   1: Torque control	0	-	Changeable at any time	"A0-00" on page 443
A0-01	0xA001	Torque reference source in torque control mode (torque upper limit source)	0: A0-03   1: Al1   2: AI2   3: Al3   4: Pulse   5: Communication   6: MIN (AI1, AI2)   7: MAX (Al1, AI2)   Others: F connector	0	-	Changeable only at stop	"A0-01" on page 444
A0-03	0xA003	Torque reference in torque control mode	-200\% to $+200.0 \%$	150.0	\%	Changeable at any time	"A0-03" on page 444
A0-04	0xA004	Torque reference   filter time (upper   limit)	0 ms to 10000 ms	0	ms	Changeable at any time	"A0-04" on page   444


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A0-05	0xA005	Maximum forward frequency in torque control	0.00 Hz to F0-10	0.00	Hz	Changeable at any time	"A0-05" on page 445
A0-06	0xA006	Maximum reverse frequency in torque control	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"A0-06" on page 445
A0-07	0xA007	Torque rising filter time	0.00s to 650.00s	0.00	s	Changeable at any time	"A0-07" on page $445$
A0-08	0xA008	Torque falling filter time	0.00s to 650.00s	0.00	s	Changeable at any time	"A0-08" on page $445$
A0-10	0xA00A	Torque mode	0: MD500 torque mode   1: Vanguard torque mode	0	-	Changeable only at stop	"A0-10" on page 445
A0-11	0xA00B	Torque acceleration time gain	0: 100\%   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"A0-11" on page $446$
A0-12	OxA00C	Torque deceleration time gain	Same as A0-11	0	-	Changeable at any time	"A0-12" on page $446$
A0-13	OxA00D	Torque reference source	0 : Digital setting   1: Al1   2: Al2   3: AI3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"A0-13" on page $446$
A0-14	OxA00E	Torque reference	$-400 \%$ to $+400.0 \%$	0.0	\%	Changeable at any time	"A0-14" on page 447
A0-15	0xA00F	Speed limit source in torque control mode	0 : Digital setting   1: Speed reference channel	0	-	Changeable at any time	"A0-15" on page 447
A0-16	0xA010	Speed limit in torque control mode	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"A0-16" on page 447
A0-17	0xA011	Speed limit offset mode	0 : Bidirectional offset   1: Unidirectional offset   2: Compatible solution	0	-	Changeable at any time	"A0-17" on page 447


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A0-18	0xA012	Speed limit offset source	Same as A0-13	0	-	Changeable at any time	$\begin{aligned} & \text { "A0-18" on page } \\ & 448 \end{aligned}$
A0-19	0xA013	Speed limit offset	0.0\% to 300.0\%	5.0	\%	Changeable at any time	"A0-19" on page 448
A0-20	0xA014	Source of supplementary torque reference 1	Same as A0-13	0	-	Changeable at any time	"A0-20" on page $448$
A0-21	0xA015	Supplementary torque reference 1	$-400 \%$ to $+400.0 \%$	0.0	\%	Changeable at any time	"A0-21" on page 449
A0-22	0xA016	Source of supplementary torque reference 2	Same as A0-13	0	-	Changeable at any time	"A0-22" on page $449$
A0-23	0xA017	Supplementary torque reference 2 input enable	0: Disabled 1: Enabled 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	1	-	Changeable at any time	"A0-23" on page $449$
A0-24	0xA018	Torque filter time	0 ms to 10000 ms	0	ms	Changeable at any time	"A0-24" on page $450$
A0-25	0xA019	Torque acceleration time	0.000 s to 60.000 s	0.000	s	Changeable at any time	"A0-25" on page $450$
A0-26	0xA01A	Torque deceleration time	0.000 s to 60.000 s	0.000	s	Changeable at any time	"A0-26" on page $450$
A0-27	$0 \times 401 B$	Torque reference gain	$\begin{aligned} & \text { 0: } 100 \% \\ & \text { 1: Al1 } \\ & \text { 2: Al2 } \\ & \text { 3: Al3 } \end{aligned}$   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"A0-27" on page $451$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A1-00	0xA100	VDII function	Same as F4-04	0	-	Changeable only at stop	"A1-00" on page $451$
A1-01	0xA101	VDI2 function	Same as F4-04	0	-	Changeable only at stop	"A1-01" on page $451$
A1-02	0xA102	VDI3 function	Same as F4-04	0	-	Changeable only at stop	"A1-02" on page 451
A1-03	0xA103	VDI4 function	Same as F4-04	0	-	Changeable only at stop	"A1-03" on page 452
A1-04	0xA104	VDI5 function	Same as F4-04	0	-	Changeable only at stop	"A1-04" on page 452
A1-05	0xA105	VDI active state source	Tens: VDI1 active state source   0: VDO1   1: A1-06   2: DII   3: Communication setpoint (bit10 of F4-50)   4: Al1   5: Reserved   Tens: VDI2 active state source   0: VDO2   1: A1-06   2: DI2   3: Communication setpoint (bit11 of F4-50)   4: Al2   5: Reserved   To be continued	0	-	Changeable only at stop	"A1-05" on page 452
Contin ued	Contin ued	Continued	Continued   Hundreds: VDI3 active state source   0: VDO3   1: A1-06   2: DI3   3: Communication setpoint (bit12 of F4-50)   4: Al3   5: Reserved   Thousands: VDI4 active state source   0: VDO4   1: A1-06   2: DI4   3: Communication setpoint (bit13 of F4-50)   4-5: Reserved   Ten thousands: VDI5 active state source   0: VDO5   1: A1-06   2: DI5   3: Communication setpoint (bit14 of F4-50)   4-5: Reserved	Contin ued	Contin ued	Continued	Continued


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A1-06	0xA106	VDI state	Ones: VDII   0 : Inactive   1: Active   Tens: VDI2   0 : Inactive   1: Active   Hundreds: VDI3   0 : Inactive   1: Active   Thousands: VDI4   0 : Inactive   1: Active   Ten thousands: VDI5   0 : Inactive   1: Active	0	-	Changeable at any time	"A1-06" on page 453
A1-07	0xA107	AI1 (used as DI) function	Same as A1-00	0	-	Changeable only at stop	"A1-07" on page 454
A1-08	0xA108	AI2 (used as DI) function	Same as A1-00	0	-	Changeable only at stop	"A1-08" on page 454
A1-09	0xA109	AI3 (used as DI) function	Same as A1-00	0	-	Changeable only at stop	"A1-09" on page $454$
A1-10	0xA10A	Al (used as DI) active mode	Ones: Al1   0 : Active low   1: Active high   Tens: AI2   0 : Active low   1: Active high   Hundreds: Al3   0 : Active low   1: Active high	0	-	Changeable only at stop	"A1-10" on page 454
A1-11	0xA10B	VDO1 function	Same as F5-01	0	-	Changeable at any time	"A1-11" on page 455
A1-12	0xA10C	VDO2 function	Same as F5-01	0	-	Changeable at any time	"A1-12" on page 455
A1-13	0xA10D	VDO3 function	Same as F5-01	0	-	Changeable at any time	"A1-13" on page 455
A1-14	0xA10E	VD04 function	Same as F5-01	0	-	Changeable at any time	"A1-14" on page 455
A1-15	0xA10F	VD05 function	Same as F5-01	0	-	Changeable at any time	"A1-15" on page 456
A1-16	0xA110	VDO1 output delay (invalid)	0.0s to 3600.0 s	0.0	s	Changeable at any time	"A1-16" on page 456
A1-17	$0 \times A 111$	VDO2 output delay (invalid)	0.0s to 3600.0 s	0.0	s	Changeable at any time	"A1-17" on page $456$
A1-18	0xA112	VDO3 output delay (invalid)	0.0s to 3600.0 s	0.0	s	Changeable at any time	"A1-18" on page 456


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A1-19	$0 \times 1113$	VDO4 output delay (invalid)	0.0 s to 3600.0 s	0.0	s	Changeable at any time	"A1-19" on page $456$
A1-20	$0 \times A 114$	VDO5 output delay (invalid)	0.0 s to 3600.0 s	0.0	s	Changeable at any time	"A1-20" on page 457
A1-21	$0 \times A 115$	VDO active mode	Ones: VDO1   0 : Positive logic active   1: Negative logic active   Tens: VDO2   0: Positive logic active   1: Negative logic active   Hundreds: VDO3   0 : Positive logic active   1: Negative logic active   Thousands: VDO4   0: Positive logic active   1: Negative logic active   Ten thousands: VDO5   0 : Positive logic active   1: Negative logic active	0	-	Changeable at any time	"A1-21" on page 457
A1-22	0xA116	VDO1 output switch-on delay	0.0 s to 3600.0 s	0.0	s	Changeable at any time	"A1-22" on page 457
A1-23	$0 \times 1117$	VDO2 output switch-on delay	0.0 s to 3600.0 s	0.0	s	Changeable at any time	"A1-23" on page 457
A1-24	$0 \times A 118$	VDO3 output switch-on delay	0.0 s to 3600.0 s	0.0	s	Changeable at any time	"A1-24" on page 458
A1-25	0xA119	VDO4 output switch-on delay	0.0s to 3600.0s	0.0	s	Changeable at any time	"A1-25" on page 458
A1-26	0xA11A	VDO5 output switch-on delay	0.0 s to 3600.0 s	0.0	s	Changeable at any time	"A1-26" on page 458
A1-27	0xA11B	VDO1 output switch-off delay	0.0s to 3600.0s	0.0	s	Changeable at any time	"A1-27" on page 458
A1-28	0xA11C	VDO2 output switch-off delay	0.0 s to 3600.0 s	0.0	s	Changeable at any time	"A1-28" on page 458
A1-29	0xA11D	VDO3 output switch-off delay	0.0s to 3600.0s	0.0	s	Changeable at any time	"A1-29" on page 459
A1-30	0xA11E	VDO4 output switch-off delay	0.0 s to 3600.0 s	0.0	s	Changeable at any time	"A1-30" on page 459
A1-31	0xA11F	VDO5 output switch-off delay	0.0 s to 3600.0 s	0.0	s	Changeable at any time	"A1-31" on page 459
A1-32	0xA120	VD06 function	Same as F5-01	0	-	Changeable at any time	"A1-32" on page 459
A1-33	0xA121	VD07 function	Same as F5-01	0	-	Changeable at any time	"A1-33" on page 459


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
A1-34	0xA122	VDO8 function	Same as F5-01	0	-	Changeable at any time	"A1-34" on page $460$
A1-35	0xA123	VD09 function	Same as F5-01	0	-	Changeable at any time	"A1-35" on page $460$
A1-36	0xA124	VDO10 function	Same as F5-01	0	-	Changeable at any time	"A1-36" on page $460$
A1-37	0xA125	VDO11 function	Same as F5-01	0	-	Changeable at any time	"A1-37" on page 460
A1-38	0xA126	VD06-VDO10 active mode	Ones: VD06   0 : Positive logic active   1: Negative logic active   Tens: VDO7   0 : Positive logic active   1: Negative logic active   Hundreds: VDO8   0 : Positive logic active   1: Negative logic active   Thousands: VDO9   0: Positive logic active   1: Negative logic active   Ten thousands: VDO10   0 : Positive logic active   1: Negative logic active	0	-	Changeable at any time	"A1-38" on page $460$
A1-39	0xA127	VDO11 active mode	0 : Positive logic active   1: Negative logic active	0	-	Changeable at any time	"A1-39" on page 461
A1-40	0xA128	VDI6 function	Same as A1-00	0	-	Changeable only at stop	"A1-40" on page $461$
A1-41	0xA129	VDI6 hardware source	Ones: VDI6   0: VDO6   1: A1-42   2: DI6   3: Communication setpoint (bit15 of F4-50)   4: Reserved   5: Reserved	0	-	Changeable only at stop	"A1-41" on page $461$
A1-42	0xA12A	VDI6 state	Ones: VDI6   0 : Inactive   1: Active	0	-	Changeable at any time	"A1-42" on page 462


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A1-43	0xA12B	VDI1-VDI5 active mode	Ones: VDII   0 : Active low   1: Active high   Tens: VDI2   0 : Active low   1: Active high   Hundreds: VDI3   0 : Active low   1: Active high   Thousands: VDI4   0 : Active low   1: Active high   Ten thousands: VDI5   0 : Active low   1: Active high	0	-	Changeable only at stop	"A1-43" on page 462
A1-44	0xA12C	VDI6 active mode	Ones: VDI6   0 : Active low   1: Active high	0	-	Changeable only at stop	"A1-44" on page 462
A1-50	0xA132	DIO edge count reset	0 : Not reset   1: Counting module 1   2: Counting module 2   3: Counting module 3   4: Counting module 4   5: All counting modules	0	-	Changeable at any time	"A1-50" on page 463
A1-51	0xA133	DIO edge counting channel selection 1	0: None 1: DI1 2: DI2 3: DI3 4: DI4 5: DI5 6: DI6 7: DI7 8: DI8 9: DI9 10: DI10 11: VDI1 12: VDI2 13: VDI3 14: VDI4 To be continued	0	-	Changeable at any time	"A1-51" on page   463


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
Contin ued	Contin ued	Continued	Continued 15: VDI5 16: VDI6 17: Relay 1 (DO3) 18: FMR 19: DO1 20: Relay 2 (DO4) 21: DO2 22: VDO1 23: VDO2 24: VDO3 25: VDO4 26: VDO5 27: VDO6 28: VDO7 29: VDO8 30: VDO9 31: VDO10 32: VDO11	Contin ued	Contin ued	Continued	Continued
A1-52	0xA134	DIO edge counting channel selection 2	Same as A1-51	0	-	Changeable at any time	"A1-52" on page 464
A1-53	0xA135	DIO edge counting channel selection 3	Same as A1-51	0	-	Changeable at any time	"A1-53" on page 465
A1-54	0xA136	DIO edge counting channel selection 4	Same as A1-51	0	-	Changeable at any time	"A1-54" on page 465
A1-55	0xA137	DIO edge counting comparison value 1	0 to 65535	0	-	Changeable at any time	"A1-55" on page 465
A1-56	0xA138	DIO edge counting comparison value 2	0 to 65535	0	-	Changeable at any time	"A1-56" on page 465
A1-57	0xA139	DIO edge counting comparison value 3	0 to 65535	0	-	Changeable at any time	"A1-57" on page 465
A1-58	$0 \times A 13 \mathrm{~A}$	DIO edge counting comparison value 4	0 to 65535	0	-	Changeable at any time	"A1-58" on page 465
A1-59	0xA13B	DIO edge counting module count value 1	0 to 65535	0	-	Unchangea ble	"A1-59" on page $466$
A1-60	0xA13C	DIO edge counting module count value 2	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "A1-60" on page } \\ & 466 \end{aligned}$
A1-61	0xA13D	DIO edge counting module count value 3	0 to 65535	0	-	Unchangea ble	"A1-61" on page $466$
A1-62	0xA13E	DIO edge counting module count value 4	0 to 65535	0	-	Unchangea ble	"A1-62" on page $466$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A2-00	0xA200	Motor type	0: Common asynchronous motor   1: Variable frequency asynchronous motor   2: Permanent magnet synchronous motor	0	-	Changeable only at stop	"A2-00" on page 467
A2-01	0xA201	Rated motor power	0.1 kW to 1000.0 kW	3.7	kW	Changeable only at stop	"A2-01" on page 467
A2-02	0xA202	Rated motor voltage	1 V to 2000 V	380	V	Changeable only at stop	"A2-02" on page 467
A2-03	0xA203	Rated motor current	0.01 A to 655.35 A	9.00	A	Changeable only at stop	"A2-03" on page 467
A2-04	0xA204	Rated motor frequency	0.01 Hz to F0-10	50.00	Hz	Changeable only at stop	"A2-04" on page 467
A2-05	0xA205	Rated motor speed	1 RPM to 65535 RPM	1460	RPM	Changeable only at stop	"A2-05" on page $468$
A2-06	0xA206	Asynchronous motor stator resistance	$0.001 \Omega$ to $65.535 \Omega$	1.204	$\Omega$	Changeable only at stop	"A2-06" on page 468
A2-07	0xA207	Asynchronous   motor rotor   resistance	$0.001 \Omega$ to $65.535 \Omega$	0.908	$\Omega$	Changeable only at stop	"A2-07" on page $468$
A2-08	0xA208	Asynchronous motor leakage inductance	0.01 mH to 655.35 mH	5.28	mH	Changeable only at stop	"A2-08" on page $468$
A2-09	0xA209	Asynchronous motor mutual inductance	0.1 mH to 6553.5 mH	156.8	mH	Changeable only at stop	"A2-09" on page 468
A2-10	0xA20A	Asynchronous motor no-load current	0.01 A to A2-03	4.20	A	Changeable only at stop	"A2-10" on page $469$
A2-16	0xA210	Synchronous motor stator resistance	$0.001 \Omega$ to $65.535 \Omega$	1.204	$\Omega$	Changeable only at stop	"A2-16" on page $469$
A2-17	0xA211	Synchronous motor   D axis inductance	0.01 mH to 655.35 mH	5.28	mH	Changeable only at stop	"A2-17" on page $469$
A2-18	0xA212	Synchronous motor Q axis inductance	0.01 mH to 655.35 mH	5.28	mH	Changeable only at stop	"A2-18" on page $469$
A2-20	0xA214	Synchronous motor   back EMF   coefficient	0.0 V to 6553.5 V	300.0	V	Changeable only at stop	"A2-20" on page 469
A2-27	0xA21B	Encoder PPR	1 to 65535	1024	-	Changeable only at stop	"A2-27" on page 469
A2-28	0xA21C	Encoder type	0 : $A B Z$ incremental encoder   1: 23-bit encoder   2: Resolver   3: External input	0	-	Changeable only at stop	"A2-28" on page $470$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A2-29	0xA21D	Speed feedback PG card	0: Local PG card   1: Extension PG card	0	-	Changeable only at stop	$\begin{aligned} & \text { "A2-29" on page } \\ & 470 \end{aligned}$
A2-30	0xA21E	A/B phase sequence of encoder	0: Forward   1: Reverse	0	-	Changeable only at stop	"A2-30" on page $470$
A2-31	0xA21F	Encoder installation angle	$0.0^{\circ}$ to $359.9^{\circ}$	0.0	-	Changeable only at stop	"A2-31" on page $470$
A2-34	0xA222	Number of resolver pole pairs	1 to 65535	1	-	Changeable only at stop	"A2-34" on page   471
A2-36	0xA224	Speed feedback PG   wire breakage   detection time	0.0 s to 10.0 s	0.0	s	Changeable only at stop	"A2-36" on page 471
A2-37	0xA225	Auto-tuning	0: No operation   1: Static auto-tuning on partial parameters of asynchronous motor   2: Dynamic auto-tuning on asynchronous motor   3: Static auto-tuning on all parameters of asynchronous motor   4: Inertia auto-tuning   5: Deadzone auto-tuning   11: With-load auto-tuning on synchronous motor (excluding back EMF)   12: No-load dynamic auto-tuning on synchronous motor   13: Static auto-tuning on all parameters of synchronous motor (excluding zero point angle)	0	-	Changeable only at stop	"A2-37" on page   471
A2-38	0xA226	Speed loop   proportional gain 1	1 to 100	30	-	Changeable at any time	"A2-38" on page   471
A2-39	0xA227	Speed loop integral time 1	0.01s to 10.00 s	0.50	s	Changeable at any time	"A2-39" on page $472$
A2-40	0xA228	Switchover frequency 1	0.00 Hz to A2-43	5.00	Hz	Changeable at any time	"A2-40" on page   472
A2-41	0xA229	Speed loop   proportional gain 2	1 to 100	20	-	Changeable at any time	"A2-41" on page $472$
A2-42	0xA22A	Speed loop integral time 2	0.01s to 10.00 s	1.00	s	Changeable at any time	"A2-42" on page $472$
A2-43	0xA22B	Switchover frequency 2	A2-40 to F0-10	10.00	Hz	Changeable at any time	"A2-43" on page   472
A2-44	0xA22C	Vector control slip gain	50\% to 200\%	100	\%	Changeable at any time	"A2-44" on page $472$
A2-45	0xA22D	Speed feedback   filter time in SVC   mode	0.000 s to 0.100s	0.015	s	Changeable at any time	"A2-45" on page $473$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A2-47	0xA22F	Torque upper limit source in speed control mode (motoring)	0: Digital setting (F2-10)   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: MIN (AI1, AI2)   7: MAX (AI1, AI2)   Others: F connector	0	-	Changeable at any time	"A2-47" on page $473$
A2-48	0xA230	Torque upper limit in speed control mode	0.0\% to 200.0\%	150.0	\%	Changeable at any time	"A2-48" on page 473
A2-49	0xA231	Torque upper limit source in speed control mode (generating)	0: Digital setting (F2-10)   1: Al1   2: Al2   3: Al3   4: Pulse reference (DI5)   5: Communication   6: MIN (AI1, AI2)   7: MAX (AI1, AI2)   8: Digital setting (F2-12)   Others: F connector	0	-	Changeable at any time	"A2-49" on page 473
A2-50	0xA232	Torque upper limit in speed control mode (generating)	0.0\% to 200.0\%	150.0	\%	Changeable at any time	"A2-50" on page   474
A2-56	0xA238	Field weakening mode	0 : No field weakening   1: Auto adjustment   2: Calculation+Auto adjustment	1	-	Changeable only at stop	"A2-56" on page   474
A2-57	0xA239	Field weakening gain	1 to 50	5	-	Changeable at any time	"A2-57" on page 475
A2-60	0xA23C	Generating power limiting	0: Disabled   1: Enabled in the whole process   2: Enabled at constant speed   3: Enabled during deceleration	0	-	Changeable at any time	"A2-60" on page 475
A2-61	0xA23D	Generating power upper limit	0.0\% to 200.0\%	20.0	\%	Changeable at any time	"A2-61" on page $475$
A2-62	0xA23E	Motor 2 control mode	$\begin{aligned} & \text { 0: SVC } \\ & \text { 1: FVC } \\ & \text { 2: V/f } \end{aligned}$	2	-	Changeable only at stop	"A2-62" on page 475
A2-64	0xA240	Torque boost	0.0\% to 30.0\%	3.0	\%	Changeable at any time	"A2-64" on page 475
A2-66	0xA242	V/f oscillation suppression gain	0 to 100	40	-	Changeable at any time	"A2-66" on page $476$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A2-67	0xA243	Initial position angle detection current of synchronous motor	50 to 180	80	-	Changeable only at stop	"A2-67" on page $476$
A2-68	0xA244	Initial position angle detection of synchronous motor	0 : Detected upon running   1: Not detected   2: Detected upon initial running after power-on	0	-	Changeable at any time	"A2-68" on page $476$
A2-70	0xA246	Salient pole rate adjustment gain of synchronous motor	0.20 to 3.00	1.00	-	Changeable at any time	"A2-70" on page $476$
A2-71	0xA247	Maximum torque-to-current ratio control of synchronous motor	0: Disabled   1: Enabled	1	-	Changeable at any time	"A2-71" on page 477
A2-75	$0 \times A 24 B$	Z signal correction	0: Disabled   1: Enabled	1	-	Changeable at any time	"A2-75" on page   477
A2-80	0xA250	Low speed carrier frequency	0.8 kHz to $\mathrm{FO}-15$	2.0	kHz	Changeable at any time	"A2-80" on page 477
A2-86	0xA256	Position lock	0 to 1	0	-	Changeable at any time	"A2-86" on page $477$
A2-87	0xA257	Switchover frequency	0.00 Hz to A2-40	0.30	Hz	Changeable at any time	"A2-87" on page $477$
A2-88	0xA258	Position lock speed loop proportional gain	1 to 100	10	-	Changeable at any time	"A2-88" on page $478$
A2-89	0xA259	Position lock speed loop integral time	0.01s to 10.00 s	0.50	s	Changeable at any time	"A2-89" on page $478$
A2-92	0xA25C	Auto-tuning free mode	0 : Disabled   1: Auto-tuning upon initial running after poweron   2: Auto-tuning upon running	0	-	Changeable at any time	"A2-92" on page $478$
A2-94	0xA25E	Initial position compensation angle	0.0 to 359.9	0.0	-	Changeable at any time	"A2-94" on page $478$
A3-00	0xA300	V/f curve	0: Straight-line V/f curve   1: Multi-point V/f curve   2: Reserved   3: Reserved   4: Reserved   5: Reserved   6: Reserved   7: Reserved   8: Reserved   9: Reserved   10: $\mathrm{V} / \mathrm{f}$ complete separation mode   11: V/f half separation mode	0	-	Changeable only at stop	"A3-00" on page $479$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A3-01	0xA301	Torque boost	0.0\% to 30.0\%	3.0	\%	Changeable at any time	"A3-01" on page $479$
A3-02	0xA302	Cut-off frequency of torque boost	0.00 Hz to F0-10	50.00	Hz	Changeable only at stop	"A3-02" on page $479$
A3-03	0xA303	Multi-point V/f frequency 1	0.00 Hz to A3-05	0.00	Hz	Changeable only at stop	"A3-03" on page $479$
A3-04	0xA304	Multi-point V/f voltage 1	0.0\% to +100.0\%	0.0	\%	Changeable only at stop	"A3-04" on page $480$
A3-05	0xA305	Multi-point V/f frequency 2	A3-03 to A3-07	0.00	Hz	Changeable only at stop	"A3-05" on page $480$
A3-06	0xA306	Multi-point V/f voltage 2	0.0\% to +100.0\%	0.0	\%	Changeable only at stop	"A3-06" on page $480$
A3-07	0xA307	Multi-point V/f frequency 3	A3-05 to A2-04	0.00	Hz	Changeable only at stop	"A3-07" on page $480$
A3-08	0xA308	Multi-point V/f voltage 3	0.0\% to +100.0\%	0.0	\%	Changeable only at stop	"A3-08" on page $480$
A3-09	0xA309	V/fslip compensation gain	0.0 to 200.0	0.0	-	Changeable at any time	"A3-09" on page 481
A3-10	0xA30A	V/f overexcitation gain	0 to 200	64	-	Changeable at any time	"A3-10" on page $481$
A3-11	0xA30B	V/f oscillation suppression gain	0 to 100	40	-	Changeable at any time	"A3-11" on page 481
A3-12	0xA30C	V/f oscillation suppression	0: Disabled   1: Enabled	1	-	Changeable at any time	"A3-12" on page 481
A3-13	0xA30D	Voltage source for   V/f separation	0 : Digital setting (A3-14)   1: AI1   2: Al2   3: Al3   4: Pulse reference (DI5)   5: Multi-reference   6: Simple PLC   7: PID   8: Communication   Others: F connector	0	-	Changeable at any time	"A3-13" on page 481
A3-14	0xA30E	V/f separation voltage	0 V to A2-02	0	V	Changeable at any time	"A3-14" on page $483$
A3-15	0xA30F	Voltage rise time of   V/f separation	0.0s to 1000.0 s	0.0	s	Changeable at any time	"A3-15" on page 483
A3-16	0xA310	Voltage fall time of V/f separation	0.0 s to 1000.0 s	0.0	s	Changeable at any time	"A3-16" on page $483$


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
A3-17	0xA311	Stop mode for V/f separation	0 : Frequency and voltage decline to 0 independently   1: Frequency declines to 0 after voltage declines to 0   2: Coast to stop (new)	0	-	Changeable at any time	"A3-17" on page $483$
A3-18	0xA312	Overcurrent stall suppression action current	50\% to 200\%	150	\%	Changeable only at stop	"A3-18" on page 483
A3-19	0xA313	Overcurrent stall suppression	0: Disabled   1: Enabled	1	-	Changeable only at stop	"A3-19" on page 484
A3-20	0xA314	Overcurrent stall suppression gain	1 to 100	20	-	Changeable at any time	"A3-20" on page 484
A3-21	0xA315	Compensation coefficient of speed multiplying overcurrent stall suppression action current	50\% to 200\%	100	\%	Changeable only at stop	"A3-21" on page 484
A3-22	0xA316	Overvoltage stall suppression action voltage	330.0 V to 800.0 V	770.0	V	Changeable at any time	"A3-22" on page 484
A3-23	0xA317	Overvoltage stall suppression	0: Disabled   1: Enabled	1	-	Changeable only at stop	"A3-23" on page 484
A3-24	0xA318	Overvoltage stall suppression frequency gain	1 to 100	30	-	Changeable at any time	"A3-24" on page 485
A3-25	0xA319	Overvoltage stall suppression voltage gain	1 to 100	30	-	Changeable at any time	"A3-25" on page 485
A3-26	0xA31A	Frequency rise threshold for overvoltage stall suppression	0 Hz to 50 Hz	5	Hz	Changeable only at stop	"A3-26" on page 485
A3-27	0xA31B	Slip compensation filter time	0.1 s to 10.0 s	0.5	s	Changeable only at stop	"A3-27" on page 485
A3-28	0xA31C	Multi-point curve source	0: 3-point curve   1: Multi-point curve module A   2: Multi-point curve module B	0	-	Changeable only at stop	"A3-28" on page 485
A3-33	0xA321	Online torque compensation gain	80 to 150	100	-	Changeable only at stop	"A3-33" on page 486
A3-34	0xA322	ImaxKi coefficient	10\% to $1000 \%$	100	\%	Changeable only at stop	"A3-34" on page 486


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A3-35	0xA323	Overcurrent   suppression   threshold (relative   to rated motor   current)	80\% to 300\%	200	\%	Changeable only at stop	"A3-35" on page $486$
A3-36	0xA324	Frequency threshold for overcurrent suppression field weakening	100\% to 500\%	100	\%	Changeable only at stop	"A3-36" on page $486$
A3-37	0xA325	IT filter time	10 ms to 1000 ms	100	ms	Changeable only at stop	"A3-37" on page 487
A3-38	0xA326	Slip compensation mode	0: Disabled   1: Slip compensation without PG   2: Slip compensation with PG	1	-	Changeable only at stop	"A3-38" on page 487
A3-39	0xA327	VdcMaxCtrl allowed runtime	0.0 s to 100.0 s	0.0	s	Changeable only at stop	"A3-39" on page 487
A3-40	0xA328	Upper limit of $\mathrm{V} / \mathrm{f}$ separation voltage	50.0\% to 200.0\%	100.0	\%	Changeable only at stop	"A3-40" on page 487
A3-41	0xA329	RFG time of $\mathrm{V} / \mathrm{f}$ separation frequency	0 : RFG time forced to 0   1: Preset RFG time	0	-	Changeable only at stop	"A3-41" on page 487
A3-42	0xA32A	Cut-off frequency of V/f oscillation suppression filter	1.0 Hz to 50.0 Hz	8.0	Hz	Changeable at any time	"A3-42" on page $488$
A3-43	0xA32B	Cut-off frequency threshold for V/f oscillation suppression	10 Hz to 3000 Hz	200	Hz	Changeable at any time	"A3-43" on page 488
A3-44	0xA32C	VdcMaxCtrl feedforward coefficient	0\% to 500\%	0	\%	Changeable at any time	"A3-44" on page $488$
A3-50	0xA332	PMVVC low-speed IF	0: Disabled   1: Enabled	1	-	Changeable only at stop	"A3-50" on page $488$
A3-51	0xA333	PMVVC low-speed IF current	30 to 250	100	-	Changeable only at stop	"A3-51" on page $488$
A3-52	0xA334	PMVVC low-speed IF speed switching threshold	2.0\% to $100.0 \%$	10.0	\%	Changeable only at stop	"A3-52" on page $489$
A3-53	0xA335	PMVVC oscillation suppression gain coefficient	0 to 500	100	-	Changeable at any time	"A3-53" on page $489$
A3-54	0xA336	PMVVC filter time coefficient	0 to 500	100	-	Changeable at any time	"A3-54" on page $489$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A3-55	0xA337	PMVVC energy conservation control mode	0: Fixed straight-line V/f curve   1: Fixed $30 \%$ reactive current   2: MTPA control	2	-	Changeable only at stop	"A3-55" on page $489$
A4-00	0xA400	Control channel	0 : Control channel 1   1: Control channel 2	0	-	Changeable at any time	"A4-00" on page $490$
A4-01	0xA401	Custom OFF1 source	0: Inactive 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"A4-01" on page $490$
A4-02	0xA402	Custom OFF2 source 1	0: Active 1: Inactive 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	1	-	Changeable at any time	"A4-02" on page $490$
A4-03	0xA403	Custom OFF3 source 1	Same as A4-02	1	-	Changeable at any time	"A4-03" on page 491


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
A4-04	0xA404	Custom running permission source	0: Not permitted 1: Permitted 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	1	-	Changeable at any time	"A4-04" on page $491$
A4-05	0xA405	Custom fault reset source 1	0: Inactive 1: Active 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"A4-05" on page 492
A4-06	0xA406	Custom JOG1 source	Same as A4-01	0	-	Changeable at any time	"A4-06" on page $493$
A4-07	0xA407	Custom JOG2 source	Same as A4-01	0	-	Changeable at any time	"A4-07" on page $493$
A4-08	0xA408	Custom speed negation source	Same as A4-05	0	-	Changeable at any time	"A4-08" on page $493$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A4-10	$0 \times \mathrm{A} 40 \mathrm{~A}$	OFF2 source 2	0: Active 1: Inactive 2: Terminal function input 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16	1	-	Changeable at any time	"A4-10" on page $493$
A4-11	$0 \times A 40 B$	OFF2 source 3	Same as A4-02	1	-	Changeable at any time	"A4-11" on page $494$
A4-12	0xA40C	OFF3 source 2	Same as A4-10	1	-	Changeable at any time	"A4-12" on page 494
A4-13	0xA40D	OFF3 source 3	Same as A4-02	1	-	Changeable at any time	"A4-13" on page   494
A4-14	0xA40E	Fault reset source 2	Same as A4-10	0	-	Changeable at any time	"A4-14" on page 495
A4-15	0xA40F	Fault reset source 3	0: Inactive 1: Active 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"A4-15" on page 495


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A4-16	0xA410	RFG prohibition source	Same as A4-02	1	-	Changeable at any time	"A4-16" on page $496$
A4-17	0xA411	RFG pause source	Same as A4-10	1	-	Changeable at any time	"A4-17" on page $496$
A4-18	0xA412	Source of setting RFG reference to 0	Same as A4-10	1	-	Changeable at any time	"A4-18" on page $496$
A4-21	0xA415	Custom OFF1 source	Same as A4-01	0	-	Changeable at any time	"A4-21" on page $496$
A4-22	0xA416	Custom OFF2 source 1	Same as A4-02	1	-	Changeable at any time	"A4-22" on page $496$
A4-23	0xA417	Custom OFF3 source 1	Same as A4-02	1	-	Changeable at any time	"A4-23" on page 497
A4-24	0xA418	Custom running permission source	A4-04	1	-	Changeable at any time	"A4-24" on page 497
A4-25	0xA419	Custom fault reset source 1	Same as A4-01	0	-	Changeable at any time	"A4-25" on page 497
A4-26	0xA41A	Custom JOG1 source	Same as A4-01	0	-	Changeable at any time	"A4-26" on page 497
A4-27	0xA41B	Custom JOG2 source	Same as A4-01	0	-	Changeable at any time	"A4-27" on page 497
A4-28	0xA41C	Custom speed negation source	0: Inactive 1: Active 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"A4-28" on page $498$
A4-30	0xA41E	OFF2 source 2	Same as A4-10	1	-	Changeable at any time	"A4-30" on page 498
A4-31	0xA41F	OFF2 source 3	Same as A4-02	1	-	Changeable at any time	"A4-31" on page 498
A4-32	0xA420	OFF3 source 2	Same as A4-10	1	-	Changeable at any time	"A4-32" on page 499


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A4-33	0xA421	OFF3 source 3	Same as A4-02	1	-	Changeable at any time	"A4-33" on page $499$
A4-34	0xA422	Fault reset source 2	Same as A4-10	0	-	Changeable at any time	"A4-34" on page $499$
A4-35	0xA423	Fault reset source 3	A4-15	0	-	Changeable at any time	"A4-35" on page $499$
A4-36	0xA424	RFG prohibition source	Same as A4-02	1	-	Changeable at any time	"A4-36" on page $500$
A4-37	0xA425	RFG pause source	Same as A4-10	1	-	Changeable at any time	"A4-37" on page   500
A4-38	0xA426	Source of setting RFG reference to 0	Same as A4-10	1	-	Changeable at any time	"A4-38" on page $500$
A4-41	0xA429	Terminal start/stop module A/B	0 : Module A   1: Module B	0	-	Changeable at any time	"A4-41" on page $500$
A4-43	0xA42B	Input 1 of terminal start/stop module A	0: Active 2: Terminal function input 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16	2	-	Changeable at any time	"A4-43" on page $500$
A4-44	0xA42C	Input 2 of terminal start/stop command A	A4-43	2	-	Changeable at any time	"A4-44" on page   501
A4-45	0xA42D	Input 3 of terminal start/stop command A	A4-43	2	-	Changeable at any time	"A4-45" on page   501


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A4-46	0xA42E	Running permission source of terminal start/stop module A	0: Inactive 1: Active 2: Terminal function input 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16	1	-	Changeable at any time	"A4-46" on page   501
A4-47	0xA42F	Fault reset source of terminal start/stop module A	A4-46	0	-	Changeable at any time	"A4-47" on page   502
A4-48	0xA430	JOG1 source of terminal start/stop module A	A4-43	2	-	Changeable at any time	"A4-48" on page $502$
A4-49	0xA431	JOG2 source of terminal start/stop module A	A4-43	2	-	Changeable at any time	"A4-49" on page $502$
A4-50	0xA432	Control mode of terminal start/stop module B	0 : Two-wire mode 1   1: Two-wire mode 2   2: Three-wire mode 1   3: Three-wire mode 2	0	-	Changeable at any time	"A4-50" on page $503$
A4-51	0xA433	Input 1 of terminal start/stop module B	A4-43	2	-	Changeable at any time	"A4-51" on page $503$
A4-52	0xA434	Input 2 of terminal start/stop command B	A4-43	2	-	Changeable at any time	"A4-52" on page 503
A4-53	0xA435	Input 3 of terminal start/stop command B	A4-43	2	-	Changeable at any time	"A4-53" on page $503$
A4-54	0xA436	Running permission source of terminal start/stop module B	A4-46	1	-	Changeable at any time	"A4-54" on page $503$
A4-55	0xA437	Fault reset source of terminal start/stop module B	A4-46	2	-	Changeable at any time	"A4-55" on page   504


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A4-56	0xA438	JOG1 source of terminal start/stop module B	A4-43	2	-	Changeable at any time	"A4-56" on page   504
A4-57	0xA439	JOG2 source of terminal start/stop module B	A4-43	2	-	Changeable at any time	"A4-57" on page   504
A4-58	0xA43A	Reserved	0 to 65535	0	-	Changeable at any time	"A4-58" on page   504
A4-59	0xA43B	Reserved	0 to 65535	0	-	Changeable at any time	"A4-59" on page   504
A4-60	0xA43C	Reserved	0 to 65535	0	-	Changeable at any time	"A4-60" on page $505$
A4-61	0xA43D	Source of supplementary speed in speed control	0: 0   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"A4-61" on page $505$
A4-62	0xA43E	JOG1 speed source	0 : Digital setting   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"A4-62" on page $505$
A4-65	0xA441	Ramp rounding mode	0 : Incontinuous smoothing   1: Continuous smoothing	0	-	Changeable at any time	"A4-65" on page $506$
A4-66	0xA442	Jog ramp source	0 : Normal running ramp time   1: Jog ramp time	1	-	Changeable at any time	"A4-66" on page $506$
A4-67	0xA443	Proportion of starting arc in acceleration	0.0\% to $+100.0 \%$	30.0	\%	Changeable only at stop	"A4-67" on page $506$
A4-68	0xA444	Proportion of end arc in acceleration	0.0\% to +100.0\%	30.0	\%	Changeable only at stop	"A4-68" on page $506$
A4-69	0xA445	Proportion of starting arc in deceleration	0.0\% to +100.0\%	30.0	\%	Changeable only at stop	"A4-69" on page $507$
A4-70	0xA446	Proportion of end arc in deceleration	0.0\% to $+100.0 \%$	30.0	\%	Changeable only at stop	"A4-70" on page 507


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A4-71	0xA447	Ramp output forcing enable	0: Disabled 1: Enabled 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"A4-71" on page 507
A4-72	0xA448	Ramp output force value	0: $100 \%$ 1: Al1 2: Al2 3: Al3 4: Pulse reference 5: Communication 6: Multi-reference 7: Motor-driven potentiometer 8: PID Others: F connector	0	-	Changeable at any time	"A4-72" on page $508$
A4-73	0xA449	Ramp input ramp shift enable	Same as A4-71	0	-	Changeable at any time	"A4-73" on page $508$
A4-74	0xA44A	Ramp input update interval	2 ms to 10000 ms	50	ms	Changeable at any time	"A4-74" on page $508$
A4-75	0xA44B	Ramp tracking enable	0 : Disabled   1: Enabled	0	-	Changeable at any time	"A4-75" on page $508$
A4-76	0xA44C	Ramp tracking error	0.0\% to $+100.0 \%$	10.0	\%	Changeable at any time	"A4-76" on page $509$
A4-77	0xA44D	Frequency acceleration time in torque control	0.0 s to 6500.0 s	0.0	s	Changeable at any time	"A4-77" on page $509$
A4-78	0xA44E	Frequency deceleration time in torque control	0.0s to 6500.0s	0.0	S	Changeable at any time	"A4-78" on page $509$
A4-79	0xA44F	Forced use of the fourth set of time in torque control	0 to 1	1	-	Changeable at any time	"A4-79" on page $509$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A4-80	0xA450	Speed limited running mode	0 : Run with a maximum speed limit   1: Run at a specified safe speed	1	-	Changeable at any time	"A4-80" on page $509$
A4-81	0xA451	Forward speed limit in restricted running mode	0.0\% to +100.0\%	100.0	\%	Changeable at any time	"A4-81" on page $510$
A4-82	0xA452	Reverse speed limit in restricted running mode	0.0\% to +100.0\%	100.0	\%	Changeable at any time	"A4-82" on page $510$
A4-83	0xA453	Maximum motoring power in restricted running mode	0.0\% to 400.0\%	50.0	\%	Changeable at any time	"A4-83" on page $510$
A4-84	0xA454	Maximum regenerative power in restricted running mode	0.0\% to 400.0\%	50.0	\%	Changeable at any time	"A4-84" on page $510$
A4-85	0xA455	Forward torque limit in restricted running mode	0.0\% to 400.0\%	50.0	\%	Changeable at any time	"A4-85" on page $510$
A4-86	0xA456	Reverse torque limit in restricted running mode	0.0\% to 400.0\%	50.0	\%	Changeable at any time	"A4-86" on page   511
A4-87	0xA457	Maximum allowable current in restricted running mode	0.0\% to 400.0\%	90.0	\%	Changeable at any time	"A4-87" on page   511
A5-00	0xA500	DPWM switchover frequency upper limit	5.00 Hz to FO-10	15.00	Hz	Changeable at any time	"A5-00" on page   511
A5-01	0xA501	PWM modulation mode	0: Asynchronous modulation   1: Synchronous modulation	0	-	Changeable at any time	"A5-01" on page   511
A5-02	0xA502	Deadzone compensation	0: Disabled   1: Enabled (compensation mode 1)	1	-	Changeable at any time	"A5-02" on page $512$
A5-03	0xA503	Random PWM depth	0 to 10	0	-	Changeable at any time	"A5-03" on page $512$
A5-04	0xA504	Pulse-by-pulse current limit protection	0: Disabled   1: Enabled	0	-	Changeable at any time	"A5-04" on page   512
A5-05	0xA505	Voltage overmodulation coefficient	100\% to $110 \%$	105	\%	Changeable at any time	"A5-05" on page   512
A5-06	0xA506	Undervoltage threshold	140.0 V to 420.0 V	350.0	V	Changeable at any time	"A5-06" on page   513
A5-08	0xA508	Low speed carrier frequency upper limit	0.0 kHz to 8.0 kHz	0.0	kHz	Changeable at any time	"A5-08" on page $513$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A5-09	0xA509	Overvoltage threshold	330.0 V to 820.0 V	820.0	V	Changeable at any time	"A5-09" on page $513$
A5-10	0xA50A	Energy conservation control	0: Disabled   1: Enabled	0	-	Changeable at any time	"A5-10" on page 513
A6-00	0xA600	Minimum input of AI curve 4	-10 V to A6-02	0.00	V	Changeable at any time	"A6-00" on page $513$
A6-01	0xA601	Percentage corresponding to minimum input of Al curve 4	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"A6-01" on page   514
A6-02	0xA602	Inflection 1 input of Al curve 4	A6-00 to A6-04	3.00	V	Changeable at any time	"A6-02" on page   514
A6-03	0xA603	Percentage corresponding to inflection 1 input of Al curve 4	$-100 \%$ to $+100.0 \%$	30.0	\%	Changeable at any time	"A6-03" on page   514
A6-04	0xA604	Inflection 2 input of Al curve 4	A6-02 to A6-06	6.00	V	Changeable at any time	"A6-04" on page   514
A6-05	0xA605	Percentage corresponding to inflection 2 input of Al curve 4	$-100 \%$ to $+100.0 \%$	60.0	\%	Changeable at any time	"A6-05" on page   514
A6-06	0xA606	Maximum input of   Al curve 4	A6-04 to 10.00 V	10.00	V	Changeable at any time	"A6-06" on page 515
A6-07	0xA607	Percentage corresponding to maximum input of Al curve 4	$-100 \%$ to $+100.0 \%$	100.0	\%	Changeable at any time	"A6-07" on page $515$
A6-08	0xA608	Minimum input of AI curve 5	-10 V to A6-10	-10	V	Changeable at any time	"A6-08" on page 515
A6-09	0xA609	Percentage corresponding to minimum input of Al curve 5	$-100 \%$ to $+100.0 \%$	-100	\%	Changeable at any time	"A6-09" on page $515$
A6-10	0xA60A	Inflection 1 input of Al curve 5	A6-08 to A6-12	-3	V	Changeable at any time	"A6-10" on page $515$
A6-11	0xA60B	Percentage corresponding to inflection 1 input of Al curve 5	$-100 \%$ to $+100.0 \%$	-30	\%	Changeable at any time	"A6-11" on page 516
A6-12	0xA60C	Inflection 2 input of Al curve 5	A6-10 to A6-14	3.00	V	Changeable at any time	$\begin{aligned} & \text { "A6-12" on page } \\ & 516 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A6-13	0xA60D	Percentage corresponding to inflection 2 input of Al curve 5	$-100 \%$ to $+100.0 \%$	30.0	\%	Changeable at any time	"A6-13" on page 516
A6-14	0xA60E	Maximum input of Al curve 5	A6-12 to 10.00	10.00	V	Changeable at any time	"A6-14" on page $516$
A6-15	0xA60F	Percentage corresponding to maximum input of Al curve 5	$-100 \%$ to $+100.0 \%$	100.0	\%	Changeable at any time	"A6-15" on page $516$
A6-24	0xA618	All skip point	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"A6-24" on page   517
A6-25	0xA619	Al1 skip amplitude	0.0\% to $+100.0 \%$	0.1	\%	Changeable at any time	"A6-25" on page   517
A6-26	$0 \times A 61 \mathrm{~A}$	Al2 skip point	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"A6-26" on page   517
A6-27	0xA61B	Al2 skip amplitude	0.0\% to +100.0\%	0.1	\%	Changeable at any time	"A6-27" on page   517
A6-28	0xA61C	Al3 skip point	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"A6-28" on page   517
A6-29	0xA61D	Al3 skip amplitude	0.0\% to $+100.0 \%$	0.1	\%	Changeable at any time	"A6-29" on page 517
A6-30	0xA61E	Al automatic curve calibration	Ones: Point selection (for setting)   0 : Disabled   1: Point 1   2: Point 2   3: Point 3   4: Point 4   Tens: AI channel selection (for setting)   0 : Disabled   1: Al1   2: Al2   3: Al3   Hundreds: Enable control (for setting)   0: Disabled   1: Enabled   Thousands: X-point curve (for display)   0 : The function is disabled or the channel is not   selected.   2: 2-point curve   4: 4-point curve   Ten thousands: Reserved	0	-	Changeable at any time	"A6-30" on page   518
A6-31	0xA61F	Al1 input enable	0 : Disabled   1: Enabled   Others: B connector	1	-	Changeable at any time	"A6-31" on page   518


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
A6-32	0xA620	Al2 input enable	0 : Disabled   1: Enabled   Others: B connector	1	-	Changeable at any time	"A6-32" on page $519$
A6-33	0xA621	Al3 input enable	0 : Disabled   1: Enabled   Others: B connector	1	-	Changeable at any time	"A6-33" on page $519$
A6-34	0xA622	Al polarity	Ones: Al1   0: Normal   1: Absolute value   2: Negated value   3: Negated absolute value   Tens: AI2   0 : Normal   1: Absolute value   2: Negated value   3: Negated absolute value   Hundreds: Al3   0: Normal   1: Absolute value   2: Negated value   3: Negated absolute value	0	-	Changeable at any time	"A6-34" on page $519$
A6-35	0xA623	Al hardware source	Ones: All source   1: Hardware sampling   1: Force setpoint   Tens: AI2 source   1: Hardware sampling   1: Force setpoint   Hundreds: Al3 source   1: Hardware sampling   1: Force setpoint	0	-	Changeable only at stop	"A6-35" on page $519$
A6-36	0xA624	Al1 force setpoint	-10 V to +10.00 V	0.00	V	Changeable at any time	"A6-36" on page $520$
A6-37	0xA625	Al2 force setpoint	-10 V to +10.00 V	0.00	V	Changeable at any time	"A6-37" on page $520$
A6-38	0xA626	Al3 force setpoint	-10 V to +10.00 V	0.00	V	Changeable at any time	"A6-38" on page $520$
A6-39	0xA627	High level for AI used as DI	5.5 V to 9.0 V	7.0	V	Changeable at any time	"A6-39" on page $520$
A6-40	0xA628	Low level for AI used as DI	1.0 V to 4.5 V	3.0	V	Changeable at any time	"A6-40" on page $521$
A6-41	0xA629	All gain	-10 to +10.00	1.00	-	Changeable at any time	"A6-41" on page $521$
A6-42	0xA62A	All offset	-10 V to +10.00 V	0.00	V	Changeable at any time	"A6-42" on page   521
A6-43	0xA62B	Al1 denoising threshold	0.0\% to $+100.0 \%$	0.5	\%	Changeable at any time	"A6-43" on page $521$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A6-44	0xA62C	Al1 deadzone width	0.0\% to $+100.0 \%$	0.5	\%	Changeable at any time	"A6-44" on page   521
A6-45	0xA62D	Al1 input upper limit	A6-46 to 10.00 V	8.00	V	Changeable at any time	"A6-45" on page   522
A6-46	0xA62E	Al1 input lower limit	0.00 V to A6-45	2.00	V	Changeable at any time	"A6-46" on page $522$
A6-47	0xA62F	Al2 gain	-10 to +10.00	1.00	-	Changeable at any time	"A6-47" on page $522$
A6-48	0xA630	Al2 offset	-10 V to +10.00 V	0.00	V	Changeable at any time	"A6-48" on page $522$
A6-49	0xA631	Al2 denoising threshold	0.0\% to $+100.0 \%$	0.5	\%	Changeable at any time	"A6-49" on page 522
A6-50	0xA632	Al2 deadzone width	0.0\% to $+100.0 \%$	0.5	\%	Changeable at any time	"A6-50" on page $523$
A6-51	0xA633	Al2 input upper limit	A6-52 to 10.00 V	8.00	V	Changeable at any time	"A6-51" on page $523$
A6-52	0xA634	Al2 input lower limit	0.00 V to A6-51	2.00	V	Changeable at any time	"A6-52" on page $523$
A6-53	0xA635	Al3 gain	-10 to +10.00	1.00	-	Changeable at any time	"A6-53" on page $523$
A6-54	0xA636	Al3 offset	-10 V to +10.00 V	0.00	V	Changeable at any time	"A6-54" on page $523$
A6-55	0xA637	Al3 denoising threshold	0.0\% to +100.0\%	0.5	\%	Changeable at any time	"A6-55" on page $523$
A6-56	0xA638	Al3 deadzone width	0.0\% to $+100.0 \%$	0.5	\%	Changeable at any time	"A6-56" on page $524$
A6-57	0xA639	Al3 input upper limit	A6-58 to 10.00 V	8.00	V	Changeable at any time	"A6-57" on page $524$
A6-58	0xA63A	Al3 input lower limit	0.00 V to A6-57	2.00	V	Changeable at any time	"A6-58" on page $524$
A6-59	0xA63B	Al input protection time	0.00 s to 1.00 s	0.01	s	Changeable at any time	"A6-59" on page $524$
A8-00	0xA800	Master/Slave control function	0 : Disabled   1: Enabled	0	-	Changeable at any time	"A8-00" on page $525$
A8-01	0xA801	Master/Slave selection	0 : Master 1: Slave	0	-	Changeable at any time	"A8-01" on page $525$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A8-02	0xA802	Slave following master's command	Ones: Whether the slave follows the operation command of the master   0 : No   1: Yes   Tens: Whether the slave fault information is transmitted   0 : No   1: Yes   Hundreds: Whether the master reports a fault   (ERR-16) upon disconnection of the slave   0 : No   1: Yes	11	-	Changeable only at stop	"A8-02" on page $525$
A8-03	0xA803	Function of slave RX data	0 : Running frequency   1: Target frequency	0	-	Changeable at any time	"A8-03" on page $525$
A8-04	0xA804	RX data zero offset	$-100 \%$ to $+100.00 \%$	0.00	\%	Changeable at any time	"A8-04" on page $526$
A8-05	0xA805	RX data gain	$-10 \%$ to $+100.00 \%$	1.00	\%	Changeable at any time	"A8-05" on page $526$
A8-06	0xA806	Master-slave communication heartbeat time	0.0 s to 10.0 s	1.0	s	Changeable at any time	"A8-06" on page $526$
A8-07	0xA807	Master data TX   cycle in point-to-   point   communication	0.001 s to 10.000 s	0.001	s	Changeable at any time	"A8-07" on page $526$
A8-08	0xA808	Zero offset of RX frequency data	-10000 to +10000	0	-	Changeable at any time	"A8-08" on page $526$
A8-09	0xA809	Gain of RX frequency data	-1000 to +1000	100	-	Changeable at any time	"A8-09" on page $527$
A8-10	0xA80A	Maximum forward deviation of slave frequency	0 to 10000	1000	-	Changeable at any time	"A8-10" on page $527$
A8-11	0xA80B	Maximum reverse deviation of slave frequency	0.20 Hz to 10.00 Hz	0.50	Hz	Changeable at any time	"A8-11" on page $527$
A9-00	0xA900	Number of parallel motors	1 to 200	1	-	Changeable only at stop	"A9-00" on page $527$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A9-01	0xA901	Motor information command word	Bit00: Mutual inductance curve   0 : Disabled   1: Enabled   Bit01: D- and Q-axis inductance curve   0 : Disabled   1: Enabled   Bit02: Rotor resistance online auto-tuning   0 : Disabled   1: Enabled   Bit03: Rotor resistance online auto-tuning method   0 : Amplitude   1: Phase   Bit04: Motor thermal model   0 : Disabled   1: Enabled   Bit05: Temperature source of motor thermal model   0 : Estimated temperature   1: Temperature detected by sensor   Bit06: Torque coefficient calculation of asynchronous motor   0 : Torque formula   1: Current distribution   Bit07: Torque coefficient calculation of synchronous motor   0 : Torque formula   1: Torque matching the rated torque   Bit08: Zero speed friction torque calculation   0 : Torque linearly decreasing to zero   1: Torque to maintain minimum speed   Bit09: Calculation of model parameters based on nameplate parameters   0 : Disabled   1: Enabled   Bit10: Confirmation of calculating model parameters based on nameplate parameters   0: Default   1: Confirm	0x3		Changeable only at stop	"A9-01" on page $527$
A9-02	0xA902	Number of motor pole pairs	0 to 64	0	-	Changeable only at stop	"A9-02" on page $528$
A9-03	0xA903	Motor power factor	0.600 to 1.000	0.860	-	Changeable only at stop	"A9-03" on page 529
A9-05	0xA905	Expansion card	1: Expansion card 1   2: Expansion card 2	1	-	Changeable only at stop	"A9-05" on page $529$
A9-06	0xA906	ABZ encoder speed measurement mode at low speed	0 : Maintain   1: Attenuate   2: Optimized solution	2	-	Changeable only at stop	"A9-06" on page $529$


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
A9-07	0xA907	Encoder speed measurement filter time constant	0.000 s to 10.000 s	0.004	s	Changeable at any time	"A9-07" on page   529
A9-08	0xA908	Encoder wire breakage software detection coefficient	0.000 to 8.000	1.000	-	Changeable at any time	"A9-08" on page $530$
A9-09	0xA909	Encoder control word	Bit00: Speed measurement   0: Disabled   1: Enabled   Bit01: Software detection of wire breakage   0 : Disabled   1: Enabled   Bit02: Glitch removal   0: Disabled   1: Enabled   Bit03: ABZ encoder speed measurement mode   0: Quadruplicated frequency   1: Single pulse	0	-	Changeable only at stop	"A9-09" on page   530
A9-10	0xA90A	Speed   measurement   exception count   threshold	1 to 100	10	-	Changeable only at stop	"A9-10" on page $531$
A9-11	0xA90B	Motor gear ratio (numerator)	1 to 65535	1	-	Changeable only at stop	"A9-11" on page $531$
A9-12	0xA90C	Motor gear ratio (denominator)	1 to 65535	1	-	Changeable only at stop	"A9-12" on page $531$
A9-13	0xA90D	External input source of encoder	0: 0   1: Al1   2: AI2   3: AI3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable only at stop	"A9-13" on page $531$
A9-15	0xA90F	Stator leakage inductance	0.000 mH to 65.535 mH	6.540	mH	Changeable only at stop	"A9-15" on page $532$
A9-16	0xA910	Electromechanical time constant	1 ms to 65535 ms	100	ms	Unchangea ble	"A9-16" on page $532$
A9-17	0xA911	Inertia ratio	0.0\% to 6553.5\%	120.0	\%	Changeable only at stop	"A9-17" on page $532$
A9-18	0xA912	Friction torque	0.0\% to 6553.5\%	2.0	\%	Changeable only at stop	"A9-18" on page $532$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A9-19	$0 \times 4913$	Excitation current coefficient 1 of mutual inductance curve (rated)	5.0\% to $100.0 \%$	50.0	\%	Changeable only at stop	$\begin{aligned} & \text { "A9-19" on page } \\ & 533 \end{aligned}$
A9-20	$0 \times 4914$	Excitation current coefficient 2 of mutual inductance curve (rated)	5.0\% to $100.0 \%$	75.0	\%	Changeable only at stop	"A9-20" on page $533$
A9-21	0xA915	Excitation current coefficient 3 of mutual inductance curve	100.0\% to 800.0\%	150.0	\%	Changeable only at stop	"A9-21" on page $533$
A9-22	0xA916	Excitation current coefficient 4 of mutual inductance curve	100.0\% to 800.0\%	210.0	\%	Changeable only at stop	"A9-22" on page   533
A9-23	$0 \times 4917$	Flux coefficient 1 of mutual inductance curve (rated)	10.0\% to $100.0 \%$	50.0	\%	Changeable only at stop	"A9-23" on page $533$
A9-24	0xA918	Flux coefficient 2 of mutual inductance curve (rated)	10.0\% to $100.0 \%$	85.0	\%	Changeable only at stop	"A9-24" on page   534
A9-25	0xA919	Flux coefficient 3 of mutual inductance curve	100.0\% to 300.0\%	115.0	\%	Changeable only at stop	"A9-25" on page   534
A9-26	0xA91A	Flux coefficient 4 of mutual inductance curve	100.0\% to 300.0\%	125.0	\%	Changeable only at stop	"A9-26" on page $534$
A9-27	0xA91B	Speed point 1 of friction curve	0 RPM to 30000 RPM	15	RPM	Changeable only at stop	"A9-27" on page $534$
A9-28	0xA91C	Speed point 2 of friction curve	0 RPM to 30000 RPM	30	RPM	Changeable only at stop	"A9-28" on page $534$
A9-29	0xA91D	Speed point 3 of friction curve	0 RPM to 30000 RPM	60	RPM	Changeable only at stop	"A9-29" on page $534$
A9-30	0xA91E	Speed point 4 of friction curve	0 RPM to 30000 RPM	120	RPM	Changeable only at stop	"A9-30" on page $535$
A9-31	0xA91F	Speed point 5 of friction curve	0 RPM to 30000 RPM	150	RPM	Changeable only at stop	"A9-31" on page $535$
A9-32	0xA920	Speed point 6 of friction curve	0 RPM to 30000 RPM	300	RPM	Changeable only at stop	"A9-32" on page $535$
A9-33	0xA921	Speed point 7 of friction curve	0 RPM to 30000 RPM	600	RPM	Changeable only at stop	"A9-33" on page $535$
A9-34	0xA922	Speed point 8 of friction curve	0 RPM to 30000 RPM	1200	RPM	Changeable only at stop	"A9-34" on page $535$


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
A9-35	0xA923	Speed point 9 of friction curve	0 RPM to 30000 RPM	1500	RPM	Changeable only at stop	"A9-35" on page   536
A9-36	0xA924	Speed point 10 of friction curve	0 RPM to 30000 RPM	3000	RPM	Changeable only at stop	"A9-36" on page   536
A9-37	0xA925	Torque point 1 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"A9-37" on page $536$
A9-38	0xA926	Torque point 2 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"A9-38" on page   536
A9-39	0xA927	Torque point 3 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"A9-39" on page $536$
A9-40	0xA928	Torque point 4 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"A9-40" on page   537
A9-41	0xA929	Torque point 5 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"A9-41" on page $537$
A9-42	0xA92A	Torque point 6 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"A9-42" on page 537
A9-43	0xA92B	Torque point 7 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"A9-43" on page   537
A9-44	0xA92C	Torque point 8 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"A9-44" on page   537
A9-45	0xA92D	Torque point 9 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"A9-45" on page $538$
A9-46	0xA92E	Torque point 10 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"A9-46" on page $538$
A9-47	0xA92F	Current coefficient starting point of Dand Q-axis inductance curve	$-800 \%$ to $+800.0 \%$	-200	\%	Changeable only at stop	"A9-47" on page $538$
A9-48	0xA930	Current coefficient end point of $D$ - and Q-axis inductance curve	$-800 \%$ to $+800.0 \%$	200.0	\%	Changeable only at stop	"A9-48" on page $538$
A9-49	0xA931	D axis inductance 1 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-49" on page $538$
A9-50	0xA932	D axis inductance 2 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-50" on page $539$
A9-51	0xA933	D axis inductance 3 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-51" on page $539$
A9-52	0xA934	D axis inductance 4 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-52" on page $539$


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
A9-53	0xA935	D axis inductance 5 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-53" on page $539$
A9-54	0xA936	D axis inductance 6 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-54" on page $539$
A9-55	0xA937	D axis inductance 7 of $D$ - and $Q$-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-55" on page $539$
A9-56	0xA938	D axis inductance 8 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-56" on page   540
A9-57	0xA939	D axis inductance 9 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-57" on page $540$
A9-58	0xA93A	D axis inductance 10 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-58" on page   540
A9-59	0xA93B	D axis inductance 11 of $D$ - and $Q$-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-59" on page $540$
A9-60	0xA93C	D axis inductance 12 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-60" on page $540$
A9-61	0xA93D	Q axis inductance 1 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-61" on page   541
A9-62	0xA93E	Q axis inductance 2 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-62" on page   541
A9-63	0xA93F	Q axis inductance 3 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-63" on page   541
A9-64	0xA940	Q axis inductance 4 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-64" on page   541
A9-65	0xA941	Q axis inductance 5 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-65" on page   541
A9-66	0xA942	Q axis inductance 6 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-66" on page $542$
A9-67	0xA943	Q axis inductance 7 of $D$ - and $Q$-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-67" on page $542$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
A9-68	0xA944	Q axis inductance 8 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-68" on page   542
A9-69	0xA945	Q axis inductance 9 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-69" on page $542$
A9-70	0xA946	Q axis inductance 10 of D - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-70" on page $542$
A9-71	0xA947	Q axis inductance 11 of $D$ - and $Q$-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-71" on page   543
A9-72	0xA948	Q axis inductance 12 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"A9-72" on page $543$
AA-00	0xAA00	Parameter autotuning upon startup	Bit00: Synchronous motor pole position autotuning upon startup   0: Disabled   1: Enabled   Bit01: Quick stator resistance auto-tuning upon   startup   0: Disabled   1: Enabled   Bit02-Bit03: HFI pole position auto-tuning   0 : Disabled   1: Enabled   2: Adaptive   Bit04: IGBT shoot-through self-check upon   startup   0: Disabled   1: Enabled   Bit05: Short-to-ground self-check upon startup (reserved)   0: Disabled   1: Enabled   Bit06: Phase loss self-check upon startup   (reserved)   0 : Disabled   1: Enabled	1	-	Changeable only at stop	"AA-00" on page $543$
AA-01	0xAA01	Auto-tuning direction	0 to 1	1	-	Changeable only at stop	"AA-01" on page   544
AA-02	0xAA02	Oscillation suppression gain of synchronous motor back EMF autotuning	0.0 to 30.0	3.2	-	Changeable only at stop	"AA-02" on page   544


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AA-03	0xAA03	Target speed of rotation autotuning	30.0\% to 100.0\%	70.0	\%	Changeable only at stop	"AA-03" on page   544
AA-04	0xAA04	Target speed 1 of inertia auto-tuning	0.0\% to AA-05	40.0	\%	Changeable only at stop	"AA-04" on page $545$
AA-05	0xAA05	Target speed 2 of inertia auto-tuning	AA-04 to 100.0\%	60.0	\%	Changeable only at stop	"AA-05" on page $545$
AA-06	0xAA06	Overcurrent prevention of mutual inductance saturation curve	0 to 1	1	-	Changeable only at stop	"AA-06" on page $545$
AA-07	0xAA07	Auto-tuning items	Bit00: Speed loop parameter adaptation   0 : Disabled   1: Enabled   Bit01: Current loop parameter adaptation   0 : Disabled   1: Enabled   Bit02: Drive nonlinear auto-tuning   0 : Disabled   1: Enabled   Bit03: Inter-phase deviation coefficient autotuning   0 : Disabled   1: Enabled   Bit04: Auto-tuning of initial pole position of synchronous motor   0 : Disabled   1: Enabled   Bit05: Auto-tuning of D - and Q -axis inductance   model of synchronous motor   0 : Disabled   1: Enabled   Bit06: System inertia auto-tuning   0 : Disabled   1: Enabled   Bit07: HFI pole position auto-tuning   0 : Disabled   1: Enabled	117	-	Changeable only at stop	"AA-07" on page $545$
AA-08	0xAA08	OFF3 stop mode	0: Quick stop   1: Stop at maximum capability	0	-	Changeable only at stop	"AA-08" on page $546$
AA-09	0xAA09	Stop mode during running	0: OFF1 stop mode   1: OFF2 stop mode   2: OFF3 stop mode	1	-	Changeable only at stop	"AA-09" on page 546
AA-10	0xAA0A	Stop mode for torque control	0 : Coast to stop forcibly   1: Switch to speed control mode and then stop   2: Maintain torque control mode until zero speed and then block	1	-	Changeable only at stop	"AA-10" on page 547


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AA-12	OXAAOC	Proportional gain adjustment coefficient	0.1 to 2.0	1.0	-	Changeable at any time	" $A A-12$ " on page 547
AA-13	OXAAOD	Integral gain adjustment coefficient	0.1 to 2.0	1.0	-	Changeable at any time	"AA-13" on page 547
AA-14	OXAAOE	Zero-speed threshold	0.1\% to 200.0\%	2.0	\%	Changeable at any time	"AA-14" on page $547$
AA-15	OXAAOF	Zero-speed stop delay	0.00 s to 10.00 s	0.10	s	Changeable only at stop	"AA-15" on page 547
AA-16	0xAA10	Reference source execution interval	0 to 20	4	-	Changeable only at stop	"AA-16" on page $548$
AA-17	$0 \times A A 11$	Trial current for speed tracking of synchronous motor	5.0\% to 50.0\%	10.0	\%	Changeable only at stop	"AA-17" on page $548$
AA-18	0xAA12	Minimum frequency for speed tracking of synchronous motor	0.0 Hz to 100.0 Hz	0.0	Hz	Changeable only at stop	"AA-18" on page $548$
AA-19	$0 \times A A 13$	Angle compensation for speed tracking of synchronous motor	0 to 360	0	-	Changeable only at stop	"AA-19" on page $548$
AA-20	0xAA14	Parameter autotuning of synchronous motor upon startup	0 to 1	0	-	Changeable at any time	" $A A-20$ " on page $548$
AA-21	0xAA15	Current motor angle	0 to 65535	0	-	Unchangea ble	"AA-21" on page $549$
AA-22	0xAA16	Forward torque limit 1	0.0 to 400.0	150.0	-	Changeable at any time	"AA-22" on page $549$
AA-23	0xAA17	Reverse torque limit   1	0.0 to 400.0	150.0	-	Changeable at any time	"AA-23" on page $549$
AA-24	0xAA18	Source of forward torque limit 2	$0: 400 \%$   Others: F connector	0	-	Changeable at any time	"AA-24" on page $549$
AA-25	0xAA19	Source of reverse torque limit 2	$0:-400 \%$   Others: F connector	0	-	Changeable at any time	"AA-25" on page $549$


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
AA-26	0xAA1A	Ramp (FRG) selection bit0	0: 0 1: 1 2: Terminal function input 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16	0	-	Changeable at any time	" $A A-26$ " on page $550$
AA-27	0xAA1B	Ramp (FRG) selection bit1	Same as A4-26	0	-	Changeable at any time	"AA-27" on page $550$
AA-30	0xAA1E	Motor protection	Bit00: Motor overload determination (reserved)   Bit01: Motor overheat detection (reserved)   Bit02: PG fault detection (reserved)   Bit03: Current control error detection   Bit04: Motor stall error detection   Bit05: Locked-rotor detection   Bit06: Synchronous motor demagnetization protection   Bit07: Protection against locked-rotor in SVC speed open-loop control   Bit08: Reserved   Bit09: Parameter setting error	537	-	Changeable at any time	"AA-30" on page $550$
AA-31	0xAA1F	Locked-rotor time	0.0 s to 65.0s	2.0	s	Changeable at any time	"AA-31" on page   551
AA-32	0xAA20	Locked-rotor frequency	0.0\% to 600.0\%	6.0	\%	Changeable at any time	"AA-32" on page 551
AA-33	0xAA21	Motor stall detection time	0.0 s to 10.0 s	0.5	s	Changeable at any time	"AA-33" on page 551
AA-34	0xAA22	Stall detection threshold	0.0\% to $+100.0 \%$	30.0	\%	Changeable at any time	"AA-34" on page 551
AA-35	0xAA23	Current control exception detection time	0.00 s to 1.00 s	0.05	s	Changeable at any time	"AA-35" on page 552
AA-36	0xAA24	Current control exception detection threshold	0.0\% to 200.0\%	25.0	\%	Changeable at any time	"AA-36" on page 552


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AA-37	0xAA25	Synchronous motor overcurrent threshold	0.0\% to 500.0\%	300.0	\%	Changeable at any time	"AA-37" on page $552$
AA-39	0xAA27	Speed deviation detection	0 to 1	1	-	Changeable at any time	"AA-39" on page $552$
AA-40	0xAA28	Asynchronous   motor FVC model   switchover   frequency	0\% to 1000\%	20	\%	Changeable only at stop	"AA-40" on page 552
AA-41	0xAA29	Asynchronous motor FVC model switchover hysteresis frequency	10\% to 50\%	20	\%	Changeable only at stop	"AA-41" on page 553
AA-42	0xAA2A	Asynchronous   motor FVC observer   filter time	5 ms to 100 ms	15	ms	Changeable only at stop	"AA-42" on page $553$
AA-43	0xAA2B	Asynchronous motor FVC current model mode	0 to 1	0	-	Changeable only at stop	"AA-43" on page 553
AA-44	0xAA2C	Asynchronous motor FVC preexcitation output observation angle mode	0 to 1	0	-	Changeable only at stop	" $A A-44$ " on page 553
AA-45	0xAA2D	Asynchronous   motor SVC model   switchover   frequency	10\% to 20\%	15	\%	Changeable only at stop	"AA-45" on page $553$
AA-46	0xAA2E	Asynchronous motor SVC observer filter time	5 ms to 50 ms	10	ms	Changeable at any time	" $A A-46$ " on page 553
AA-47	0xAA2F	Asynchronous   motor SVC observer   gain 1	10\% to 500\%	100	\%	Changeable at any time	"AA-47" on page $554$
AA-48	0xAA30	Asynchronous motor SVC observer gain 2	10\% to 100\%	20	\%	Changeable at any time	"AA-48" on page $554$
AA-49	0xAA31	Asynchronous motor SVC observer mode	0 to 3	0	-	Changeable only at stop	"AA-49" on page $554$
AA-50	0xAA32	Asynchronous motor SVC preexcitation mode	0 to 1	0	-	Changeable only at stop	"AA-50" on page 554


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AA-51	0xAA33	Asynchronous motor SVC speed tracking mode	0 to 1	0	-	Changeable only at stop	"AA-51" on page 554
AA-54	0xAA36	Synchronous motor   1 model control	Bit00: Low speed processing   Bit01: Low speed processing 1   Bit02: Online auto-tuning of resistance   Bit03: Online auto-tuning of back EMF   Bit04: KS	5	-	Changeable at any time	"AA-54" on page $555$
AA-55	0xAA37	Synchronous motor model K1	10 to 3000	200	-	Changeable at any time	"AA-55" on page $555$
AA-56	0xAA38	Synchronous motor model K1Max	100 to 6000	3000	-	Changeable at any time	"AA-56" on page 555
AA-57	0xAA39	Synchronous motor model KsMin	0.0 to 4.0	0.3	-	Changeable at any time	"AA-57" on page $555$
AA-58	0xAA3A	Synchronous motor model Kspeed	50 to 2000	400	-	Changeable at any time	"AA-58" on page $556$
AA-59	0xAA3B	Synchronous motor frequency filter time constant	2 ms to 100 ms	10	ms	Changeable at any time	"AA-59" on page $556$
AA-60	0xAA3C	Frequency upper limit of synchronous motor Rs online autotuning	1.0\% to 20.0\%	3.5	\%	Changeable at any time	"AA-60" on page $556$
AA-61	0xAA3D	Synchronous motor model Kr	0 to 50	10	-	Changeable at any time	"AA-61" on page $556$
AA-62	0xAA3E	Synchronous motor model Kr1	0 to 50	5	-	Changeable at any time	"AA-62" on page $556$
AA-63	0xAA3F	Synchronous motor low-speed D axis injection current	0\% to 100\%	20	\%	Changeable at any time	"AA-63" on page $556$
AA-64	0xAA40	Synchronous motor model LowFreqTime1	0 to 500	50	-	Changeable at any time	"AA-64" on page 557
AA-67	0xAA43	Frequency lower limit of back EMF online auto-tuning	10\% to $100 \%$	25	\%	Changeable at any time	"AA-67" on page   557
AA-68	0xAA44	Synchronous motor model LowFreq	0.0\% to 2.0\%	0.3	\%	Changeable at any time	"AA-68" on page $557$
AA-69	0xAA45	Synchronous motor   model   LowFreqTime	0 to 100	10	-	Changeable at any time	"AA-69" on page 557
AA-70	0xAA46	Percentage of pole auto-tuning current	50\% to 200\%	100	\%	Changeable at any time	"AA-70" on page 557


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AA-71	0xAA47	Percentage of high frequency response current	0\% to 100\%	25	\%	Changeable at any time	"AA-71" on page 558
AA-72	0xAA48	Percentage of HFI and SVC switching frequency	0\% to 30\%	10	\%	Changeable at any time	"AA-72" on page $558$
AA-73	0xAA49	Observer parameter	10 to 200	100	-	Changeable at any time	"AA-73" on page $558$
AA-74	0xAA4A	Speed filter cut-off frequency	1 Hz to 200 Hz	10	Hz	Changeable at any time	"AA-74" on page $558$
AA-75	0xAA4B	Carrier frequency during NS autotuning	2.00 Hz to 16.00 Hz	8.00	Hz	Changeable at any time	"AA-75" on page $558$
AA-76	0xAA4C	Automatic calculation of NS auto-tuning voltage	0 to 1	1	-	Changeable at any time	"AA-76" on page $559$
AA-77	0xAA4D	Percentage of NS auto-tuning voltage set manually	0\% to $100 \%$	10	\%	Changeable at any time	"AA-77" on page $559$
AA-78	0xAA4E	Duration of HFI stage 1	50 ms to 500 ms	150	ms	Changeable at any time	"AA-78" on page $559$
AA-80	0xAA50	Speed loop command word	Bit00: Speed loop   0: Disabled   1: Enabled   Bit01: Integration mode   0 : Conventional integration   1: Position integration   Bit02: Acceleration torque   0 : Disabled   1: Enabled   Bit03-Bit04: Acceleration source   0 : Function transfer torque   1: Automatic calculation   2: Function transfer acceleration   Bit05: Anti-load disturbance   0 : Disabled   1: Enabled	11	-	Changeable at any time	"AA-80" on page $559$
AA-81	0xAA51	Locked-rotor fast integral cancel coefficient	0.0\% to +100.0\%	0.0	\%	Changeable at any time	"AA-81" on page $560$
AA-82	0xAA52	Integral torque	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"AA-82" on page $560$
AA-83	0xAA53	Speed controller frequency window size	0.00 Hz to 10.00 Hz	0.00	Hz	Changeable only at stop	"AA-83" on page $560$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AA-84	0xAA54	Current filter time for torque reference	0.0 ms to 100.0 ms	0.0	ms	Changeable only at stop	" $A A-84$ " on page   561
AA-85	0xAA55	Acceleration torque	0 : Inactive   1: Al1   2: AI2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"AA-85" on page $561$
AA-87	0xAA57	Reference model bandwidth	0.00 Hz to 300.00 Hz	0.00	Hz	Changeable at any time	"AA-87" on page 561
AA-88	0xAA58	Torque feedforward coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"AA-88" on page 561
AA-89	0xAA59	Vector control reference frequency filter time	0.0 ms to 100.0 ms	0.0	ms	Changeable only at stop	"AA-89" on page 561
AA-90	0xAA5A	Vector control feedback frequency filter time	0.0 ms to 100.0 ms	0.0	ms	Changeable only at stop	"AA-90" on page 562
AA-91	0xAA5B	Load observation bandwidth	0.00 Hz to 300.00 Hz	0.00	Hz	Changeable at any time	"AA-91" on page $562$
AA-92	0xAA5C	Load observation coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"AA-92" on page $562$
AA-93	0xAA5D	Pseudo integral coefficient	0.000 to 10.000	1.000	-	Changeable at any time	"AA-93" on page 562
AA-94	0xAA5E	Torque coefficient enable	0: Disabled   1: Enabled	0	-	Changeable at any time	"AA-94" on page 562
AA-96	0xAA60	Center frequency of notch filter 1	0.0 to 4000.0	4000.0	-	Changeable at any time	"AA-96" on page 563
AA-97	0xAA61	Center frequency of notch filter 2	0.0 to 4000.0	4000.0	-	Changeable at any time	"AA-97" on page 563
AA-98	0xAA62	Integral setting control word	0: Disabled   1: Enabled   Others: B connector	0	-	Changeable at any time	"AA-98" on page 563


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AA-99	0xAA63	Integral reference source	0 : Digital setting   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"AA-99" on page $563$
AB-00	0xAB00	Externally transferred acceleration	0 : Inactive   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"AB-00" on page   564
AB-03	0xAB03	Overturning torque limiting coefficient	0.0\% to 400.0\%	100.0	\%	Changeable at any time	"AB-03" on page   564
AB-04	0xAB04	Motoring power limiting coefficient	0.0\% to 400.0\%	400.0	\%	Changeable at any time	"AB-04" on page 564
AB-05	0xAB05	Generating power limiting coefficient	0.0\% to 400.0\%	400.0	\%	Changeable at any time	"AB-05" on page $565$
AB-06	0xAB06	Overspeed limiting enable	0 to 1	1	-	Changeable at any time	"AB-06" on page $565$
AB-07	0xAB07	Sine wave frequency of bandwidth test	0 Hz to 1000 Hz	0	Hz	Changeable at any time	"AB-07" on page $565$
AB-08	0xAB08	Sine wave amplitude of bandwidth test	0\% to $100 \%$	0	\%	Changeable at any time	"AB-08" on page $565$
AB-09	0xAB09	Bandwidth test enable	0 to 4	0	-	Changeable at any time	"AB-09" on page 565
AB-11	0xAB0B	Speed loop   parameter   calculation mode	0 : New solution   1: Compatible solution	1	-	Changeable only at stop	"AB-11" on page $566$
AB-12	OXABOC	Speed loop   proportional gain in   FVC mode	0.00 Hz to 100.00 Hz	8.00	Hz	Changeable at any time	"AB-12" on page 566
AB-13	OxAB0D	Speed loop integral time in FVC mode	0.000 s to 20.000 s	0.080	s	Changeable at any time	"AB-13" on page 566


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AB-14	OxABOE	Speed loop proportional gain in SVC mode	0.00 Hz to 100.00 Hz	5.00	Hz	Changeable at any time	" $A B-14$ " on page   566
AB-15	0xABOF	Speed loop integral time in SVC mode	0.000 s to 20.000s	0.127	S	Changeable at any time	" $A B-15$ " on page   566
AB-16	0xAB10	Low frequency proportional correction coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	" $A B-16$ " on page   567
AB-17	$0 \times A B 11$	Low frequency integral correction coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	" $A B-17$ " on page   567
AB-18	0xAB12	Speed loop adaption factor	0.000 to 10.000	0.200	-	Changeable at any time	" $A B-18$ " on page 567
AB-19	$0 \times A B 13$	Speed loop   adaption   switchover lower   limit	0.000 to 10.000	0.400	-	Changeable at any time	"AB-19" on page 567
AB-20	0xAB14	Speed loop   adaption   switchover upper   limit	0.000 to 10.000	1.000	-	Changeable at any time	" $A B-20$ " on page $567$
AB-21	$0 \times A B 15$	Speed loop adaption correction upper limit	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"AB-21" on page   568
AB-22	0xAB16	Speed loop   adaption correction lower limit	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	" $A B-22$ " on page 568
AB-23	$0 \times A B 17$	Flux adaptation enable	0 to 1	0	-	Changeable at any time	" $A B-23$ " on page $568$
AB-24	$0 \times A B 18$	Overspeed controller correction coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	" $A B-24$ " on page $568$
AB-25	0xAB19	VDC control command word	Bit00: VdcMin   0 : Disabled   1: Enabled   Bit01: VdcMax   0 : Disabled   1: Enabled   Bit02: Automatic calculation of VDC trigger   voltage   0: Disabled   1: Enabled   Bit03: VDC control integral action   0 : Disabled   1: Enabled	0	-	Changeable at any time	" $A B-25$ " on page $568$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
AB-26	$0 \times A B 1 A$	Bus capacitance ratio	50.0\% to 1000.0\%	100.0	\%	Changeable at any time	" $A B-26$ " on page $569$
AB-27	0xAB1B	Undervoltage suppression exit hysteresis frequency	0.00 Hz to 10.00 Hz	3.00	Hz	Changeable at any time	" $A B-27$ " on page   569
AB-28	0xAB1C	Minimum VDC failure speed threshold	0.00 Hz to 20.00 Hz	2.00	Hz	Changeable at any time	" $A B-28$ " on page $569$
AB-29	0xAB1D	Dynamic adjustment coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"AB-29" on page $569$
AB-30	0xAB1E	Minimum VDC activation voltage	320.0 V to 540.0 V	430.0	V	Changeable at any time	"AB-30" on page $570$
AB-31	0xAB1F	Maximum VDC activation voltage	650.0 V to 800.0 V	770.0	V	Changeable at any time	" $A B-31$ " on page $570$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AB-32	0xAB20	Flux linkage control command word	Bit00: Output voltage limit calculation filtering mode   0 : Symmetric filtering   1: Asymmetric filtering   Bit01: Asynchronous motor inverse proportion curve calculation   0 : The inverse proportional synchronization frequency decreases.   1: The inverse proportional speed decreases.   Bit02: Flux linkage feedforward calculation by using inverse proportional speed   0 : Disabled   1: Enabled   Bit03: Reserved   Bit04: Reserved   Bit05: Field weakening adjustment   0 : Disabled   1: Enabled   Bit06: Flux linkage derivative feedforward   0 : Disabled   1: Enabled   Bit07: Energy conservation control   0 : Disabled   1: Enabled   Bit08: Asynchronous motor flux closed loop   0: Disabled   1: Enabled   Bit09: Reserved   Bit10: Reserved   Bit11: Asynchronous motor pre-excitation mode   0: Pre-excitation based on time   1: Pre-excitation based on current   Bit12: Asynchronous motor pre-excitation current   0 : Reference current   1: Maximum current allowed by the drive	2357		Changeable at any time	" $A B-32$ " on page 570
AB-33	0xAB21	Output voltage upper limit margin for field weakening adjustment	1\% to 50\%	5	\%	Changeable at any time	" $A B-33$ " on page   572
AB-34	0xAB22	Output voltage upper limit margin for auto adjustment of field weakening	1\% to 20\%	3	\%	Changeable at any time	"AB-34" on page $572$
AB-35	0xAB23	Filter time for calculating maximum output voltage	0 ms to 3000 ms	30	ms	Changeable at any time	" $A B$-35" on page 572


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AB-36	0xAB24	Rated flux adjustment coefficient for calculation	0.5 to 2.0	1.0	-	Changeable at any time	" $A B-36$ " on page 572
AB-37	0xAB25	Field weakening frequency adjustment coefficient for calculation	0.8 to 1.2	1.0	-	Changeable at any time	" $A B-37$ " on page 573
AB-38	0xAB26	Slip filter time for calculating field weakening frequency	0 ms to 3000 ms	62	ms	Changeable at any time	"AB-38" on page 573
AB-39	$0 \times A B 27$	Feedback speed filtering	0 ms to 8000 ms	50	ms	Changeable at any time	"AB-39" on page   573
AB-40	0xAB28	Flux linkage rising filter time	0 ms to 8000 ms	20	ms	Changeable at any time	" $A B-40$ " on page   573
AB-42	$0 \times A B 2 A$	Feedback voltage filter time	0 ms to 3000 ms	5	ms	Changeable at any time	"AB-42" on page   574
AB-43	0xAB2B	Maximum demagnetization current of synchronous motor	0\% to 500\%	300	\%	Changeable at any time	"AB-43" on page   574
AB-44	0xAB2C	Voltage outer loop lower limit coefficient	0 to 500	50	-	Changeable at any time	" $A B-44$ " on page   574
AB-45	0xAB2D	Flux linkage derivative feedforward coefficient	0.0 to 1.5	1.0	-	Changeable at any time	" $A B-45$ " on page   574
AB-46	0xAB2E	Flux linkage derivative feedforward filter time	0 ms to 3000 ms	6	ms	Changeable at any time	" $A B-46$ " on page   574
AB-47	0xAB2F	Torque current rising filter time under energy conservation control	0 ms to 3000 ms	50	ms	Changeable at any time	" $A B-47$ " on page 575
AB-48	0xAB30	Torque current falling filter time under energy conservation control	0 ms to 3000 ms	100	ms	Changeable at any time	" $A B-48$ " on page 575


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AB-49	0xAB31	Flux linkage lower limit coefficient under energy conservation control	0.00 to 0.50	0.10	-	Changeable at any time	" $A B-49$ " on page $575$
AB-51	0xAB33	Pre-excitation current	$1 \%$ to $200 \%$	100	\%	Changeable at any time	"AB-51" on page 575
AB-52	0xAB34	Pre-excitation time	1 ms to 30000 ms	1000	ms	Changeable at any time	" $A B-52$ " on page $576$
AB-53	0xAB35	Flux linkage closedloop bandwidth frequency	0.0 Hz to 100.0 Hz	2.0	Hz	Changeable at any time	"AB-53" on page 576
AB-54	0xAB36	Feedback flux linkage filter time coefficient	0 to 200	4	-	Changeable at any time	"AB-54" on page 576
AB-55	0xAB37	Static output flux linkage filter time	0 ms to 5000 ms	10	ms	Changeable at any time	" $A B-55$ " on page $576$
AB-56	0xAB38	Current loop mode	0 : ImCsr2 mode   1: Complex vector mode   2: 880 mode   3: No field weakening	1	-	Changeable only at stop	" $A B-56$ " on page 576
AB-57	0xAB39	PI regulator proportional gain adaptation with load	0: Disabled   1: Enabled	0	-	Changeable only at stop	"AB-57" on page 577
AB-58	0xAB3A	Current loop damping	0.2 to 5.0	0.8	-	Changeable at any time	"AB-58" on page 577
AB-59	0xAB3B	Low-speed current loop Kp adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"AB-59" on page $577$
AB-60	0xAB3C	High-speed current loop Kp adjustment	0.1 to 10.0	1.0	-	Changeable at any time	" $A B-60$ " on page 577
AB-61	0xAB3D	Low-speed current loop Ki adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"AB-61" on page 578
AB-62	0xAB3E	High-speed current loop Ki adjustment	0.1 to 10.0	2.0	-	Changeable at any time	"AB-62" on page 578
AB-63	0xAB3F	D-axis current loop complex vector adjustment	0.1 to 10.0	1.0	-	Changeable at any time	" $A B-63$ " on page 578
AB-64	0xAB40	Q-axis current loop complex vector adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"AB-64" on page 578


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AB-65	0xAB41	Complex vector hysteresis frequency lower limit as a percentage of rated frequency	0\% to AB-66	0	\%	Changeable at any time	" $A B-65$ " on page   578
AB-66	0xAB42	Complex vector hysteresis frequency upper limit as a percentage of rated frequency	AB-65 to 150\%	0	\%	Changeable at any time	" $A B-66$ " on page $579$
AB-67	0xAB43	ImCsr2 hysteresis switchover voltage upper limit as a percentage of saturation voltage	AB-68 to 95\%	89	\%	Changeable at any time	" $A B-67$ " on page   579
AB-68	0xAB44	ImCsr2 hysteresis   switchover voltage   lower limit as a   percentage of   saturation voltage	60\% to AB-67	79	\%	Changeable at any time	"AB-68" on page   579
AB-69	0xAB45	ImCsr2 hysteresis   switchover   frequency   hysteresis range as   a percentage of   rated frequency	1\% to 30\%	10	\%	Changeable at any time	"AB-69" on page   579
AB-70	0xAB46	ImCsr2 hysteresis switchover frequency lower limit (below which the hysteresis condition does not take effect) as a percentage of the rated frequency	40\% to 80\%	60	\%	Changeable at any time	" $A B-70$ " on page   579
AB-71	0xAB47	ImCsr2 current loop   Kss adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"AB-71" on page $580$
AB-72	0xAB48	Proportional gain adjustment coefficient corresponding to the maximum torque when proportional gain is adjusted with load	0.1 to 1.0	0.5	-	Changeable at any time	"AB-72" on page $580$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AB-73	0xAB49	Torque upper limit setpoint as a percentage of rated torque when proportional gain is adjusted with load	AB-74 to 300\%	200	\%	Changeable at any time	" $A B-73$ " on page $580$
AB-74	0xAB4A	Torque lower limit setpoint as a percentage of rated torque when proportional gain is adjusted with load	10\% to AB-73	100	\%	Changeable at any time	" $A B-74$ " on page $580$
AB-75	0xAB4B	Derivative feedforward adjustment	0.0 to 1.0	0.0	-	Changeable at any time	" $A B-75$ " on page   581
AB-76	0xAB4C	Decoupling control start frequency as a percentage of rated frequency	20\% to $150 \%$	40	\%	Changeable at any time	" $A B-76$ " on page   581
AB-77	0xAB4D	Decoupling control filter time adjustment coefficient	0.1 to 3.0	1.0	-	Changeable at any time	" $A B-77$ " on page   581
AB-78	0xAB4E	Decoupling control output adjustment coefficient	0.0 to 1.0	1.0	-	Changeable at any time	" $A B-78$ " on page   581
AB-79	0xAB4F	CPC feedforward enable	0: Disabled   1: Enabled	0	-	Changeable at any time	"AB-79" on page $581$
AB-80	0xAB50	Current loop auxiliary command word	Bit00: Complex vector angle limiting   0: Disabled   1: Enabled   Bit01: Voltage angle limiting   0: Program internal limiting   1: Parameter setting   Bit02: 0 by default   0 : No lower limit on the excitation current is imposed during the dynamic process.   1: A lower limit on the excitation current is imposed during the dynamic process in ImCsr2 mode.   Bit03-Bit15: Reserved (0 by default)	0	-	Changeable at any time	" $A B-80$ " on page 582
AB-81	0xAB51	Voltage angle upper limit	$90^{\circ}$ to $180^{\circ}$	150	-	Changeable at any time	"AB-81" on page $582$
AB-82	0xAB52	Voltage angle lower limit	$0^{\circ}$ to $90^{\circ}$	30	-	Changeable at any time	"AB-82" on page 582


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AB-83	0xAB53	Asynchronous motor D axis integral limit	0.500 to 1.000	0.707	-	Changeable at any time	" $A B-83$ " on page 582
AB-84	0xAB54	Current loop carrier frequency upper limit	5.0 to 16.0	8.0	-	Changeable at any time	"AB-84" on page $583$
AB-85	0xAB55	Droop enable	0 to 1	0	-	Changeable only at stop	" $A B-85$ " on page $583$
AB-86	0xAB56	Droop source	0 : Line current   1: Torque reference   2: Speed adjustment output   3: Speed adjustment integral component	1	-	Changeable only at stop	" $A B-86$ " on page $583$
AB-87	0xAB57	Frequency reference droop coefficient	0.0\% to 50.0\%	0.0	\%	Changeable at any time	" $A B-87$ " on page $583$
AB-88	0xAB58	FVC-SVC switchover mode	0: No switchover   1: Active switchover   2: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during stop and does not switch back to FVC mode when the encoder recovers during running.)   3: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during running or stop.)	0	-	Changeable only at stop	" $A B-88$ " on page $583$
AB-89	0xAB59	FVC-SVC switchover frequency	10\% to 500\%	50	\%	Changeable only at stop	"AB-89" on page 584
AB-90	0xAB5A	FVC-SVC switchover hysteresis	10\% to $100 \%$	10	\%	Changeable only at stop	" $A B-90$ " on page   584
AC-00	0xAC00	Al1 measured voltage 1	-10 V to +10.000 V	2.000	V	Changeable only at stop	"AC-00" on page   584
AC-01	0xAC01	Al1 displayed voltage 1	-10 V to +10.000 V	2.000	V	Changeable only at stop	"AC-01" on page 584
AC-02	0xAC02	Al1 measured voltage 2	-10 V to +10.000 V	8.000	V	Changeable only at stop	"AC-02" on page 585
AC-03	0xAC03	Al1 displayed voltage 2	-10 V to +10.000 V	8.000	V	Changeable only at stop	"AC-03" on page   585
AC-04	0xAC04	Al2 measured voltage 1	-10 V to +10.000 V	2.000	V	Changeable only at stop	"AC-04" on page 585
AC-05	0xAC05	AI2 displayed voltage 1	-10 V to +10.000 V	2.000	V	Changeable only at stop	"AC-05" on page 585


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AC-06	0xAC06	Al2 measured voltage 2	-10 V to +10.000 V	8.000	V	Changeable only at stop	"AC-06" on page $585$
AC-07	0xAC07	Al2 displayed voltage 2	-10 V to +10.000 V	8.000	V	Changeable only at stop	"AC-07" on page 586
AC-08	0xAC08	Al3 measured voltage 1	-10 V to +10.000 V	2.000	V	Changeable only at stop	"AC-08" on page $586$
AC-09	0xAC09	Al3 displayed voltage 1	-10 V to +10.000 V	2.000	V	Changeable only at stop	"AC-09" on page 586
AC-10	0xACOA	Al3 measured voltage 2	-10 V to +10.000 V	8.000	V	Changeable only at stop	"AC-10" on page 586
AC-11	0xAC0B	Al3 displayed voltage 2	-10 V to +10.000 V	8.000	V	Changeable only at stop	"AC-11" on page $586$
AC-12	OxACOC	AO1 target voltage 1	-10 V to +10.000 V	2.000	V	Changeable only at stop	"AC-12" on page $586$
AC-13	OxACOD	AO1 measured voltage 1	-10 V to +10.000 V	2.000	V	Changeable only at stop	"AC-13" on page 587
AC-14	OxACOE	AO1 target voltage 2	-10 V to +10.000 V	8.000	V	Changeable only at stop	"AC-14" on page 587
AC-15	OxACOF	AO1 measured voltage 2	-10 V to +10.000 V	8.000	V	Changeable only at stop	"AC-15" on page 587
AC-16	0xAC10	AO2 target voltage 1	-10 V to +10.000 V	2.000	V	Changeable only at stop	" $A C-16$ " on page $587$
AC-17	$0 \times 4 C 11$	AO2 measured voltage 1	-10 V to +10.000 V	2.000	V	Changeable only at stop	"AC-17" on page 587
AC-18	0xAC12	AO2 target voltage 2	-10 V to +10.000 V	8.000	V	Changeable only at stop	" $A C-18$ " on page $588$
AC-19	$0 \times 4 C 13$	AO2 measured voltage 2	-10 V to +10.000 V	8.000	V	Changeable only at stop	"AC-19" on page 588
AF-00	0xAF00	$\begin{aligned} & \text { RPDO1-SubIndex0- } \\ & \mathrm{H} \end{aligned}$	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-00" on page 588
AF-01	0xAF01	RPDO1-SubIndex0-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-01" on page 588
AF-02	0xAF02	RPDO1-SubIndex1-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-02" on page $588$
AF-03	0xAF03	RPDO1-SubIndex1-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-03" on page 589
AF-04	0xAF04	$\begin{aligned} & \text { RPDO1-SubIndex2- } \\ & \mathrm{H} \end{aligned}$	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-04" on page   589
AF-05	0xAF05	RPDO1-SubIndex2-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-05" on page $589$
AF-06	0xAF06	RPDO1-SubIndex3-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-06" on page $589$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AF-07	0xAF07	RPDO1-SubIndex3-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-07" on page 589
AF-08	0xAF08	$\begin{aligned} & \text { RPDO2-SubIndex0- } \\ & \text { H } \end{aligned}$	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-08" on page 590
AF-09	0xAF09	RPDO2-SubIndex0-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-09" on page 590
AF-10	0xAFOA	RPDO2-SubIndex1-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-10" on page 590
AF-11	0xAFOB	RPDO2-SubIndex1-L	$0 \times 0$ to 0xFFFF	0x0	-	Changeable at any time	"AF-11" on page $590$
AF-12	OxAFOC	$\begin{aligned} & \text { RPDO2-SubIndex2- } \\ & \text { H } \end{aligned}$	$0 \times 0$ to 0xFFFF	0x0	-	Changeable at any time	"AF-12" on page $590$
AF-13	OxAFOD	RPDO2-SubIndex2-L	$0 \times 0$ to 0xFFFF	0x0	-	Changeable at any time	"AF-13" on page $591$
AF-14	0xAFOE	RPDO2-SubIndex3-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	" $A F-14$ " on page $591$
AF-15	0xAFOF	RPDO2-SubIndex3-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-15" on page $591$
AF-16	0xAF10	RPDO3-SubIndex0-   H	$0 \times 0$ to 0xFFFF	0x0	-	Changeable at any time	"AF-16" on page $591$
AF-17	0xAF11	RPDO3-SubIndex0-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-17" on page $591$
AF-18	0xAF12	RPDO3-SubIndex1-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-18" on page $592$
AF-19	0xAF13	RPDO3-SubIndex1-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-19" on page $592$
AF-20	0xAF14	$\begin{aligned} & \text { RPDO3-SubIndex2- } \\ & \text { H } \end{aligned}$	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-20" on page $592$
AF-21	0xAF15	RPDO3-SubIndex2-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-21" on page $592$
AF-22	0xAF16	$\begin{aligned} & \text { RPDO3-SubIndex3- } \\ & \text { H } \end{aligned}$	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-22" on page $592$
AF-23	0xAF17	RPDO3-SubIndex3-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-23" on page $593$
AF-24	0xAF18	$\begin{aligned} & \text { RPDO4-SubIndex0- } \\ & \text { H } \end{aligned}$	$0 \times 0$ to 0xFFFF	0x0	-	Changeable at any time	" $A F-24$ " on page 593
AF-25	0xAF19	RPDO4-SubIndex0-L	$0 \times 0$ to 0xFFFF	0x0	-	Changeable at any time	"AF-25" on page $593$
AF-26	0xAF1A	RPDO4-SubIndex1-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	" $A F-26$ " on page 593
AF-27	0xAF1B	RPDO4-SubIndex1-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-27" on page $593$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
AF-28	0xAF1C	$\begin{aligned} & \text { RPDO4-SubIndex2- } \\ & \text { H } \end{aligned}$	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-28" on page $593$
AF-29	0xAF1D	RPDO4-SubIndex2-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-29" on page $594$
AF-30	0xAF1E	RPDO4-SubIndex3-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-30" on page $594$
AF-31	0xAF1F	RPDO4-SubIndex3-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-31" on page 594
AF-32	0xAF20	TPDO1-SubIndexO-   H	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"AF-32" on page $594$
AF-33	0xAF21	TPDO1-SubIndexO-   L	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"AF-33" on page $594$
AF-34	0xAF22	TPDO1-SubIndex1-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-34" on page 595
AF-35	0xAF23	TPDO1-SubIndex1-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-35" on page 595
AF-36	0xAF24	TPDO1-SubIndex2H	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"AF-36" on page $595$
AF-37	0xAF25	TPDO1-SubIndex2-L	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"AF-37" on page 595
AF-38	0xAF26	TPDO1-SubIndex3-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-38" on page $595$
AF-39	0xAF27	TPDO1-SubIndex3-L	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"AF-39" on page $596$
AF-40	0xAF28	TPDO2-SubIndex0-   H	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"AF-40" on page $596$
AF-41	0xAF29	TPDO2-SubIndex0-L	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"AF-41" on page $596$
AF-42	0xAF2A	TPDO2-SubIndex1-   H	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"AF-42" on page $596$
AF-43	0xAF2B	TPDO2-SubIndex1-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-43" on page 596
AF-44	0xAF2C	TPDO2-SubIndex2-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-44" on page 597
AF-45	0xAF2D	TPDO2-SubIndex2-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-45" on page $597$
AF-46	0xAF2E	TPDO2-SubIndex3-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-46" on page 597
AF-47	0xAF2F	TPDO2-SubIndex3-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-47" on page $597$
AF-48	0xAF30	$\begin{aligned} & \text { TPDO3-SubIndex0- } \\ & \text { H } \end{aligned}$	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-48" on page $597$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
AF-49	0xAF31	TPDO3-SubIndex0-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "AF-49" on page } \\ & 598 \end{aligned}$
AF-50	0xAF32	TPDO3-SubIndex1-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-50" on page 598
AF-51	0xAF33	TPD03-SubIndex1-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-51" on page $598$
AF-52	0xAF34	TPDO3-SubIndex2-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-52" on page $598$
AF-53	0xAF35	TPDO3-SubIndex2-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "AF-53" on page } \\ & 598 \end{aligned}$
AF-54	0xAF36	TPDO3-SubIndex3-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-54" on page $598$
AF-55	0xAF37	TPD03-SubIndex3-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-55" on page $599$
AF-56	0xAF38	TPDO4-SubIndex0H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-56" on page   599
AF-57	0xAF39	TPDO4-SubIndex0-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-57" on page $599$
AF-58	0xAF3A	TPDO4-SubIndex1H	$0 \times 0$ to 0xFFFF	0x0	-	Changeable at any time	"AF-58" on page $599$
AF-59	0xAF3B	TPD04-SubIndex1-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-59" on page $599$
AF-60	0xAF3C	TPDO4-SubIndex2-   H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-60" on page 600
AF-61	0xAF3D	TPDO4-SubIndex2-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-61" on page $600$
AF-62	0xAF3E	TPDO4-SubIndex3H	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-62" on page 600
AF-63	0xAF3F	TPDO4-SubIndex3-L	0x0 to 0xFFFF	0x0	-	Changeable at any time	"AF-63" on page 600
AF-66	0xAF42	Number of valid RPDOs	0x0 to 0xFFFF	0x0	-	Unchangea ble	"AF-66" on page $600$
AF-67	0xAF43	Number of valid TPDOs	0x0 to 0xFFFF	0x0	-	Unchangea ble	"AF-67" on page 601
B6-00	0xB600	Startup mode	0: Direct start   1: Flying start   2: Pre-excitation start (AC asynchronous motor)   3: SVC quick start	0	-	Changeable at any time	"B6-00" on page 601


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B6-01	0xB601	Speed tracking mode	0: From the stop frequency   1: From the power frequency   2: From the maximum frequency   3: Reserved   4: Magnetic field directional speed tracking (MD290)	0	-	Changeable at any time	"B6-01" on page 601
B6-02	0xB602	Speed of speed tracking	1 to 100	20	-	Changeable at any time	"B6-02" on page 601
B6-03	0xB603	Startup frequency	0.00 Hz to 10.00 Hz	0.00	Hz	Changeable at any time	"B6-03" on page $602$
B6-04	0xB604	Startup frequency hold time	0.0 s to 100.0 s	0.0	s	Changeable only at stop	"B6-04" on page 602
B6-05	0xB605	DC braking current at startup	0\% to 100\%	50	\%	Changeable only at stop	"B6-05" on page 602
B6-06	0xB606	DC braking time at startup	0.0 s to 100.0 s	0.0	s	Changeable only at stop	"B6-06" on page 602
B6-07	0xB607	Stop mode	0: Decelerate to stop   1: Coast to stop   2: Stop at maximum capability	0	-	Changeable at any time	"B6-07" on page 603
B6-08	0xB608	Start frequency of DC braking at stop	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"B6-08" on page $603$
B6-09	0xB609	DC braking delay at stop	0.0s to 100.0 s	0.0	S	Changeable at any time	"B6-09" on page 603
B6-10	0xB60A	DC braking current at stop	0\% to 100\%	50	\%	Changeable at any time	"B6-10" on page $603$
B6-11	0xB60B	DC braking time at stop	0.0 s to 100.0 s	0.0	S	Changeable at any time	"B6-11" on page 603
B6-12	0xB60C	Speed tracking   sweep current limit closed loop Kp	0 to 1000	500	-	Changeable at any time	"B6-12" on page 604
B6-13	0xB60D	Speed tracking sweep current limit closed loop Ki	0 to 1000	800	-	Changeable at any time	"B6-13" on page 604
B6-14	0xB60E	Speed tracking current	30\% to 200\%	80	\%	Changeable only at stop	"B6-14" on page 604
B6-15	0xB60F	Current loop multiple	10\% to 600\%	100	\%	Changeable at any time	"B6-15" on page 604
B6-16	0xB610	Demagnetization time (valid for asynchronous motors)	0.00s to 5.00 s	0.50	S	Changeable at any time	"B6-16" on page 604
B6-17	0xB611	Overexcitation enable	0: Disabled   2: Enabled during deceleration   3: Enabled always	0	-	Changeable at any time	$\begin{aligned} & \text { "B6-17" on page } \\ & 605 \end{aligned}$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
B6-18	0xB612	Overexcitation suppression current	0\% to 150\%	100	\%	Changeable at any time	"B6-18" on page 605
B6-19	0xB613	Overexcitation gain	0.01 to 2.50	1.25	-	Changeable at any time	"B6-19" on page 605
B6-25	0xB619	Skip frequency 1	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"B6-25" on page $605$
B6-26	0xB61A	Skip frequency 2	0.00 Hz to F0-10	0.00	Hz	Changeable at any time	"B6-26" on page 605
B6-27	0xB61B	Skip frequency 3	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"B6-27" on page 606
B6-28	0xB61C	Skip frequency 4	0.00 Hz to F0-10	0.00	Hz	Changeable at any time	"B6-28" on page 606
B6-29	0xB61D	Skip frequency band	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"B6-29" on page $606$
B6-30	0xB61E	Source of frequency upper limit	0: F0-12   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   Others: F connector	0	-	Changeable only at stop	"B6-30" on page $606$
B6-31	0xB61F	Frequency upper limit	B6-33 to F0-10	50.00	Hz	Changeable at any time	"B6-31" on page 607
B6-32	0xB620	Frequency upper limit offset	0.00 Hz to F0-10 (maximum frequency)	0.00	Hz	Changeable at any time	"B6-32" on page 607
B6-33	0xB621	Frequency lower limit	0.00 Hz to B6-31	0.00	Hz	Changeable at any time	"B6-33" on page 607
B6-34	0xB622	Speed/Torque control mode	0 : Speed control   1: Torque control	0	-	Changeable at any time	"B6-34" on page 607
B6-35	0xB623	Motor overload protection	0: Disabled   1: Enabled	1	-	Changeable at any time	"B6-35" on page 607
B6-36	0xB624	Motor overload protection gain	0.20 to 10.00	1.00	-	Changeable at any time	"B6-36" on page 608
B6-37	0xB625	Motor overload prewarning coefficient	50\% to $100 \%$	80	\%	Changeable at any time	"B6-37" on page 608
B6-38	0xB626	Overvoltage stall suppression gain	1 to 100	30	-	Changeable at any time	"B6-38" on page 608
B6-39	0xB627	Overvoltage stall protection voltage	330.0 V to 800.0 V	770.0	V	Changeable at any time	"B6-39" on page 608


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B6-40	0xB628	Input phase loss/   Contactor pickup protection	Ones: Input phase loss protection   0 : Disabled   1: Protection enabled when both software and hardware input phase loss conditions are met   2: Protection enabled when software input phase loss conditions are met   3: Protection enabled when hardware input phase loss conditions are met Tens: Contactor pickup protection   0: Disabled   1: Enabled	11	-	Changeable at any time	"B6-40" on page 608
B6-41	0xB629	Output phase loss protection	Ones: Output phase loss protection upon power-on   0 : Disabled   1: Enabled   Tens: Output phase loss protection before running   0 : Disabled   1: Enabled	1	-	Changeable at any time	"B6-41" on page $609$
B6-42	0xB62A	Power dip ridethrough	0 : Disabled   1: Decelerate   2: Decelerate to stop   3: Suppress voltage dip	0	-	Changeable only at stop	$\begin{aligned} & \text { "B6-42" on page } \\ & 609 \end{aligned}$
B6-43	0xB62B	Voltage threshold for disabling power dip ride-through	$80 \%$ to $100 \%$	85	\%	Changeable only at stop	"B6-43" on page 609
B6-44	0xB62C	Delay of voltage recovery from power dip	0.0 s to 100.0 s	0.5	s	Changeable only at stop	$\begin{aligned} & \text { "B6-44" on page } \\ & 610 \end{aligned}$
B6-45	0xB62D	Voltage threshold for enabling power dip ride-through	60\% to $100 \%$	80	\%	Changeable only at stop	"B6-45" on page $610$
B6-46	0xB62E	Protection upon load loss	0 : Disabled   1: Enabled	0	-	Changeable at any time	"B6-46" on page $610$
B6-47	0xB62F	Load loss detection level	0.0\% to +100.0\%	10.0	\%	Changeable at any time	"B6-47" on page $610$
B6-48	0xB630	Load loss detection time	0.0 s to 60.0s	1.0	s	Changeable at any time	"B6-48" on page $610$
B6-49	0xB631	Overspeed detection level	0.0\% to 50.0\%	20.0	\%	Changeable at any time	"B6-49" on page 611
B6-50	0xB632	Overspeed detection time	0.0s to 60.0s	1.0	s	Changeable at any time	"B6-50" on page   611
B6-51	0xB633	Detection level of excessive speed deviation	0.0\% to 50.0\%	20.0	\%	Changeable at any time	"B6-51" on page 611


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
B6-52	0xB634	Detection time of excessive speed deviation	0.0 s to 60.0s	5.0	s	Changeable at any time	"B6-52" on page $611$
B6-53	0xB635	Power dip ridethrough gain Kp	1 to 100	40	-	Changeable at any time	"B6-53" on page $611$
B6-54	0xB636	Power dip ridethrough integral coefficient Ki	1 to 100	30	-	Changeable at any time	"B6-54" on page $611$
B6-55	0xB637	Deceleration time of power dip ridethrough	0.0s to 300.0s	20.0	s	Changeable at any time	"B6-55" on page $612$
B6-56	0xB638	Voltage dip suppression time	0.1s to 600.0s	0.5	s	Changeable at any time	"B6-56" on page $612$
B7-00	0xB700	Number of parallel motors	1 to 200	1	-	Changeable only at stop	"B7-00" on page 612


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B7-01	0xB701	Motor information command word	Bit00: Mutual inductance curve   0 : Disabled   1: Enabled   Bit01: D- and Q-axis inductance curve   0 : Disabled   1: Enabled   Bit02: Rotor resistance online auto-tuning   0 : Disabled   1: Enabled   Bit03: Rotor resistance online auto-tuning method   0 : Amplitude   1: Phase   Bit04: Motor thermal model   0 : Disabled   1: Enabled   Bit05: Temperature source of motor thermal model   0 : Estimated temperature   1: Temperature detected by sensor   Bit06: Torque coefficient calculation of asynchronous motor   0 : Torque formula   1: Current distribution   Bit07: Torque coefficient calculation of synchronous motor   0 : Torque formula   1: Torque matching the rated torque   Bit08: Zero speed friction torque calculation   0 : Torque linearly decreasing to zero   1: Torque to maintain minimum speed   Bit09: Calculation of model parameters based on nameplate parameters   0 : Disabled   1: Enabled   Bit10: Confirmation of calculating model parameters based on nameplate parameters   0: Default   1: Confirm	0x3		Changeable only at stop	"B7-01" on page $612$
B7-02	0xB702	Number of motor pole pairs	0 to 64	0	-	Changeable only at stop	"B7-02" on page 613
B7-03	0xB703	Motor power factor	0.600 to 1.000	0.860	-	Changeable only at stop	"B7-03" on page 614
B7-05	0xB705	Expansion card	1: Expansion card 1   2: Expansion card 2	1	-	Changeable only at stop	"B7-05" on page 614
B7-06	0xB706	ABZ encoder speed measurement mode at low speed	0 : Maintain   1: Attenuate   2: Optimized solution	2	-	Changeable only at stop	"B7-06" on page 614


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
B7-07	0xB707	Encoder speed measurement filter time constant	0.000 s to 10.000 s	0.004	s	Changeable at any time	"B7-07" on page 614
B7-08	0xB708	Encoder wire breakage software detection coefficient	0.000 to 8.000	1.000	-	Changeable at any time	"B7-08" on page 614
B7-09	0xB709	Encoder control word	Bit00: Speed measurement   0: Disabled   1: Enabled   Bit01: Software detection of wire breakage   0 : Disabled   1: Enabled   Bit02: Glitch removal   0: Disabled   1: Enabled   Bit03: ABZ encoder speed measurement mode   0: Quadruplicated frequency   1: Single pulse	0	-	Changeable only at stop	"B7-09" on page 615
B7-10	0xB70A	Speed   measurement   exception count   threshold	1 to 100	10	-	Changeable only at stop	"B7-10" on page 615
B7-11	0xB70B	Motor gear ratio (numerator)	1 to 65535	1	-	Changeable only at stop	"B7-11" on page $615$
B7-12	0xB70C	Motor gear ratio (denominator)	1 to 65535	1	-	Changeable only at stop	"B7-12" on page $615$
B7-13	0xB70D	External input source of encoder	0: 0   1: Al1   2: AI2   3: AI3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable only at stop	"B7-13" on page $616$
B7-15	0xB70F	Stator leakage inductance	0.000 mH to 65.535 mH	6.540	mH	Changeable only at stop	"B7-15" on page 616
B7-16	0xB710	Electromechanical time constant	1 ms to 65535 ms	100	ms	Unchangea ble	"B7-16" on page 616
B7-17	0xB711	Inertia ratio	0.0\% to 6553.5\%	120.0	\%	Changeable only at stop	"B7-17" on page $616$
B7-18	0xB712	Friction torque	0.0\% to 6553.5\%	2.0	\%	Changeable only at stop	"B7-18" on page 617


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B7-19	0xB713	Excitation current coefficient 1 of mutual inductance curve (rated)	5.0\% to $100.0 \%$	50.0	\%	Changeable only at stop	"B7-19" on page 617
B7-20	0xB714	Excitation current coefficient 2 of mutual inductance curve (rated)	5.0\% to $100.0 \%$	75.0	\%	Changeable only at stop	"B7-20" on page 617
B7-21	0xB715	Excitation current coefficient 3 of mutual inductance curve	100.0\% to 800.0\%	150.0	\%	Changeable only at stop	"B7-21" on page 617
B7-22	0xB716	Excitation current coefficient 4 of mutual inductance curve	100.0\% to 800.0\%	210.0	\%	Changeable only at stop	"B7-22" on page 617
B7-23	0xB717	Flux coefficient 1 of mutual inductance curve (rated)	10.0\% to $100.0 \%$	50.0	\%	Changeable only at stop	"B7-23" on page 618
B7-24	0xB718	Flux coefficient 2 of mutual inductance curve (rated)	10.0\% to $100.0 \%$	85.0	\%	Changeable only at stop	"B7-24" on page $618$
B7-25	0xB719	Flux coefficient 3 of mutual inductance curve	100.0\% to 300.0\%	115.0	\%	Changeable only at stop	"B7-25" on page $618$
B7-26	$0 \times B 71 \mathrm{~A}$	Flux coefficient 4 of mutual inductance curve	100.0\% to 300.0\%	125.0	\%	Changeable only at stop	"B7-26" on page 618
B7-27	0xB71B	Speed point 1 of friction curve	0 RPM to 30000 RPM	15	RPM	Changeable only at stop	"B7-27" on page $618$
B7-28	0xB71C	Speed point 2 of friction curve	0 RPM to 30000 RPM	30	RPM	Changeable only at stop	"B7-28" on page 618
B7-29	0xB71D	Speed point 3 of friction curve	0 RPM to 30000 RPM	60	RPM	Changeable only at stop	"B7-29" on page $619$
B7-30	0xB71E	Speed point 4 of friction curve	0 RPM to 30000 RPM	120	RPM	Changeable only at stop	"B7-30" on page $619$
B7-31	0xB71F	Speed point 5 of friction curve	0 RPM to 30000 RPM	150	RPM	Changeable only at stop	"B7-31" on page 619
B7-32	0xB720	Speed point 6 of friction curve	0 RPM to 30000 RPM	300	RPM	Changeable only at stop	"B7-32" on page $619$
B7-33	0xB721	Speed point 7 of friction curve	0 RPM to 30000 RPM	600	RPM	Changeable only at stop	"B7-33" on page $619$
B7-34	0xB722	Speed point 8 of friction curve	0 RPM to 30000 RPM	1200	RPM	Changeable only at stop	"B7-34" on page $620$


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
B7-35	0xB723	Speed point 9 of friction curve	0 RPM to 30000 RPM	1500	RPM	Changeable only at stop	"B7-35" on page $620$
B7-36	0xB724	Speed point 10 of friction curve	0 RPM to 30000 RPM	3000	RPM	Changeable only at stop	"B7-36" on page $620$
B7-37	0xB725	Torque point 1 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"B7-37" on page $620$
B7-38	0xB726	Torque point 2 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"B7-38" on page $620$
B7-39	0xB727	Torque point 3 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"B7-39" on page 621
B7-40	0xB728	Torque point 4 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"B7-40" on page $621$
B7-41	0xB729	Torque point 5 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"B7-41" on page 621
B7-42	0xB72A	Torque point 6 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"B7-42" on page 621
B7-43	0xB72B	Torque point 7 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"B7-43" on page   621
B7-44	0xB72C	Torque point 8 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"B7-44" on page $622$
B7-45	0xB72D	Torque point 9 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"B7-45" on page $622$
B7-46	0xB72E	Torque point 10 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"B7-46" on page $622$
B7-47	0xB72F	Current coefficient starting point of Dand Q-axis inductance curve	$-800 \%$ to $+800.0 \%$	-200	\%	Changeable only at stop	"B7-47" on page $622$
B7-48	0xB730	Current coefficient end point of $D$ - and Q-axis inductance curve	$-800 \%$ to $+800.0 \%$	200.0	\%	Changeable only at stop	"B7-48" on page $622$
B7-49	0xB731	D axis inductance 1 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-49" on page $623$
B7-50	0xB732	D axis inductance 2 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-50" on page 623
B7-51	0xB733	D axis inductance 3 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-51" on page $623$
B7-52	0xB734	D axis inductance 4 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-52" on page $623$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B7-53	0xB735	D axis inductance 5 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-53" on page $623$
B7-54	0xB736	D axis inductance 6 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-54" on page $623$
B7-55	0xB737	D axis inductance 7 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-55" on page   624
B7-56	0xB738	D axis inductance 8 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-56" on page 624
B7-57	0xB739	D axis inductance 9 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-57" on page $624$
B7-58	0xB73A	D axis inductance 10 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-58" on page   624
B7-59	0xB73B	D axis inductance   11 of $D$ - and $Q$-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-59" on page 624
B7-60	0xB73C	D axis inductance 12 of D - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-60" on page 625
B7-61	0xB73D	Q axis inductance 1 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-61" on page $625$
B7-62	0xB73E	Q axis inductance 2 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-62" on page 625
B7-63	0xB73F	Q axis inductance 3 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-63" on page $625$
B7-64	0xB740	Q axis inductance 4 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-64" on page 625
B7-65	0xB741	Q axis inductance 5 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-65" on page $626$
B7-66	0xB742	Q axis inductance 6 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-66" on page 626
B7-67	0xB743	Q axis inductance 7 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-67" on page 626


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B7-68	0xB744	Q axis inductance 8 of D - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-68" on page $626$
B7-69	0xB745	Q axis inductance 9 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-69" on page $626$
B7-70	0xB746	Q axis inductance 10 of D - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-70" on page $627$
B7-71	0xB747	Q axis inductance 11 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-71" on page $627$
B7-72	0xB748	Q axis inductance 12 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"B7-72" on page $627$
B8-00	0xB800	Parameter autotuning upon startup	Bit00: Synchronous motor pole position autotuning upon startup   0: Disabled   1: Enabled   Bit01: Quick stator resistance auto-tuning upon startup   0 : Disabled   1: Enabled   Bit02-Bit03: HFI pole position auto-tuning   0 : Disabled   1: Enabled   2: Adaptive   Bit04: IGBT shoot-through self-check upon   startup   0: Disabled   1: Enabled   Bit05: Short-to-ground self-check upon startup (reserved)   0: Disabled   1: Enabled   Bit06: Phase loss self-check upon startup (reserved)   0 : Disabled   1: Enabled	1	-	Changeable only at stop	"B8-00" on page 627
B8-01	0xB801	Auto-tuning direction	0 to 1	1	-	Changeable only at stop	"B8-01" on page $628$
B8-02	0xB802	Oscillation suppression gain of synchronous motor back EMF autotuning	0.0 to 30.0	3.2	-	Changeable only at stop	"B8-02" on page $628$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B8-03	0xB803	Target speed of rotation autotuning	30.0\% to 100.0\%	70.0	\%	Changeable only at stop	"B8-03" on page   628
B8-04	0xB804	Target speed 1 of inertia auto-tuning	10.0\% to B8-05	40.0	\%	Changeable only at stop	"B8-04" on page $629$
B8-05	0xB805	Target speed 2 of inertia auto-tuning	B8-04 to 100.0\%	60.0	\%	Changeable only at stop	"B8-05" on page $629$
B8-06	0xB806	Overcurrent prevention of mutual inductance saturation curve	0 to 1	1	-	Changeable only at stop	"B8-06" on page $629$
B8-07	0xB807	Auto-tuning items	Bit00: Speed loop parameter adaptation   0 : Disabled   1: Enabled   Bit01: Current loop parameter adaptation   0 : Disabled   1: Enabled   Bit02: Drive nonlinear auto-tuning   0 : Disabled   1: Enabled   Bit03: Inter-phase deviation coefficient autotuning   0 : Disabled   1: Enabled   Bit04: Auto-tuning of initial pole position of synchronous motor   0 : Disabled   1: Enabled   Bit05: Auto-tuning of D - and Q -axis inductance   model of synchronous motor   0 : Disabled   1: Enabled   Bit06: System inertia auto-tuning   0 : Disabled   1: Enabled   Bit07: HFI pole position auto-tuning   0: Disabled   1: Enabled	117	-	Changeable only at stop	"B8-07" on page $629$
B8-08	0xB808	OFF3 stop mode	0: Quick stop   1: Stop at maximum capability	0	-	Changeable only at stop	"B8-08" on page $630$
B8-09	0xB809	Stop mode during running	0: OFF1 stop mode   1: OFF2 stop mode   2: OFF3 stop mode	1	-	Changeable only at stop	"B8-09" on page $630$
B8-10	0xB80A	Stop mode for torque control	0 : Coast to stop forcibly   1: Switch to speed control mode and then stop   2: Maintain torque control mode until zero speed and then block	1	-	Changeable only at stop	"B8-10" on page   631


Para.	Comm.   Addr.	Name		Deference   fault	Unit	Change	Page


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
B8-26	0xB81A	Ramp (FRG) selection bit0	0: 0 1: 1 2: Terminal function input 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16	0	-	Changeable at any time	"B8-26" on page   634
B8-27	0xB81B	Ramp (FRG) selection bit1	Same as B8-26	0	-	Changeable at any time	"B8-27" on page $634$
B8-30	0xB81E	Motor protection	Bit00: Motor overload determination (reserved)   Bit01: Motor overheat detection (reserved)   Bit02: PG fault detection (reserved)   Bit03: Current control error detection   Bit04: Motor stall error detection   Bit05: Locked-rotor detection   Bit06: Synchronous motor demagnetization protection   Bit07: Protection against locked-rotor in SVC speed open-loop control   Bit08: Reserved   Bit09: Parameter setting error	537	-	Changeable at any time	"B8-30" on page   634
B8-31	0xB81F	Locked-rotor time	0.0 s to 65.0s	2.0	s	Changeable at any time	"B8-31" on page $635$
B8-32	0xB820	Locked-rotor frequency	0.0\% to 600.0\%	6.0	\%	Changeable at any time	"B8-32" on page $635$
B8-33	0xB821	Motor stall detection time	0.0 s to 10.0 s	0.5	s	Changeable at any time	"B8-33" on page $635$
B8-34	0xB822	Stall detection threshold	0.0\% to $+100.0 \%$	30.0	\%	Changeable at any time	"B8-34" on page $635$
B8-35	0xB823	Current control exception detection time	0.00 s to 1.00 s	0.05	s	Changeable at any time	"B8-35" on page $636$
B8-36	0xB824	Current control exception detection threshold	0.0\% to 200.0\%	25.0	\%	Changeable at any time	"B8-36" on page $636$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B8-37	0xB825	Synchronous motor overcurrent threshold	0.0\% to 500.0\%	300.0	\%	Changeable at any time	"B8-37" on page $636$
B8-39	0xB827	Speed deviation detection	0 to 1	1	-	Changeable at any time	"B8-39" on page $636$
B8-40	0xB828	Asynchronous motor FVC model switchover frequency	0\% to $1000 \%$	20	\%	Changeable only at stop	"B8-40" on page $636$
B8-41	0xB829	Asynchronous motor FVC model switchover hysteresis frequency	10\% to 50\%	20	\%	Changeable only at stop	"B8-41" on page 637
B8-42	0xB82A	Asynchronous   motor FVC observer   filter time	5 ms to 100 ms	15	ms	Changeable only at stop	"B8-42" on page   637
B8-43	0xB82B	Asynchronous motor FVC current model mode	0 to 1	0	-	Changeable only at stop	"B8-43" on page 637
B8-44	0xB82C	Asynchronous motor FVC preexcitation output observation angle mode	0 to 1	0	-	Changeable only at stop	"B8-44" on page 637
B8-45	0xB82D	Asynchronous motor SVC model switchover frequency	10\% to 20\%	15	\%	Changeable only at stop	"B8-45" on page 637
B8-46	0xB82E	Asynchronous motor SVC observer filter time	5 ms to 50 ms	10	ms	Changeable at any time	"B8-46" on page 637
B8-47	0xB82F	Asynchronous   motor SVC observer   gain 1	10\% to 500\%	100	\%	Changeable at any time	"B8-47" on page 638
B8-48	0xB830	Asynchronous motor SVC observer gain 2	10\% to $100 \%$	20	\%	Changeable at any time	"B8-48" on page $638$
B8-49	0xB831	Asynchronous   motor SVC observer   mode	0 to 3	0	-	Changeable only at stop	"B8-49" on page 638
B8-50	0xB832	Asynchronous   motor SVC pre-   excitation mode	0 to 1	0	-	Changeable only at stop	"B8-50" on page $638$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B8-51	0xB833	Asynchronous   motor SVC speed   tracking mode	0 to 1	0	-	Changeable only at stop	"B8-51" on page $638$
B8-54	0xB836	Synchronous motor   1 model control	Bit00: Low speed processing   Bit01: Low speed processing 1   Bit02: Online auto-tuning of resistance   Bit03: Online auto-tuning of back EMF   Bit04: KS	5	-	Changeable at any time	"B8-54" on page $639$
B8-55	0xB837	Synchronous motor model K1	10 to 3000	200	-	Changeable at any time	"B8-55" on page   639
B8-56	0xB838	Synchronous motor model K1Max	100 to 6000	3000	-	Changeable at any time	"B8-56" on page $639$
B8-57	0xB839	Synchronous motor model KsMin	0.0 to 4.0	0.3	-	Changeable at any time	"B8-57" on page $639$
B8-58	0xB83A	Synchronous motor model Kspeed	50 to 2000	400	-	Changeable at any time	"B8-58" on page $640$
B8-59	0xB83B	Synchronous motor frequency filter time constant	2 ms to 100 ms	10	ms	Changeable at any time	"B8-59" on page $640$
B8-60	0xB83C	Frequency upper limit of synchronous motor Rs online autotuning	1.0\% to 20.0\%	3.5	\%	Changeable at any time	"B8-60" on page $640$
B8-61	0xB83D	Synchronous motor model Kr	0 to 50	10	-	Changeable at any time	"B8-61" on page $640$
B8-62	0xB83E	Synchronous motor model Kr1	0 to 50	5	-	Changeable at any time	"B8-62" on page $640$
B8-63	0xB83F	Synchronous motor low-speed D axis injection current	0\% to 100\%	20	\%	Changeable at any time	"B8-63" on page $640$
B8-64	0xB840	Synchronous motor model LowFreqTime1	0 to 500	50	-	Changeable at any time	"B8-64" on page   641
B8-67	0xB843	Frequency lower limit of back EMF online auto-tuning	10\% to $100 \%$	25	\%	Changeable at any time	"B8-67" on page   641
B8-68	0xB844	Synchronous motor model LowFreq	0.0\% to 2.0\%	0.3	\%	Changeable at any time	"B8-68" on page 641
B8-69	0xB845	Synchronous motor   model   LowFreqTime	0 to 100	10	-	Changeable at any time	"B8-69" on page 641
B8-70	0xB846	Percentage of pole auto-tuning current	50\% to 200\%	100	\%	Changeable at any time	"B8-70" on page   641


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B8-71	0xB847	Percentage of high frequency response current	0\% to 100\%	25	\%	Changeable at any time	"B8-71" on page $642$
B8-72	0xB848	Percentage of HFI and SVC switching frequency	0\% to 30\%	10	\%	Changeable at any time	"B8-72" on page $642$
B8-73	0xB849	Observer parameter	10 to 200	100	-	Changeable at any time	"B8-73" on page $642$
B8-74	0xB84A	Speed filter cut-off frequency	1 Hz to 200 Hz	10	Hz	Changeable at any time	"B8-74" on page $642$
B8-75	0xB84B	Carrier frequency during NS autotuning	2.00 Hz to 16.00 Hz	8.00	Hz	Changeable at any time	"B8-75" on page $642$
B8-76	0xB84C	Automatic calculation of NS auto-tuning voltage	0 to 1	1	-	Changeable at any time	"B8-76" on page $643$
B8-77	0xB84D	Percentage of NS auto-tuning voltage set manually	0\% to $100 \%$	10	\%	Changeable at any time	"B8-77" on page $643$
B8-78	0xB84E	Duration of HFI stage 1	50 ms to 500 ms	150	ms	Changeable at any time	"B8-78" on page $643$
B8-80	0xB850	Speed loop command word	Bit00: Speed loop   0: Disabled   1: Enabled   Bit01: Integration mode   0 : Conventional integration   1: Position integration   Bit02: Acceleration torque   0 : Disabled   1: Enabled   Bit03-Bit04: Acceleration source   0 : Function transfer torque   1: Automatic calculation   2: Function transfer acceleration   Bit05: Anti-load disturbance   0 : Disabled   1: Enabled	11	-	Changeable at any time	"B8-80" on page 643
B8-81	0xB851	Locked-rotor fast integral cancel coefficient	0.0\% to +100.0\%	0.0	\%	Changeable at any time	"B8-81" on page 644
B8-82	0xB852	Integral torque	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"B8-82" on page 644
B8-83	0xB853	Speed controller frequency window size	0.00 Hz to 10.00 Hz	0.00	Hz	Changeable only at stop	"B8-83" on page 644


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
B8-84	0xB854	Current filter time for torque reference	0.0 ms to 100.0 ms	0.0	ms	Changeable only at stop	"B8-84" on page $645$
B8-85	0xB855	Acceleration torque	0 : Inactive   1: Al1   2: AI2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"B8-85" on page 645
B8-87	0xB857	Reference model bandwidth	0.00 Hz to 300.00 Hz	0.00	Hz	Changeable at any time	"B8-87" on page $645$
B8-88	0xB858	Torque feedforward coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"B8-88" on page $645$
B8-89	0xB859	Vector control reference frequency filter time	0.0 ms to 100.0 ms	0.0	ms	Changeable only at stop	"B8-89" on page $645$
B8-90	0xB85A	Vector control feedback frequency filter time	0.0 ms to 100.0 ms	0.0	ms	Changeable only at stop	"B8-90" on page 646
B8-91	0xB85B	Load observation bandwidth	0.00 Hz to 300.00 Hz	0.00	Hz	Changeable at any time	"B8-91" on page 646
B8-92	0xB85C	Load observation coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"B8-92" on page $646$
B8-93	0xB85D	Pseudo integral coefficient	0.000 to 10.000	1.000	-	Changeable at any time	"B8-93" on page $646$
B8-94	0xB85E	Torque coefficient enable	0: Disabled   1: Enabled	0	-	Changeable at any time	"B8-94" on page $646$
B8-96	0xB860	Center frequency of notch filter 1	0.0 to 4000.0	4000.0	-	Changeable at any time	"B8-96" on page 647
B8-97	0xB861	Center frequency of notch filter 2	0.0 to 4000.0	4000.0	-	Changeable at any time	"B8-97" on page 647
B8-98	0xB862	Integral setting control word	0: Disabled   1: Enabled   Others: B connector	0	-	Changeable at any time	"B8-98" on page 647


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B8-99	0xB863	Integral reference source	0 : Digital setting   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"B8-99" on page 647
B9-00	0xB900	Externally transferred acceleration	0 : Inactive   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"B9-00" on page $648$
B9-03	0xB903	Overturning torque limiting coefficient	0.0\% to 400.0\%	100.0	\%	Changeable at any time	"B9-03" on page $648$
B9-04	0xB904	Motoring power limiting coefficient	0.0\% to 400.0\%	400.0	\%	Changeable at any time	"B9-04" on page $648$
B9-05	0xB905	Generating power limiting coefficient	0.0\% to 400.0\%	400.0	\%	Changeable at any time	"B9-05" on page $649$
B9-06	0xB906	Overspeed limiting enable	0 to 1	1	-	Changeable at any time	"B9-06" on page $649$
B9-07	0xB907	Sine wave frequency of bandwidth test	0 Hz to 1000 Hz	0	Hz	Changeable at any time	"B9-07" on page $649$
B9-08	0xB908	Sine wave amplitude of bandwidth test	0\% to $100 \%$	0	\%	Changeable at any time	"B9-08" on page $649$
B9-09	0xB909	Bandwidth test enable	0 to 4	0	-	Changeable at any time	"B9-09" on page $649$
B9-11	0xB90B	Speed loop   parameter   calculation mode	0: New solution   1: Compatible solution	1	-	Changeable only at stop	"B9-11" on page $650$
B9-12	0xB90C	Speed loop   proportional gain in FVC mode	0.00 Hz to 100.00 Hz	8.00	Hz	Changeable at any time	"B9-12" on page $650$
B9-13	0xB90D	Speed loop integral time in FVC mode	0.000s to 20.000s	0.080	s	Changeable at any time	$\begin{aligned} & \text { "B9-13" on page } \\ & 650 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B9-14	0xB90E	Speed loop   proportional gain in SVC mode	0.00 Hz to 100.00 Hz	5.00	Hz	Changeable at any time	"B9-14" on page $650$
B9-15	0xB90F	Speed loop integral time in SVC mode	0.000s to 20.000s	0.127	s	Changeable at any time	"B9-15" on page $650$
B9-16	0xB910	Low frequency proportional correction coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"B9-16" on page   651
B9-17	0xB911	Low frequency integral correction coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"B9-17" on page $651$
B9-18	0xB912	Speed loop adaption factor	0.000 to 10.000	0.200	-	Changeable at any time	"B9-18" on page 651
B9-19	0xB913	Speed loop   adaption   switchover lower   limit	0.000 to 10.000	0.400	-	Changeable at any time	"B9-19" on page 651
B9-20	0xB914	Speed loop   adaption   switchover upper   limit	0.000 to 10.000	1.000	-	Changeable at any time	"B9-20" on page 651
B9-21	0xB915	Speed loop adaption correction upper limit	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"B9-21" on page 652
B9-22	0xB916	Speed loop   adaption correction lower limit	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"B9-22" on page 652
B9-23	0xB917	Flux adaptation enable	0 to 1	0	-	Changeable at any time	"B9-23" on page $652$
B9-24	0xB918	Overspeed controller correction coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"B9-24" on page 652
B9-25	0xB919	VDC control command word	Bit00: VdcMin   0 : Disabled   1: Enabled   Bit01: VdcMax   0 : Disabled   1: Enabled   Bit02: Automatic calculation of VDC trigger voltage   0 : Disabled   1: Enabled   Bit03: VDC control integral action   0 : Disabled   1: Enabled	0	-	Changeable at any time	"B9-25" on page $652$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
B9-26	0xB91A	Bus capacitance ratio	50.0\% to 1000.0\%	100.0	\%	Changeable at any time	"B9-26" on page $653$
B9-27	0xB91B	Undervoltage suppression exit hysteresis frequency	0.00 Hz to 10.00 Hz	3.00	Hz	Changeable at any time	"B9-27" on page $653$
B9-28	0xB91C	Minimum VDC failure speed threshold	0.00 Hz to 20.00 Hz	2.00	Hz	Changeable at any time	"B9-28" on page $653$
B9-29	0xB91D	Dynamic adjustment coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"B9-29" on page 653
B9-30	0xB91E	Minimum VDC activation voltage	320.0 V to 540.0 V	430.0	V	Changeable at any time	"B9-30" on page 654
B9-31	0xB91F	Maximum VDC activation voltage	650.0 V to 800.0 V	770.0	V	Changeable at any time	"B9-31" on page 654


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B9-32	0xB920	Flux linkage control command word	Bit00: Output voltage limit calculation filtering mode   0: Symmetric filtering   1: Asymmetric filtering   Bit01: Asynchronous motor inverse proportion curve calculation   0 : The inverse proportional synchronization frequency decreases.   1: The inverse proportional speed decreases.   Bit02: Flux linkage feedforward calculation by using inverse proportional speed   0 : Disabled   1: Enabled   Bit03: Reserved   Bit04: Reserved   Bit05: Field weakening adjustment   0: Disabled   1: Enabled   Bit06: Flux linkage derivative feedforward   0: Disabled   1: Enabled   Bit07: Energy conservation control   0: Disabled   1: Enabled   Bit08: Asynchronous motor flux closed loop   0: Disabled   1: Enabled   Bit09: Reserved   Bit10: Reserved   Bit11: Asynchronous motor pre-excitation mode   0: Pre-excitation based on time   1: Pre-excitation based on current   Bit12: Asynchronous motor pre-excitation current   0: Reference current   1: Maximum current allowed by the drive	2357		Changeable at any time	"B9-32" on page 654
B9-33	0xB921	Output voltage upper limit margin for field weakening adjustment	1\% to 50\%	5	\%	Changeable at any time	"B9-33" on page $656$
B9-34	0xB922	Output voltage upper limit margin for auto adjustment of field weakening	1\% to 20\%	3	\%	Changeable at any time	"B9-34" on page $656$
B9-35	0xB923	Filter time for calculating maximum output voltage	0 ms to 3000 ms	30	ms	Changeable at any time	"B9-35" on page $656$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
B9-36	0xB924	Rated flux adjustment coefficient for calculation	0.5 to 2.0	1.0	-	Changeable at any time	"B9-36" on page 656
B9-37	0xB925	Field weakening frequency adjustment coefficient for calculation	0.8 to 1.2	1.0	-	Changeable at any time	"B9-37" on page 657
B9-38	0xB926	Slip filter time for calculating field weakening frequency	0 ms to 3000 ms	62	ms	Changeable at any time	"B9-38" on page 657
B9-39	0xB927	Feedback speed filtering	0 ms to 8000 ms	50	ms	Changeable at any time	"B9-39" on page 657
B9-40	0xB928	Flux linkage rising filter time	0 ms to 8000 ms	20	ms	Changeable at any time	"B9-40" on page 657
B9-42	0xB92A	Feedback voltage filter time	0 ms to 3000 ms	5	ms	Changeable at any time	"B9-42" on page $658$
B9-43	0xB92B	Maximum demagnetization current of synchronous motor	0\% to 500\%	300	\%	Changeable at any time	"B9-43" on page $658$
B9-44	0xB92C	Voltage outer loop lower limit coefficient	0 to 500	50	-	Changeable at any time	"B9-44" on page $658$
B9-45	0xB92D	Flux linkage derivative feedforward coefficient	0.0 to 1.5	1.0	-	Changeable at any time	"B9-45" on page $658$
B9-46	0xB92E	Flux linkage derivative feedforward filter time	0 ms to 3000 ms	6	ms	Changeable at any time	"B9-46" on page $658$
B9-47	0xB92F	Torque current rising filter time under energy conservation control	0 ms to 3000 ms	50	ms	Changeable at any time	"B9-47" on page 659
B9-48	0xB930	Torque current falling filter time under energy conservation control	0 ms to 3000 ms	100	ms	Changeable at any time	"B9-48" on page $659$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B9-49	0xB931	Flux linkage lower limit coefficient under energy conservation control	0.00 to 0.50	0.10	-	Changeable at any time	"B9-49" on page $659$
B9-51	0xB933	Pre-excitation current	1\% to 200\%	100	\%	Changeable at any time	"B9-51" on page $659$
B9-52	0xB934	Pre-excitation time	1 ms to 30000 ms	1000	ms	Changeable at any time	"B9-52" on page $660$
B9-53	0xB935	Flux linkage closedloop bandwidth frequency	0.0 Hz to 100.0 Hz	2.0	Hz	Changeable at any time	$\begin{aligned} & \text { "B9-53" on page } \\ & 660 \end{aligned}$
B9-54	0xB936	Feedback flux linkage filter time coefficient	0 to 200	4	-	Changeable at any time	"B9-54" on page $660$
B9-55	0xB937	Static output flux linkage filter time	0 ms to 5000 ms	10	ms	Changeable at any time	"B9-55" on page $660$
B9-56	0xB938	Current loop mode	0 : ImCsr2 mode   1: Complex vector mode   2: 880 mode   3: No field weakening	1	-	Changeable only at stop	"B9-56" on page $660$
B9-57	0xB939	PI regulator proportional gain adaptation with load	0 to 1	0	-	Changeable only at stop	"B9-57" on page   661
B9-58	0xB93A	Current loop damping	0.2 to 5.0	0.8	-	Changeable at any time	"B9-58" on page   661
B9-59	0xB93B	Low-speed current loop Kp adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"B9-59" on page 661
B9-60	0xB93C	High-speed current   loop Kp adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"B9-60" on page 661
B9-61	0xB93D	Low-speed current loop Ki adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"B9-61" on page $662$
B9-62	0xB93E	High-speed current loop Ki adjustment	0.1 to 10.0	2.0	-	Changeable at any time	"B9-62" on page   662
B9-63	0xB93F	D-axis current loop complex vector adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"B9-63" on page 662
B9-64	0xB940	Q-axis current loop complex vector adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"B9-64" on page $662$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B9-65	0xB941	Complex vector hysteresis frequency lower limit as a percentage of rated frequency	0\% to B9-66	0	\%	Changeable at any time	"B9-65" on page $662$
B9-66	0xB942	Complex vector hysteresis frequency upper limit as a percentage of rated frequency	B9-65 to 150\%	0	\%	Changeable at any time	"B9-66" on page   663
B9-67	0xB943	ImCsr2 hysteresis switchover voltage upper limit as a percentage of saturation voltage	B9-68 to 95\%	89	\%	Changeable at any time	"B9-67" on page $663$
B9-68	0xB944	ImCsr2 hysteresis switchover voltage lower limit as a percentage of saturation voltage	60\% to B9-67	79	\%	Changeable at any time	"B9-68" on page 663
B9-69	0xB945	ImCsr2 hysteresis switchover frequency hysteresis range as a percentage of rated frequency	1\% to 30\%	10	\%	Changeable at any time	"B9-69" on page 663
B9-70	0xB946	ImCsr2 hysteresis switchover frequency lower limit (below which the hysteresis condition does not take effect) as a percentage of the rated frequency	40\% to 80\%	60	\%	Changeable at any time	"B9-70" on page 663
B9-71	0xB947	ImCsr2 current loop   Kss adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"B9-71" on page 664
B9-72	0xB948	Proportional gain adjustment coefficient corresponding to the maximum torque when proportional gain is adjusted with load	0.1 to 1.0	0.5	-	Changeable at any time	"B9-72" on page   664


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
B9-73	0xB949	Torque upper limit setpoint as a percentage of rated torque when proportional gain is adjusted with load	B9-74 to 300\%	200	\%	Changeable at any time	"B9-73" on page   664
B9-74	0xB94A	Torque lower limit setpoint as a percentage of rated torque when proportional gain is adjusted with load	10\% to B9-73	100	\%	Changeable at any time	"B9-74" on page   664
B9-75	0xB94B	Derivative feedforward adjustment	0.0 to 1.0	0.0	-	Changeable at any time	"B9-75" on page 665
B9-76	0xB94C	Decoupling control start frequency as a percentage of rated frequency	20\% to $150 \%$	40	\%	Changeable at any time	"B9-76" on page $665$
B9-77	0xB94D	Decoupling control filter time adjustment coefficient	0.1 to 3.0	1.0	-	Changeable at any time	$\begin{aligned} & \text { "B9-77" on page } \\ & 665 \end{aligned}$
B9-78	0xB94E	Decoupling control output adjustment coefficient	0.0 to 1.0	1.0	-	Changeable at any time	"B9-78" on page $665$
B9-79	0xB94F	CPC feedforward enable	0 : Disabled   1: Enabled	0	-	Changeable at any time	"B9-79" on page $665$
B9-80	0xB950	Current loop auxiliary command word	Bit00: Complex vector angle limiting   0: Disabled   1: Enabled   Bit01: Voltage angle limiting   0: Program internal limiting   1: Parameter setting   Bit02: 0 by default   0 : No lower limit on the excitation current is imposed during the dynamic process.   1: A lower limit on the excitation current is imposed during the dynamic process in ImCsr2 mode.   Bit03-Bit15: Reserved (0 by default)	0	-	Changeable at any time	"B9-80" on page 666
B9-81	0xB951	Voltage angle upper limit	$90^{\circ}$ to $180^{\circ}$	150	-	Changeable at any time	"B9-81" on page $666$
B9-82	0xB952	Voltage angle lower limit	$0^{\circ}$ to $90^{\circ}$	30	-	Changeable at any time	"B9-82" on page 666


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
B9-83	0xB953	Asynchronous motor D axis integral limit	0.500 to 1.000	0.707	-	Changeable at any time	"B9-83" on page $666$
B9-84	0xB954	Current loop carrier frequency upper limit	5.0 to 16.0	8.0	-	Changeable at any time	"B9-84" on page 667
B9-85	0xB955	Droop enable	0 to 1	0	-	Changeable only at stop	"B9-85" on page 667
B9-86	0xB956	Droop source	0 : Line current   1: Torque reference   2: Speed adjustment output   3: Speed adjustment integral component	1	-	Changeable only at stop	"B9-86" on page 667
B9-87	0xB957	Frequency reference droop coefficient	0.0\% to 50.0\%	0.0	\%	Changeable at any time	"B9-87" on page 667
B9-88	0xB958	FVC-SVC switchover mode	0: No switchover   1: Active switchover   2: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during stop and does not switch back to FVC mode when the encoder recovers during running.)   3: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during running or stop.)	0	-	Changeable only at stop	"B9-88" on page 667
B9-89	0xB959	FVC-SVC switchover frequency	10\% to 500\%	50	\%	Changeable only at stop	"B9-89" on page 668
B9-90	0xB95A	FVC-SVC switchover hysteresis	10\% to $100 \%$	10	\%	Changeable only at stop	"B9-90" on page 668
BA-00	0xBA00	Motor type	0 : Common asynchronous motor   1: Variable frequency asynchronous motor   2: Permanent magnet synchronous motor	0	-	Changeable only at stop	"BA-00" on page 668
BA-01	0xBA01	Rated motor power	0.1 kW to 1000.0 kW	3.7	kW	Changeable only at stop	"BA-01" on page $668$
BA-02	0xBA02	Rated motor voltage	1 V to 2000 V	380	V	Changeable only at stop	"BA-02" on page $669$
BA-03	0xBA03	Rated motor current	0.01 A to 655.35 A	9.00	A	Changeable only at stop	"BA-03" on page $669$
BA-04	0xBA04	Rated motor frequency	0.01 Hz to F0-10	50.00	Hz	Changeable only at stop	"BA-04" on page $669$
BA-05	0xBA05	Rated motor speed	1 RPM to 65535 RPM	1460	RPM	Changeable only at stop	"BA-05" on page $669$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BA-06	0xBA06	Number of parallel motors	1 to 200	1	-	Changeable only at stop	"BA-06" on page $669$
BA-07	0xBA07	Motor information command word	Bit00: Mutual inductance curve   0: Disabled   1: Enabled   Bit01: D- and Q-axis inductance curve   0 : Disabled   1: Enabled   Bit02: Rotor resistance online auto-tuning   0 : Disabled   1: Enabled   Bit03: Rotor resistance online auto-tuning method   0 : Amplitude   1: Phase   Bit04: Motor thermal model   0: Disabled   1: Enabled   Bit05: Temperature source of motor thermal model   0: Estimated temperature   1: Temperature detected by sensor   Bit06: Torque coefficient calculation of asynchronous motor   0 : Torque formula   1: Current distribution   Bit07: Torque coefficient calculation of synchronous motor   0 : Torque formula   1: Torque matching the rated torque   Bit08: Zero speed friction torque calculation   0 : Torque linearly decreasing to zero   1: Torque to maintain minimum speed   Bit09: Calculation of model parameters based   on nameplate parameters   0 : Disabled   1: Enabled   Bit10: Confirmation of calculating model parameters based on nameplate parameters   0: Default   1: Confirm	$0 \times 3$	-	Changeable only at stop	"BA-07" on page $670$
BA-08	0xBA08	Number of motor pole pairs	0 to 64	0	-	Changeable only at stop	"BA-08" on page $670$
BA-09	0xBA09	Motor power factor	0.600 to 1.000	0.860	-	Changeable only at stop	"BA-09" on page   671
BA-10	0xBAOA	Encoder PPR	1 to 65535	1024	-	Changeable only at stop	"BA-10" on page   671


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BA-11	OxBAOB	Encoder type	0 : $A B Z$ incremental encoder   1: 23-bit encoder   2: Resolver   3: External input	0		Changeable only at stop	"BA-11" on page   671
BA-12	OXBAOC	Speed feedback PG card	0: Local PG card   1: Extension PG card	0	-	Changeable only at stop	"BA-12" on page   671
BA-13	OxBAOD	Number of resolver pole pairs	1 to 65535	1	-	Changeable only at stop	"BA-13" on page $672$
BA-15	OxBAOF	Speed feedback PG wire breakage detection time	0.0 s to 10.0 s	0.0	s	Changeable only at stop	"BA-15" on page $672$
BA-16	0xBA10	A/B phase sequence of encoder	0: Forward   1: Reverse	0	-	Changeable only at stop	"BA-16" on page $672$
BA-17	$0 \times B A 11$	Encoder installation angle	$0.0^{\circ}$ to $359.9^{\circ}$	0.0	-	Changeable only at stop	"BA-17" on page $672$
BA-18	$0 \times B A 12$	Expansion card	1: Expansion card 1   2: Expansion card 2	1	-	Changeable only at stop	"BA-18" on page $672$
BA-19	$0 \times B A 13$	ABZ encoder speed measurement mode at low speed	0 : Maintain   1: Attenuate   2: Optimized solution	2	-	Changeable only at stop	"BA-19" on page $673$
BA-20	0xBA14	Encoder speed measurement filter time constant	0.000 s to 10.000 s	0.004	s	Changeable at any time	"BA-20" on page 673
BA-21	$0 \times B A 15$	Encoder wire breakage software detection coefficient	0.000 to 8.000	1.000	-	Changeable at any time	"BA-21" on page $673$
BA-22	0xBA16	Encoder control word	Bit00: Speed measurement   0: Disabled   1: Enabled   Bit01: Software detection of wire breakage   0: Disabled   1: Enabled   Bit02: Glitch removal   0 : Disabled   1: Enabled   Bit03: ABZ encoder speed measurement mode   0: Quadruplicated frequency   1: Single pulse	0	-	Changeable only at stop	"BA-22" on page $673$
BA-23	$0 \times B A 17$	Speed   measurement   exception count   threshold	1 to 100	10	-	Changeable only at stop	"BA-23" on page 674
BA-24	0xBA18	Motor gear ratio (numerator)	1 to 65535	1	-	Changeable only at stop	"BA-24" on page 674


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
BA-25	0xBA19	Motor gear ratio (denominator)	1 to 65535	1	-	Changeable only at stop	"BA-25" on page   674
BA-26	$0 \times B A 1 A$	External input source of encoder	0: 0   1: AI1   2: AI2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Unchangea ble	"BA-26" on page   674
BA-29	0xBA1D	Auto-tuning	0 : No operation   1: Static auto-tuning on partial parameters of asynchronous motor   2: Dynamic auto-tuning on asynchronous motor   3: Static auto-tuning on all parameters of asynchronous motor   4: Inertia auto-tuning   5: Deadzone auto-tuning   11: With-load auto-tuning on synchronous motor (excluding back EMF)   12: No-load dynamic auto-tuning on synchronous motor   13: Static auto-tuning on all parameters of synchronous motor (excluding zero point angle)	0	-	Changeable only at stop	"BA-29" on page 675
BA-30	0xBA1E	Asynchronous motor stator resistance	$0.001 \Omega$ to $65.535 \Omega$	1.204	$\Omega$	Changeable only at stop	"BA-30" on page 675
BA-31	0xBA1F	Asynchronous motor rotor resistance	$0.001 \Omega$ to $65.535 \Omega$	0.908	$\Omega$	Changeable only at stop	"BA-31" on page 675
BA-32	0xBA20	Asynchronous motor leakage inductance	0.01 mH to 655.35 mH	5.28	mH	Changeable only at stop	"BA-32" on page 675
BA-33	0xBA21	Asynchronous motor mutual inductance	0.1 mH to 6553.5 mH	156.8	mH	Changeable only at stop	"BA-33" on page 675
BA-34	0xBA22	Asynchronous motor no-load current	0.01 A to BA-03	4.20	A	Changeable only at stop	"BA-34" on page $676$
BA-35	0xBA23	Synchronous motor stator resistance	$0.001 \Omega$ to $65.535 \Omega$	1.204	$\Omega$	Changeable only at stop	"BA-35" on page $676$
BA-36	0xBA24	Synchronous motor   D axis inductance	0.01 mH to 655.35 mH	5.28	mH	Changeable only at stop	"BA-36" on page 676
BA-37	0xBA25	Synchronous motor Q axis inductance	0.01 mH to 655.35 mH	5.28	mH	Changeable only at stop	"BA-37" on page 676


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
BA-39	0xBA27	Synchronous motor   back EMF   coefficient	0.0 V to 6553.5 V	300.0	V	Changeable only at stop	"BA-39" on page $676$
BA-40	0xBA28	Stator leakage inductance	0.000 mH to 65.535 mH	6.540	mH	Changeable only at stop	" $B A-40$ " on page   677
BA-41	0xBA29	Electromechanical time constant	1 ms to 65535 ms	100	ms	Unchangea ble	"BA-41" on page 677
BA-42	0xBA2A	Inertia ratio	0.0\% to 6553.5\%	120.0	\%	Changeable only at stop	" $B A-42$ " on page   677
BA-43	0xBA2B	Friction torque	0.0\% to 6553.5\%	2.0	\%	Changeable only at stop	"BA-43" on page 677
BA-44	0xBA2C	Excitation current coefficient 1 of mutual inductance curve (rated)	5.0\% to $100.0 \%$	50.0	\%	Changeable only at stop	"BA-44" on page   677
BA-45	0xBA2D	Excitation current coefficient 2 of mutual inductance curve (rated)	5.0\% to $100.0 \%$	75.0	\%	Changeable only at stop	"BA-45" on page 678
BA-46	0xBA2E	Excitation current coefficient 3 of mutual inductance curve	100.0\% to 800.0\%	150.0	\%	Changeable only at stop	"BA-46" on page   678
BA-47	0xBA2F	Excitation current coefficient 4 of mutual inductance curve	100.0\% to 800.0\%	210.0	\%	Changeable only at stop	" $B A-47$ " on page $678$
BA-48	0xBA30	Flux coefficient 1 of mutual inductance curve (rated)	10.0\% to $100.0 \%$	50.0	\%	Changeable only at stop	" $B A-48$ " on page 678
BA-49	$0 \times B A 31$	Flux coefficient 2 of mutual inductance curve (rated)	10.0\% to $100.0 \%$	85.0	\%	Changeable only at stop	"BA-49" on page 678
BA-50	0xBA32	Flux coefficient 3 of mutual inductance curve	100.0\% to 300.0\%	115.0	\%	Changeable only at stop	"BA-50" on page $679$
BA-51	0xBA33	Flux coefficient 4 of mutual inductance curve	100.0\% to 300.0\%	125.0	\%	Changeable only at stop	" $B A-51$ " on page $679$
BA-52	0xBA34	Speed point 1 of friction curve	0 RPM to 30000 RPM	15	RPM	Changeable only at stop	"BA-52" on page   679
BA-53	0xBA35	Speed point 2 of friction curve	0 RPM to 30000 RPM	30	RPM	Changeable only at stop	"BA-53" on page   679
BA-54	0xBA36	Speed point 3 of friction curve	0 RPM to 30000 RPM	60	RPM	Changeable only at stop	"BA-54" on page $679$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BA-55	0xBA37	Speed point 4 of friction curve	0 RPM to 30000 RPM	120	RPM	Changeable only at stop	"BA-55" on page   679
BA-56	0xBA38	Speed point 5 of friction curve	0 RPM to 30000 RPM	150	RPM	Changeable only at stop	"BA-56" on page $680$
BA-57	0xBA39	Speed point 6 of friction curve	0 RPM to 30000 RPM	300	RPM	Changeable only at stop	"BA-57" on page $680$
BA-58	0xBA3A	Speed point 7 of friction curve	0 RPM to 30000 RPM	600	RPM	Changeable only at stop	"BA-58" on page $680$
BA-59	0xBA3B	Speed point 8 of friction curve	0 RPM to 30000 RPM	1200	RPM	Changeable only at stop	"BA-59" on page $680$
BA-60	0xBA3C	Speed point 9 of friction curve	0 RPM to 30000 RPM	1500	RPM	Changeable only at stop	"BA-60" on page $680$
BA-61	0xBA3D	Speed point 10 of friction curve	0 RPM to 30000 RPM	3000	RPM	Changeable only at stop	"BA-61" on page   681
BA-62	0xBA3E	Torque point 1 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"BA-62" on page   681
BA-63	0xBA3F	Torque point 2 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to +320 $\mathrm{N} \cdot \mathrm{m}$	0.00	$N \cdot m$	Changeable only at stop	"BA-63" on page $681$
BA-64	0xBA40	Torque point 3 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"BA-64" on page   681
BA-65	0xBA41	Torque point 4 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"BA-65" on page   681
BA-66	0xBA42	Torque point 5 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"BA-66" on page $682$
BA-67	0xBA43	Torque point 6 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"BA-67" on page $682$
BA-68	0xBA44	Torque point 7 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"BA-68" on page $682$
BA-69	0xBA45	Torque point 8 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"BA-69" on page $682$
BA-70	0xBA46	Torque point 9 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"BA-70" on page $682$
BA-71	0xBA47	Torque point 10 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"BA-71" on page 683
BA-72	0xBA48	Current coefficient starting point of Dand Q-axis inductance curve	$-800 \%$ to $+800.0 \%$	-200	\%	Changeable only at stop	"BA-72" on page $683$
BA-73	0xBA49	Current coefficient end point of $D$ - and Q-axis inductance curve	$-800 \%$ to $+800.0 \%$	200.0	\%	Changeable only at stop	"BA-73" on page $683$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BA-74	0xBA4A	D axis inductance 1 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-74" on page $683$
BA-75	$0 \times B A 4 B$	D axis inductance 2 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-75" on page $683$
BA-76	0xBA4C	D axis inductance 3 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-76" on page   684
BA-77	0xBA4D	D axis inductance 4 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-77" on page 684
BA-78	0xBA4E	D axis inductance 5 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-78" on page 684
BA-79	0xBA4F	D axis inductance 6 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-79" on page 684
BA-80	0xBA50	D axis inductance 7 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	" $B A-80$ " on page 684
BA-81	0xBA51	D axis inductance 8 of $D$ - and $Q$-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-81" on page 684
BA-82	0xBA52	D axis inductance 9 of $D$ - and $Q$-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-82" on page 685
BA-83	0xBA53	D axis inductance 10 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-83" on page 685
BA-84	0xBA54	D axis inductance 11 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-84" on page 685
BA-85	0xBA55	D axis inductance 12 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-85" on page 685
BA-86	0xBA56	Q axis inductance 1 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-86" on page $685$
BA-87	0xBA57	Q axis inductance 2 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-87" on page $686$
BA-88	0xBA58	Q axis inductance 3 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	" $B A-88$ " on page $686$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BA-89	0xBA59	Q axis inductance 4 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-89" on page 686
BA-90	0xBA5A	Q axis inductance 5 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-90" on page 686
BA-91	0xBA5B	Q axis inductance 6 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-91" on page $686$
BA-92	0xBA5C	Q axis inductance 7 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-92" on page 687
BA-93	0xBA5D	Q axis inductance 8 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-93" on page 687
BA-94	0xBA5E	Q axis inductance 9 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-94" on page 687
BA-95	0xBA5F	Q axis inductance 10 of D - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-95" on page 687
BA-96	0xBA60	Q axis inductance 11 of $D$ - and $Q$-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-96" on page 687
BA-97	0xBA61	Q axis inductance 12 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"BA-97" on page 688
BB-00	0xBB00	V/f curve	0 : Straight-line V/f curve   1: Multi-point V/f curve   2: Reserved   3: Reserved   4: Reserved   5: Reserved   6: Reserved   7: Reserved   8: Reserved   9: Reserved   10: $\mathrm{V} / \mathrm{f}$ complete separation mode   11: $\mathrm{V} / \mathrm{f}$ half separation mode	0	-	Changeable only at stop	"BB-00" on page 688
BB-01	0xBB01	Torque boost	0.0\% to 30.0\%	3.0	\%	Changeable at any time	"BB-01" on page 688
BB-02	0xBB02	Cut-off frequency of torque boost	0.00 Hz to F0-10	50.00	Hz	Changeable only at stop	"BB-02" on page 688
BB-03	0xBB03	Multi-point V/f frequency 1	0.00 Hz to BB-05	0.00	Hz	Changeable only at stop	"BB-03" on page 689


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BB-04	0xBB04	Multi-point V/f voltage 1	0.0\% to +100.0\%	0.0	\%	Changeable only at stop	"BB-04" on page 689
BB-05	0xBB05	Multi-point V/f frequency 2	BB-03 to BB-07	0.00	Hz	Changeable only at stop	"BB-05" on page 689
BB-06	0xBB06	Multi-point V/f voltage 2	0.0\% to $+100.0 \%$	0.0	\%	Changeable only at stop	"BB-06" on page 689
BB-07	0xBB07	Multi-point V/f frequency 3	BB-05 to BA-04	0.00	Hz	Changeable only at stop	"BB-07" on page 689
BB-08	0xBB08	Multi-point V/f voltage 3	0.0\% to +100.0\%	0.0	\%	Changeable only at stop	"BB-08" on page $690$
BB-09	0xBB09	V/fslip compensation gain	0.0 to 200.0	0.0	-	Changeable at any time	"BB-09" on page 690
BB-10	0xBB0A	V/f overexcitation gain	0 to 200	64	-	Changeable at any time	" $B B-10$ " on page $690$
BB-11	0xBBOB	V/f oscillation suppression gain	0 to 100	40	-	Changeable at any time	"BB-11" on page $690$
BB-12	0xBBOC	V/f oscillation suppression	0 : Disabled   1: Enabled	1	-	Changeable at any time	" $B B-12$ " on page $690$
BB-13	0xBBOD	Voltage source for   V/f separation	0 : Digital setting (BB-14)   1: AI1   2: Al2   3: Al3   4: Pulse reference (DI5)   5: Multi-reference   6: Simple PLC   7: PID   8: Communication   Others: F connector	0	-	Changeable at any time	" $B B-13$ " on page 691
BB-14	0xBBOE	V/f separation voltage	0 V to BA-02	0	V	Changeable at any time	" $B B-14$ " on page $692$
BB-15	0xBB0F	Voltage rise time of V/f separation	0.0s to 1000.0s	0.0	S	Changeable at any time	" $B B-15$ " on page $692$
BB-16	0xBB10	Voltage fall time of V/f separation	0.0 s to 1000.0 s	0.0	s	Changeable at any time	" $B B-16$ " on page 692
BB-17	0xBB11	Stop mode for V/f separation	0 : Frequency and voltage decline to 0 independently   1: Frequency declines to 0 after voltage declines to 0   2: Coast to stop (new)	0	-	Changeable at any time	"BB-17" on page $692$
BB-18	0xBB12	Overcurrent stall suppression action current	50\% to 200\%	150	\%	Changeable only at stop	"BB-18" on page $693$
BB-19	0xBB13	Overcurrent stall suppression	0 : Disabled   1: Enabled	1	-	Changeable only at stop	" $B B-19$ " on page $693$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BB-20	0xBB14	Overcurrent stall suppression gain	1 to 100	20	-	Changeable at any time	" $B B-20$ " on page 693
BB-21	$0 \times B B 15$	Compensation coefficient of speed multiplying overcurrent stall suppression action current	50\% to 200\%	100	\%	Changeable only at stop	"BB-21" on page 693
BB-22	0xBB16	Overvoltage stall suppression action voltage	330.0 V to 800.0 V	770.0	V	Changeable at any time	"BB-22" on page 693
BB-23	$0 \times B B 17$	Overvoltage stall suppression	0 : Disabled   1: Enabled	1	-	Changeable only at stop	" $B B-23$ " on page 694
BB-24	0xBB18	Overvoltage stall suppression frequency gain	1 to 100	30	-	Changeable at any time	"BB-24" on page 694
BB-25	0xBB19	Overvoltage stall suppression voltage gain	1 to 100	30	-	Changeable at any time	" $B B-25$ " on page 694
BB-26	$0 \times B B 1 A$	Frequency rise threshold for overvoltage stall suppression	0 Hz to 50 Hz	5	Hz	Changeable only at stop	" $B B-26$ " on page 694
BB-27	$0 \times B B 1 B$	Slip compensation filter time	0.1 s to 10.0 s	0.5	s	Changeable only at stop	"BB-27" on page 694
BB-28	0xBB1C	Multi-point curve source	0: 3-point curve   1: Multi-point curve module A   2: Multi-point curve module B	0	-	Changeable only at stop	" $B B-28$ " on page 695
BB-33	0xBB21	Online torque compensation gain	80 to 150	100	-	Changeable only at stop	" $B B-33$ " on page 695
BB-34	0xBB22	ImaxKi coefficient	10\% to $1000 \%$	100	\%	Changeable only at stop	" $B B-34$ " on page 695
BB-35	0xBB23	Overcurrent suppression threshold (relative to rated motor current)	80\% to 300\%	200	\%	Changeable only at stop	"BB-35" on page 695
BB-36	0xBB24	Frequency threshold for overcurrent suppression field weakening	100\% to 500\%	100	\%	Changeable only at stop	" $B B-36$ " on page 696
BB-37	0xBB25	IT filter time	10 ms to 1000 ms	100	ms	Changeable only at stop	" $B B-37$ " on page $696$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BB-38	0xBB26	Slip compensation mode	0: Disabled   1: Slip compensation without PG   2: Slip compensation with PG	1	-	Changeable only at stop	" $B B-38$ " on page 696
BB-39	0xBB27	VdcMaxCtrl allowed runtime	0.0 s to 100.0 s	0.0	s	Changeable only at stop	"BB-39" on page 696
BB-40	0xBB28	Upper limit of $\mathrm{V} / \mathrm{f}$ separation voltage	50.0\% to 200.0\%	100.0	\%	Changeable only at stop	" $B B-40$ " on page 696
BB-41	0xBB29	RFG time of $\mathrm{V} / \mathrm{f}$ separation frequency	0 : RFG time forced to 0   1: Preset RFG time	0	-	Changeable only at stop	" $B B-41$ " on page 697
BB-42	0xBB2A	Cut-off frequency of V/f oscillation suppression filter	1.0 Hz to 50.0 Hz	8.0	Hz	Changeable at any time	"BB-42" on page 697
BB-43	0xBB2B	Cut-off frequency threshold for $\mathrm{V} / \mathrm{f}$ oscillation suppression	10 Hz to 3000 Hz	200	Hz	Changeable at any time	" $B B-43$ " on page 697
BB-44	0xBB2C	VdcMaxCtrl feedforward coefficient	0\% to 500\%	0	\%	Changeable at any time	" $B B-44$ " on page 697
BB-50	0xBB32	PMVVC low-speed IF	0 : Disabled   1: Enabled	1	-	Changeable only at stop	" $B B-50$ " on page 697
BB-51	$0 \times B B 33$	PMVVC low-speed IF current	30 to 250	100	-	Changeable only at stop	" $B B-51$ " on page 698
BB-52	0xBB34	PMVVC low-speed IF   speed switching   threshold	2.0\% to $100.0 \%$	10.0	\%	Changeable only at stop	"BB-52" on page 698
BB-53	0xBB35	PMVVC oscillation suppression gain coefficient	0 to 500	100	-	Changeable at any time	"BB-53" on page 698
BB-54	0xBB36	PMVVC filter time coefficient	0 to 500	100	-	Changeable at any time	"BB-54" on page 698
BB-55	$0 \times B B 37$	PMVVC energy conservation control mode	0 : Fixed straight-line V/f curve   1: Fixed $30 \%$ reactive current   2: MTPA control	2	-	Changeable only at stop	" $B B-55$ " on page 698
BC-00	0xBC00	Startup mode	0 : Direct start   1: Flying start   2: Pre-excitation start (AC asynchronous motor)   3: SVC quick start	0	-	Changeable at any time	" $B C-00$ " on page 699
BC-01	0xBC01	Speed tracking mode	0 : From the stop frequency   1: From the power frequency   2: From the maximum frequency   3: Reserved   4: Magnetic field directional speed tracking (MD290)	0	-	Changeable at any time	"BC-01" on page 699


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BC-02	0xBC02	Speed of speed tracking	1 to 100	20	-	Changeable at any time	" $B C-02$ " on page 699
BC-03	0xBC03	Startup frequency	0.00 Hz to 10.00 Hz	0.00	Hz	Changeable at any time	"BC-03" on page 699
BC-04	0xBC04	Startup frequency hold time	0.0 s to 100.0 s	0.0	S	Changeable only at stop	"BC-04" on page $700$
BC-05	0xBC05	DC braking current at startup	0\% to 100\%	50	\%	Changeable only at stop	" $B C-05$ " on page 700
BC-06	0xBC06	DC braking time at startup	0.0 s to 100.0 s	0.0	s	Changeable only at stop	"BC-06" on page 700
BC-07	0xBC07	Stop mode	0: Decelerate to stop   1: Coast to stop   2: Stop at maximum capability	0	-	Changeable at any time	$\begin{aligned} & \text { "BC-07" on page } \\ & 700 \end{aligned}$
BC-08	0xBC08	Start frequency of DC braking at stop	0.00 Hz to F0-10	0.00	Hz	Changeable at any time	"BC-08" on page 701
BC-09	0xBC09	DC braking delay at stop	0.0 s to 100.0 s	0.0	s	Changeable at any time	"BC-09" on page   701
BC-10	0xBCOA	DC braking current at stop	0\% to 100\%	50	\%	Changeable at any time	" $B C-10$ " on page 701
BC-11	0xBCOB	DC braking time at stop	0.0 s to 100.0 s	0.0	s	Changeable at any time	$\begin{aligned} & \text { "BC-11" on page } \\ & 701 \end{aligned}$
BC-12	OxBCOC	Speed tracking sweep current limit closed loop Kp	0 to 1000	500	-	Changeable at any time	" $B C-12$ " on page 701
BC-13	0xBCOD	Speed tracking sweep current limit closed loop Ki	0 to 1000	800	-	Changeable at any time	"BC-13" on page 702
BC-14	OxBCOE	Speed tracking current	30\% to 200\%	80	\%	Changeable only at stop	" $B C-14$ " on page 702
BC-15	0xBCOF	Current loop multiple	10\% to 600\%	100	\%	Changeable at any time	" $B C-15$ " on page 702
BC-16	0xBC10	Demagnetization time (valid for asynchronous motors)	0.00 s to 5.00 s	0.50	S	Changeable at any time	"BC-16" on page 702
BC-17	0xBC11	Overexcitation enable	0: Disabled   2: Enabled during deceleration   3: Enabled always	0	-	Changeable at any time	$\begin{aligned} & \text { "BC-17" on page } \\ & 702 \end{aligned}$
BC-18	0xBC12	Overexcitation suppression current	0\% to $150 \%$	100	\%	Changeable at any time	" $B C-18$ " on page 703
BC-19	$0 \times B C 13$	Overexcitation gain	0.01 to 2.50	1.25	-	Changeable at any time	" $B C-19$ " on page 703


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
BC-20	$0 \times B C 14$	Parameter autotuning upon startup	Bit00: Synchronous motor pole position autotuning upon startup   0 : Disabled   1: Enabled   Bit01: Quick stator resistance auto-tuning upon   startup   0: Disabled   1: Enabled   Bit02-Bit03: HFI pole position auto-tuning   0: Disabled   1: Enabled   2: Adaptive   Bit04: IGBT shoot-through self-check upon   startup   0: Disabled   1: Enabled   Bit05: Short-to-ground self-check upon startup   (reserved)   0 : Disabled   1: Enabled   Bit06: Phase loss self-check upon startup (reserved)   0 : Disabled   1: Enabled	1	-	Changeable only at stop	" $B C-20$ " on page 703
BC-21	$0 \times B C 15$	Auto-tuning direction	0 to 1	1	-	Changeable only at stop	" $B C-21$ " on page 704
BC-22	0xBC16	Oscillation suppression gain of synchronous motor back EMF autotuning	0.0 to 30.0	3.2	-	Changeable only at stop	"BC-22" on page 704
BC-23	0xBC17	Target speed of rotation autotuning	$30.0 \%$ to $100.0 \%$	70.0	\%	Changeable only at stop	$\begin{aligned} & \text { "BC-23" on page } \\ & 704 \end{aligned}$
BC-24	$0 \times B C 18$	Target speed 1 of inertia auto-tuning	10.0\% to BC-25	40.0	\%	Changeable only at stop	" $B C-24$ " on page 705
BC-25	0xBC19	Target speed 2 of inertia auto-tuning	BC-24 to 100.0\%	60.0	\%	Changeable only at stop	"BC-25" on page 705
BC-26	$0 \times B C 1 A$	Overcurrent prevention of mutual inductance saturation curve	0 to 1	1	-	Changeable only at stop	" $B C-26$ " on page 705


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BC-27	$0 \times B C 1 B$	Auto-tuning items	Bit00: Speed loop parameter adaptation   0 : Disabled   1: Enabled   Bit01: Current loop parameter adaptation   0 : Disabled   1: Enabled   Bit02: Drive nonlinear auto-tuning   0 : Disabled   1: Enabled   Bit03: Inter-phase deviation coefficient autotuning   0 : Disabled   1: Enabled   Bit04: Auto-tuning of initial pole position of synchronous motor   0 : Disabled   1: Enabled   Bit05: Auto-tuning of D - and Q -axis inductance   model of synchronous motor   0 : Disabled   1: Enabled   Bit06: System inertia auto-tuning   0 : Disabled   1: Enabled   Bit07: HFI pole position auto-tuning   0 : Disabled   1: Enabled	117		Changeable only at stop	$\begin{aligned} & \text { "BC-27" on page } \\ & 705 \end{aligned}$
BC-28	0xBC1C	OFF3 stop mode	0: Quick stop   1: Stop at maximum capability	0	-	Changeable only at stop	"BC-28" on page 706
BC-29	0xBC1D	Stop mode during running	0 : OFF1 stop mode   1: OFF2 stop mode   2: OFF3 stop mode	1	-	Changeable only at stop	$\begin{aligned} & \text { "BC-29" on page } \\ & 706 \end{aligned}$
BC-30	0xBC1E	Stop mode for torque control	0 : Coast to stop forcibly   1: Switch to speed control mode and then stop   2: Maintain torque control mode until zero speed and then block	1	-	Changeable only at stop	"BC-30" on page 707
BC-32	0xBC20	Proportional gain adjustment coefficient	0.1 to 2.0	1.0	-	Changeable at any time	"BC-32" on page 707
BC-33	0xBC21	Integral gain adjustment coefficient	0.1 to 2.0	1.0	-	Changeable at any time	"BC-33" on page 707
BC-34	0xBC22	Zero-speed threshold	0.1\% to 200.0\%	2.0	\%	Changeable at any time	"BC-34" on page 707
BC-35	0xBC23	Zero-speed stop delay	0.00 s to 10.00 s	0.10	s	Changeable only at stop	"BC-35" on page 707
BC-36	0xBC24	Reference source execution interval	0 to 20	4	-	Changeable only at stop	"BC-36" on page 708


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BC-37	0xBC25	Trial current for speed tracking of synchronous motor	5.0\% to 50.0\%	10.0	\%	Changeable only at stop	"BC-37" on page 708
BC-38	0xBC26	Minimum frequency for speed tracking of synchronous motor	0.0 Hz to 100.0 Hz	0.0	Hz	Changeable only at stop	"BC-38" on page 708
BC-39	0xBC27	Angle   compensation for speed tracking of synchronous motor	0 to 360	0	-	Changeable only at stop	"BC-39" on page 708
BC-40	0xBC28	Parameter autotuning of synchronous motor upon startup	0 to 1	0	-	Changeable at any time	" $B C-40$ " on page 708
BC-41	0xBC29	Current motor angle	0 to 65535	0	-	Unchangea ble	"BC-41" on page 709
BC-42	0xBC2A	Forward torque limit 1	0.0 to 400.0	150.0	-	Changeable at any time	"BC-42" on page 709
BC-43	0xBC2B	Reverse torque limit 1	0.0 to 400.0	150.0	-	Changeable at any time	"BC-43" on page 709
BC-44	0xBC2C	Source of forward torque limit 2	$0: 400 \%$   Others: F connector	0	-	Changeable at any time	"BC-44" on page 709
BC-45	0xBC2D	Source of reverse torque limit 2	$0:-400 \%$   Others: F connector	0	-	Changeable at any time	"BC-45" on page 709
BC-46	0xBC2E	Ramp (FRG) selection bit0	0: 0 1: 1 2: Terminal function input 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16   Others: B connector	0	-	Changeable at any time	" $B C-46$ " on page   710
BC-47	0xBC2F	Ramp (FRG) selection bit1	Same as BC-46	0	-	Changeable at any time	"BC-47" on page 710


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BC-50	0xBC32	Motor overload protection	0: Disabled   1: Enabled	1	-	Changeable at any time	" $B C-50$ " on page 711
BC-51	$0 \times B C 33$	Motor overload protection gain	0.20 to 10.00	1.00	-	Changeable at any time	"BC-51" on page 711
BC-52	0xBC34	Motor overload prewarning coefficient	$50 \%$ to $100 \%$	80	\%	Changeable at any time	"BC-52" on page 711
BC-53	0xBC35	Overvoltage stall suppression gain	1 to 100	30	-	Changeable at any time	"BC-53" on page 712
BC-54	0xBC36	Overvoltage stall protection voltage	330.0 V to 800.0 V	770.0	V	Changeable at any time	"BC-54" on page   712
BC-55	$0 \times B C 37$	Input phase loss/   Contactor pickup protection	Ones: Input phase loss protection   0 : Disabled   1: Protection enabled when both software and hardware input phase loss conditions are met   2: Protection enabled when software input phase loss conditions are met   3: Protection enabled when hardware input phase loss conditions are met   Tens: Contactor pickup protection   0 : Disabled   1: Enabled	11	-	Changeable at any time	"BC-55" on page 712
BC-56	0xBC38	Output phase loss protection	Ones: Output phase loss protection upon   power-on   0 : Disabled   1: Enabled   Tens: Output phase loss protection before   running   0 : Disabled   1: Enabled	1	-	Changeable at any time	"BC-56" on page   712
BC-57	0xBC39	Power dip ridethrough	0 : Disabled   1: Decelerate   2: Decelerate to stop   3: Suppress voltage dip	0	-	Changeable only at stop	"BC-57" on page 713
BC-58	$0 \times B C 3 A$	Voltage threshold for disabling power dip ride-through	$80 \%$ to $100 \%$	85	\%	Changeable only at stop	"BC-58" on page 713
BC-59	$0 \times B C 3 B$	Delay of voltage recovery from power dip	0.0 s to 100.0 s	0.5	S	Changeable only at stop	"BC-59" on page 713
BC-60	0xBC3C	Voltage threshold for enabling power dip ride-through	60\% to $100 \%$	80	\%	Changeable only at stop	"BC-60" on page 713
BC-61	0xBC3D	Protection upon load loss	0 : Disabled   1: Enabled	0	-	Changeable at any time	"BC-61" on page 714
BC-62	0xBC3E	Load loss detection level	0.0\% to $+100.0 \%$	10.0	\%	Changeable at any time	"BC-62" on page 714


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BC-63	0xBC3F	Load loss detection time	0.0s to 60.0s	1.0	s	Changeable at any time	" $B C-63$ " on page 714
BC-64	0xBC40	Overspeed detection level	0.0\% to 50.0\%	20.0	\%	Changeable at any time	"BC-64" on page 714
BC-65	0xBC41	Overspeed detection time	0.0s to 60.0s	1.0	s	Changeable at any time	"BC-65" on page 714
BC-66	0xBC42	Detection level of excessive speed deviation	0.0\% to 50.0\%	20.0	\%	Changeable at any time	"BC-66" on page 715
BC-67	$0 \times B C 43$	Detection time of excessive speed deviation	0.0s to 60.0s	5.0	s	Changeable at any time	"BC-67" on page 715
BC-68	0xBC44	Power dip ridethrough gain Kp	1 to 100	40	-	Changeable at any time	"BC-68" on page 715
BC-69	$0 \times B C 45$	Power dip ridethrough integral coefficient Ki	1 to 100	30	-	Changeable at any time	"BC-69" on page 715
BC-70	0xBC46	Deceleration time of power dip ridethrough	0.0s to 300.0 s	20.0	s	Changeable at any time	"BC-70" on page 715
BC-71	0xBC47	Voltage dip suppression time	0.1s to 600.0 s	0.5	s	Changeable at any time	"BC-71" on page 715
BC-72	$0 \times B C 48$	Motor protection	Bit00: Motor overload determination (reserved)   Bit01: Motor overheat detection (reserved)   Bit02: PG fault detection (reserved)   Bit03: Current control error detection   Bit04: Motor stall error detection   Bit05: Locked-rotor detection   Bit06: Synchronous motor demagnetization protection   Bit07: Protection against locked-rotor in SVC speed open-loop control   Bit08: Reserved   Bit09: Parameter setting error	537	-	Changeable at any time	"BC-72" on page 716
BC-73	0xBC49	Locked-rotor time	0.0 s to 65.0 s	2.0	s	Changeable at any time	"BC-73" on page 716
BC-74	0xBC4A	Locked-rotor frequency	0.0\% to 600.0\%	6.0	\%	Changeable at any time	"BC-74" on page 716
BC-75	0xBC4B	Motor stall detection time	0.0 s to 10.0 s	0.5	s	Changeable at any time	"BC-75" on page 716
BC-76	0xBC4C	Stall detection threshold	0.0\% to $+100.0 \%$	30.0	\%	Changeable at any time	" $B C-76$ " on page 717
BC-77	0xBC4D	Current control exception detection time	0.00 s to 1.00 s	0.05	s	Changeable at any time	"BC-77" on page 717


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BC-78	0xBC4E	Current control exception detection threshold	0.0\% to 200.0\%	25.0	\%	Changeable at any time	" $B C-78$ " on page 717
BC-79	0xBC4F	Synchronous motor overcurrent threshold	0.0\% to 500.0\%	300.0	\%	Changeable at any time	" $B C-79$ " on page 717
BC-81	0xBC51	Speed deviation detection	0 to 1	1	-	Changeable at any time	"BC-81" on page 717
BC-82	0xBC52	Skip frequency 1	0.00 Hz to F0-10	0.00	Hz	Changeable at any time	"BC-82" on page 718
BC-83	0xBC53	Skip frequency 2	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"BC-83" on page 718
BC-84	0xBC54	Skip frequency 3	0.00 Hz to F0-10	0.00	Hz	Changeable at any time	"BC-84" on page 718
BC-85	0xBC55	Skip frequency 4	0.00 Hz to F0-10	0.00	Hz	Changeable at any time	"BC-85" on page 718
BC-86	0xBC56	Skip frequency band	0.00 Hz to F0-10	0.00	Hz	Changeable at any time	"BC-86" on page 718
BC-87	0xBC57	Source of frequency upper limit	0: F0-12   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   Others: F connector	0	-	Changeable only at stop	" $B C-87$ " on page 719
BC-88	0xBC58	Frequency upper limit	BC-90 to F0-10	50.00	Hz	Changeable at any time	"BC-88" on page 719
BC-89	0xBC59	Frequency upper limit offset	0.00 Hz to F0-10 (maximum frequency)	0.00	Hz	Changeable at any time	"BC-89" on page 719
BC-90	0xBC5A	Frequency lower limit	0.00 Hz to BC-88	0.00	Hz	Changeable at any time	"BC-90" on page 719
BC-91	0xBC5B	Speed/Torque control mode	0 : Speed control   1: Torque control	0	-	Changeable at any time	"BC-91" on page 719
BD-00	0xBD00	Asynchronous   motor FVC model   switchover   frequency	0\% to $1000 \%$	20	\%	Changeable only at stop	"BD-00" on page 720
BD-01	0xBD01	Asynchronous motor FVC model switchover hysteresis frequency	10\% to 50\%	20	\%	Changeable only at stop	"BD-01" on page 720
BD-02	0xBD02	Asynchronous   motor FVC observer   filter time	5 ms to 100 ms	15	ms	Changeable only at stop	"BD-02" on page 720


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BD-03	0xBD03	Asynchronous   motor FVC current   model mode	0 to 1	0	-	Changeable only at stop	"BD-03" on page 720
BD-04	0xBD04	Asynchronous motor FVC preexcitation output observation angle mode	0 to 1	0	-	Changeable only at stop	"BD-04" on page 721
BD-05	0xBD05	Asynchronous motor SVC model switchover frequency	10\% to 20\%	15	\%	Changeable only at stop	"BD-05" on page 721
BD-06	0xBD06	Asynchronous   motor SVC observer   filter time	5 ms to 50 ms	10	ms	Changeable at any time	"BD-06" on page 721
BD-07	0xBD07	Asynchronous   motor SVC observer   gain 1	10\% to 500\%	100	\%	Changeable at any time	"BD-07" on page   721
BD-08	0xBD08	Asynchronous   motor SVC observer   gain 2	10\% to $100 \%$	20	\%	Changeable at any time	"BD-08" on page 721
BD-09	0xBD09	Asynchronous motor SVC observer mode	0 to 3	0	-	Changeable only at stop	"BD-09" on page 721
BD-10	0xBDOA	Asynchronous motor SVC preexcitation mode	0 to 1	0	-	Changeable only at stop	"BD-10" on page $722$
BD-11	0xBD0B	Asynchronous   motor SVC speed   tracking mode	0 to 1	0	-	Changeable only at stop	"BD-11" on page 722
BD-14	0xBDOE	Synchronous motor   1 model control	Bit00: Low speed processing   Bit01: Low speed processing 1   Bit02: Online auto-tuning of resistance   Bit03: Online auto-tuning of back EMF   Bit04: KS	5	-	Changeable at any time	" $B D-14$ " on page 722
BD-15	0xBDOF	Synchronous motor model K1	10 to 3000	200	-	Changeable at any time	"BD-15" on page 722
BD-16	0xBD10	Synchronous motor model K1Max	100 to 6000	3000	-	Changeable at any time	$\begin{aligned} & \text { "BD-16" on page } \\ & 723 \end{aligned}$
BD-17	$0 \times B D 11$	Synchronous motor model KsMin	0.0 to 4.0	0.3	-	Changeable at any time	"BD-17" on page 723
BD-18	0xBD12	Synchronous motor model Kspeed	50 to 2000	400	-	Changeable at any time	"BD-18" on page $723$
BD-19	0xBD13	Synchronous motor frequency filter time constant	2 ms to 100 ms	10	ms	Changeable at any time	"BD-19" on page 723


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BD-20	0xBD14	Frequency upper limit of synchronous motor Rs online autotuning	1.0\% to 20.0\%	3.5	\%	Changeable at any time	" $B D-20$ " on page 723
BD-21	0xBD15	Synchronous motor model Kr	0 to 50	10	-	Changeable at any time	"BD-21" on page 723
BD-22	0xBD16	Synchronous motor model Kr1	0 to 50	5	-	Changeable at any time	"BD-22" on page 724
BD-23	$0 \times B D 17$	Synchronous motor low-speed D axis injection current	0\% to 100\%	20	\%	Changeable at any time	"BD-23" on page 724
BD-24	0xBD18	Synchronous motor model LowFreqTime1	0 to 500	50	-	Changeable at any time	"BD-24" on page   724
BD-27	$0 \times B D 1 B$	Frequency lower limit of back EMF online auto-tuning	10\% to 100\%	25	\%	Changeable at any time	" $B D-27$ " on page 724
BD-28	0xBD1C	Synchronous motor model LowFreq	0.0\% to 2.0\%	0.3	\%	Changeable at any time	$\begin{aligned} & \text { "BD-28" on page } \\ & 724 \end{aligned}$
BD-29	0xBD1D	Synchronous motor model LowFreqTime	0 to 100	10	-	Changeable at any time	"BD-29" on page 725
BD-30	$0 \times B D 1 E$	Percentage of pole auto-tuning current	50\% to 200\%	100	\%	Changeable at any time	" $B D-30$ " on page 725
BD-31	0xBD1F	Percentage of high frequency response current	0\% to 100\%	25	\%	Changeable at any time	"BD-31" on page 725
BD-32	0xBD20	Percentage of HFI and SVC switching frequency	0\% to 30\%	10	\%	Changeable at any time	"BD-32" on page 725
BD-33	0xBD21	Observer parameter	10 to 200	100	-	Changeable at any time	"BD-33" on page 725
BD-34	0xBD22	Speed filter cut-off frequency	1 Hz to 200 Hz	10	Hz	Changeable at any time	"BD-34" on page 726
BD-35	0xBD23	Carrier frequency during NS autotuning	2.00 Hz to 16.00 Hz	8.00	Hz	Changeable at any time	$\begin{aligned} & \text { "BD-35" on page } \\ & 726 \end{aligned}$
BD-36	0xBD24	Automatic   calculation of NS   auto-tuning voltage	0: Disabled   1: Enabled	1	-	Changeable at any time	"BD-36" on page 726
BD-37	0xBD25	Percentage of NS auto-tuning voltage set manually	0\% to 100\%	10	\%	Changeable at any time	"BD-37" on page 726


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BD-38	0xBD26	Duration of HFI stage 1	50 ms to 500 ms	150	ms	Changeable at any time	"BD-38" on page 726
BD-40	0xBD28	Speed loop proportional gain 1	1 to 100	30	-	Changeable   at any time	" $B D-40$ " on page 727
BD-41	0xBD29	Speed loop integral time 1	0.01s to 10.00 s	0.50	s	Changeable at any time	" $B D-41$ " on page 727
BD-42	0xBD2A	Switchover frequency 1	0.00 Hz to BD-45	5.00	Hz	Changeable   at any time	" $B D-42$ " on page 727
BD-43	0xBD2B	Speed loop proportional gain 2	1 to 100	20	-	Changeable at any time	" $B D-43$ " on page 727
BD-44	0xBD2C	Speed loop integral time 2	0.01s to 10.00 s	1.00	s	Changeable   at any time	"BD-44" on page 727
BD-45	0xBD2D	Switchover frequency 2	BD-42 to F0-10	10.00	Hz	Changeable at any time	" $B D-45$ " on page 728
BD-46	0xBD2E	Vector control slip gain	50\% to 200\%	100	\%	Changeable at any time	"BD-46" on page 728
BD-47	0xBD2F	Speed feedback   filter time in SVC   mode	0.000 s to 0.100s	0.015	s	Changeable at any time	"BD-47" on page 728
BD-49	0xBD31	Torque upper limit source in speed control mode (motoring)	0: Digital setting (F2-10)   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: MIN (AI1, AI2)   7: MAX (AI1, AI2)   Others: F connector	0	-	Changeable at any time	"BD-49" on page 728
BD-50	0xBD32	Torque upper limit in speed control mode	0.0\% to 200.0\%	150.0	\%	Changeable   at any time	" $B D-50$ " on page 728
BD-51	0xBD33	Torque upper limit source in speed control mode (generating)	0 : Digital setting (F2-10)   1: AI1   2: Al2   3: Al3   4: Pulse reference (DI5)   5: Communication   6: MIN (AI1, AI2)   7: MAX (AI1, AI2)   8: Digital setting (F2-12)   Others: F connector	0	-	Changeable at any time	"BD-51" on page 729
BD-52	0xBD34	Torque upper limit in speed control mode (generating)	0.0\% to 200.0\%	150.0	\%	Changeable at any time	"BD-52" on page 729


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BD-53	0xBD35	Field weakening mode	0 : No field weakening   1: Auto adjustment   2: Calculation+Auto adjustment	1	-	Changeable only at stop	" $B D-53$ " on page 729
BD-54	0xBD36	Field weakening gain	1 to 50	5	-	Changeable at any time	" $B D-54$ " on page 730
BD-57	0xBD39	Generating power limiting	0: Disabled   1: Enabled in the whole process   2: Enabled at constant speed   3: Enabled during deceleration	0	-	Changeable at any time	"BD-57" on page 730
BD-58	0xBD3A	Generating power upper limit	0.0\% to 200.0\%	20.0	\%	Changeable at any time	" $B D-58$ " on page 730
BD-59	0xBD3B	Motor 3 control mode	$\begin{aligned} & \text { 0: SVC } \\ & \text { 1: FVC } \\ & \text { 2: V/f } \end{aligned}$	2	-	Changeable only at stop	"BD-59" on page 730
BD-60	0xBD3C	Initial position angle detection current of synchronous motor	50 to 180	80	-	Changeable only at stop	" $B D-60$ " on page 731
BD-61	0xBD3D	Initial position angle detection of synchronous motor	0: Detected upon running   1: Not detected   2: Detected upon initial running after power-on	0	-	Changeable at any time	"BD-61" on page 731
BD-63	0xBD3F	Salient pole rate adjustment gain of synchronous motor	0.20 to 3.00	1.00	-	Changeable at any time	" $B D-63$ " on page 731
BD-64	0xBD40	Maximum torque-to-current ratio control of synchronous motor	0 : Disabled   1: Enabled	1	-	Changeable at any time	"BD-64" on page 731
BD-65	0xBD41	Z signal correction	0: Disabled   1: Enabled	1	-	Changeable at any time	"BD-65" on page 732
BD-67	0xBD43	Low speed carrier frequency	0.8 kHz to $\mathrm{FO}-15$	2.0	kHz	Changeable at any time	"BD-67" on page 732
BD-68	0xBD44	Position lock	0 to 1	0	-	Changeable at any time	" $B D-68$ " on page 732
BD-69	0xBD45	Switchover frequency	0.00 Hz to BD-42	0.30	Hz	Changeable at any time	"BD-69" on page 732
BD-70	0xBD46	Position lock speed loop proportional gain	1 to 100	10	-	Changeable at any time	" $B D-70$ " on page 732
BD-71	0xBD47	Position lock speed loop integral time	0.01 s to 10.00 s	0.50	s	Changeable at any time	"BD-71" on page 733


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
BD-74	0xBD4A	Auto-tuning free mode	0: Disabled   1: Auto-tuning upon initial running after poweron   2: Auto-tuning upon running	0	-	Changeable at any time	" $B D-74$ " on page 733
BD-76	0xBD4C	Initial position compensation angle	0.0 to 359.9	0.0	-	Changeable at any time	"BD-76" on page 733
BD-80	0xBD50	Speed loop command word	Bit00: Speed loop   0: Disabled   1: Enabled   Bit01: Integration mode   0: Conventional integration   1: Position integration   Bit02: Acceleration torque   0 : Disabled   1: Enabled   Bit03-Bit04: Acceleration source   0 : Function transfer torque   1: Automatic calculation   2: Function transfer acceleration   Bit05: Anti-load disturbance   0 : Disabled   1: Enabled	11	-	Changeable at any time	" $B D-80$ " on page 733
BD-81	0xBD51	Locked-rotor fast integral cancel coefficient	0.0\% to +100.0\%	0.0	\%	Changeable at any time	"BD-81" on page 734
BD-82	0xBD52	Integral torque	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"BD-82" on page 734
BD-83	0xBD53	Speed controller frequency window size	0.00 Hz to 10.00 Hz	0.00	Hz	Changeable only at stop	"BD-83" on page 734
BD-84	0xBD54	Current filter time for torque reference	0.0 ms to 100.0 ms	0.0	ms	Changeable only at stop	"BD-84" on page 735
BD-85	0xBD55	Acceleration torque	0 : Inactive   1: AI1   2: AI2   3: AI3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"BD-85" on page 735
BD-87	0xBD57	Reference model bandwidth	0.00 Hz to 300.00 Hz	0.00	Hz	Changeable at any time	" $B D-87$ " on page 735
BD-88	0xBD58	Torque feedforward coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	$\text { " } B D-88 \text { " on page }$ $735$


Para.	Comm.   Addr.	Name		De   fault	Unit	Change	Page


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BE-05	0xBE05	Generating power limiting coefficient	0.0\% to 400.0\%	400.0	\%	Changeable at any time	"BE-05" on page 739
BE-06	0xBE06	Overspeed limiting enable	0 to 1	1	-	Changeable at any time	"BE-06" on page 739
BE-07	0xBE07	Sine wave frequency of bandwidth test	0 Hz to 1000 Hz	0	Hz	Changeable at any time	"BE-07" on page $739$
BE-08	0xBE08	Sine wave amplitude of bandwidth test	0\% to $100 \%$	0	\%	Changeable at any time	"BE-08" on page 739
BE-09	0xBE09	Bandwidth test enable	0 to 4	0	-	Changeable at any time	"BE-09" on page 739
BE-11	0xBEOB	Speed loop   parameter   calculation mode	0 : New solution   1: Compatible solution	1	-	Changeable only at stop	"BE-11" on page 740
BE-12	0xBEOC	Speed loop   proportional gain in   FVC mode	0.00 Hz to 100.00 Hz	8.00	Hz	Changeable at any time	"BE-12" on page 740
BE-13	0xBEOD	Speed loop integral time in FVC mode	0.000s to 20.000s	0.080	s	Changeable at any time	"BE-13" on page $740$
BE-14	0xBEOE	Speed loop   proportional gain in   SVC mode	0.00 Hz to 100.00 Hz	5.00	Hz	Changeable at any time	"BE-14" on page 740
BE-15	0xBEOF	Speed loop integral time in SVC mode	0.000s to 20.000s	0.127	s	Changeable at any time	"BE-15" on page $740$
BE-16	0xBE10	Low frequency proportional correction coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"BE-16" on page 741
BE-17	0xBE11	Low frequency integral correction coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"BE-17" on page 741
BE-18	0xBE12	Speed loop adaption factor	0.000 to 10.000	0.200	-	Changeable at any time	"BE-18" on page 741
BE-19	0xBE13	Speed loop   adaption   switchover lower   limit	0.000 to 10.000	0.400	-	Changeable at any time	"BE-19" on page 741
BE-20	0xBE14	Speed loop   adaption   switchover upper   limit	0.000 to 10.000	1.000	-	Changeable at any time	"BE-20" on page 741
BE-21	0xBE15	Speed loop   adaption correction upper limit	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"BE-21" on page 742


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BE-22	0xBE16	Speed loop   adaption correction   lower limit	$0.0 \%$ to $1000.0 \%$	100.0	\%	Changeable   at any time	"BE-22" on page
742							


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BE-32	0xBE20	Flux linkage control command word	Bit00: Output voltage limit calculation filtering mode   0: Symmetric filtering   1: Asymmetric filtering   Bit01: Asynchronous motor inverse proportion curve calculation   0 : The inverse proportional synchronization frequency decreases.   1: The inverse proportional speed decreases.   Bit02: Flux linkage feedforward calculation by using inverse proportional speed   0 : Disabled   1: Enabled   Bit03: Reserved   Bit04: Reserved   Bit05: Field weakening adjustment   0: Disabled   1: Enabled   Bit06: Flux linkage derivative feedforward   0: Disabled   1: Enabled   Bit07: Energy conservation control   0: Disabled   1: Enabled   Bit08: Asynchronous motor flux closed loop   0: Disabled   1: Enabled   Bit09: Reserved   Bit10: Reserved   Bit11: Asynchronous motor pre-excitation mode   0: Pre-excitation based on time   1: Pre-excitation based on current   Bit12: Asynchronous motor pre-excitation current   0: Reference current   1: Maximum current allowed by the drive	2357		Changeable at any time	"BE-32" on page 744
BE-33	0xBE21	Output voltage upper limit margin for field weakening adjustment	1\% to 50\%	5	\%	Changeable at any time	"BE-33" on page 746
BE-34	0xBE22	Output voltage upper limit margin for auto adjustment of field weakening	1\% to 20\%	3	\%	Changeable at any time	"BE-34" on page $746$
BE-35	0xBE23	Filter time for calculating maximum output voltage	0 ms to 3000 ms	30	ms	Changeable at any time	"BE-35" on page 746


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BE-36	0xBE24	Rated flux adjustment coefficient for calculation	0.5 to 2.0	1.0	-	Changeable at any time	$\begin{aligned} & \text { "BE-36" on page } \\ & 746 \end{aligned}$
BE-37	0xBE25	Field weakening frequency adjustment coefficient for calculation	0.8 to 1.2	1.0	-	Changeable at any time	"BE-37" on page $747$
BE-38	0xBE26	Slip filter time for calculating field weakening frequency	0 ms to 3000 ms	62	ms	Changeable at any time	"BE-38" on page 747
BE-39	0xBE27	Feedback speed filtering	0 ms to 8000 ms	50	ms	Changeable at any time	"BE-39" on page 747
BE-40	0xBE28	Flux linkage rising filter time	0 ms to 8000 ms	20	ms	Changeable at any time	"BE-40" on page 747
BE-42	0xBE2A	Feedback voltage filter time	0 ms to 3000 ms	5	ms	Changeable at any time	"BE-42" on page 748
BE-43	0xBE2B	Maximum demagnetization current of synchronous motor	0\% to 500\%	300	\%	Changeable at any time	" $B E-43$ " on page 748
BE-44	0xBE2C	Voltage outer loop lower limit coefficient	0 to 500	50	-	Changeable at any time	"BE-44" on page $748$
BE-45	0xBE2D	Flux linkage derivative feedforward coefficient	0.0 to 1.5	1.0	-	Changeable at any time	"BE-45" on page $748$
BE-46	0xBE2E	Flux linkage derivative feedforward filter time	0 ms to 3000 ms	6	ms	Changeable at any time	" $B E-46$ " on page $748$
BE-47	0xBE2F	Torque current rising filter time under energy conservation control	0 ms to 3000 ms	50	ms	Changeable at any time	"BE-47" on page $749$
BE-48	0xBE30	Torque current falling filter time under energy conservation control	0 ms to 3000 ms	100	ms	Changeable at any time	" $B E-48$ " on page 749


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
BE-49	0xBE31	Flux linkage lower limit coefficient under energy conservation control	0.00 to 0.50	0.10	-	Changeable at any time	"BE-49" on page 749
BE-51	0xBE33	Pre-excitation current	1\% to 200\%	100	\%	Changeable at any time	"BE-51" on page $749$
BE-52	0xBE34	Pre-excitation time	1 ms to 30000 ms	1000	ms	Changeable at any time	"BE-52" on page 750
BE-53	0xBE35	Flux linkage closedloop bandwidth frequency	0.0 Hz to 100.0 Hz	2.0	Hz	Changeable at any time	"BE-53" on page 750
BE-54	0xBE36	Feedback flux linkage filter time coefficient	0 to 200	4	-	Changeable at any time	"BE-54" on page 750
BE-55	0xBE37	Static output flux linkage filter time	0 ms to 5000 ms	10	ms	Changeable at any time	"BE-55" on page 750
BE-56	0xBE38	Current loop mode	0 : ImCsr2 mode   1: Complex vector mode   2: 880 mode   3: No field weakening	1	-	Changeable only at stop	"BE-56" on page 750
BE-57	0xBE39	PI regulator proportional gain adaptation with load	0 : Disabled   1: Enabled	0	-	Changeable only at stop	"BE-57" on page 751
BE-58	0xBE3A	Current loop damping	0.2 to 5.0	0.8	-	Changeable at any time	"BE-58" on page 751
BE-59	0xBE3B	Low-speed current loop Kp adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"BE-59" on page 751
BE-60	0xBE3C	High-speed current loop Kp adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"BE-60" on page 751
BE-61	0xBE3D	Low-speed current loop Ki adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"BE-61" on page 752
BE-62	0xBE3E	High-speed current loop Ki adjustment	0.1 to 10.0	2.0	-	Changeable at any time	"BE-62" on page 752
BE-63	0xBE3F	D-axis current loop complex vector adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"BE-63" on page 752
BE-64	0xBE40	Q-axis current loop complex vector adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"BE-64" on page 752


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BE-65	0xBE41	Complex vector hysteresis frequency lower limit as a percentage of rated frequency	0\% to BE-66	0	\%	Changeable at any time	"BE-65" on page 752
BE-66	0xBE42	Complex vector hysteresis frequency upper limit as a percentage of rated frequency	BE-65 to 150\%	0	\%	Changeable at any time	"BE-66" on page 753
BE-67	0xBE43	ImCsr2 hysteresis switchover voltage upper limit as a percentage of saturation voltage	BE-68 to 95\%	89	\%	Changeable at any time	"BE-67" on page 753
BE-68	0xBE44	ImCsr2 hysteresis switchover voltage lower limit as a percentage of saturation voltage	60\% to BE-67	79	\%	Changeable at any time	"BE-68" on page 753
BE-69	0xBE45	ImCsr2 hysteresis   switchover   frequency   hysteresis range as   a percentage of   rated frequency	1\% to 30\%	10	\%	Changeable at any time	"BE-69" on page 753
BE-70	0xBE46	ImCsr2 hysteresis switchover frequency lower limit (below which the hysteresis condition does not take effect) as a percentage of the rated frequency	40\% to 80\%	60	\%	Changeable at any time	"BE-70" on page 753
BE-71	0xBE47	ImCsr2 current loop Kss adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"BE-71" on page 754
BE-72	0xBE48	Proportional gain adjustment coefficient corresponding to the maximum torque when proportional gain is adjusted with load	0.1 to 1.0	0.5	-	Changeable at any time	"BE-72" on page 754


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BE-73	0xBE49	Torque upper limit setpoint as a percentage of rated torque when proportional gain is adjusted with load	BE-74 to 300\%	200	\%	Changeable at any time	"BE-73" on page 754
BE-74	0xBE4A	Torque lower limit setpoint as a percentage of rated torque when proportional gain is adjusted with load	0.0\% to BE-73	100	\%	Changeable at any time	"BE-74" on page 754
BE-75	0xBE4B	Derivative feedforward adjustment	0.0 to 1.0	0.0	-	Changeable at any time	"BE-75" on page 755
BE-76	0xBE4C	Decoupling control start frequency as a percentage of rated frequency	20\% to $150 \%$	40	\%	Changeable at any time	"BE-76" on page 755
BE-77	0xBE4D	Decoupling control filter time adjustment coefficient	0.1 to 3.0	1.0	-	Changeable at any time	"BE-77" on page 755
BE-78	0xBE4E	Decoupling control output adjustment coefficient	0.0 to 1.0	1.0	-	Changeable at any time	"BE-78" on page 755
BE-79	0xBE4F	CPC feedforward enable	0: Disabled   1: Enabled	0	-	Changeable at any time	"BE-79" on page 755
BE-80	0xBE50	Current loop auxiliary command word	Bit00: Complex vector angle limiting   0: Disabled   1: Enabled   Bit01: Voltage angle limiting   0: Program internal limiting   1: Parameter setting   Bit02: 0 by default   0 : No lower limit on the excitation current is imposed during the dynamic process.   1: A lower limit on the excitation current is imposed during the dynamic process in ImCsr2 mode.   Bit03-Bit15: Reserved (0 by default)	0	-	Changeable at any time	" $B E-80$ " on page 756
BE-81	0xBE51	Voltage angle upper limit	$90^{\circ}$ to $180^{\circ}$	150	-	Changeable at any time	"BE-81" on page 756
BE-82	0xBE52	Voltage angle lower limit	$0^{\circ}$ to $90^{\circ}$	30	-	Changeable at any time	"BE-82" on page 756


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
BE-83	0xBE53	Asynchronous motor D axis integral limit	0.500 to 1.000	0.707	-	Changeable at any time	"BE-83" on page 756
BE-84	0xBE54	Current loop carrier frequency upper limit	5.0 to 16.0	8.0	-	Changeable at any time	"BE-84" on page 757
BE-85	0xBE55	Droop enable	0 to 1	0	-	Changeable only at stop	" $B E-85$ " on page 757
BE-86	0xBE56	Droop source	0 : Line current   1: Torque reference   2: Speed adjustment output   3: Speed adjustment integral component	1	-	Changeable only at stop	"BE-86" on page 757
BE-87	0xBE57	Frequency reference droop coefficient	0.0\% to 50.0\%	0.0	\%	Changeable at any time	"BE-87" on page 757
BE-88	0xBE58	FVC-SVC switchover mode	0: No switchover   1: Active switchover   2: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during stop and does not switch back to FVC mode when the encoder recovers during running.)   3: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during running or stop.)	0	-	Changeable only at stop	"BE-88" on page 757
BE-89	0xBE59	FVC-SVC switchover frequency	10\% to 500\%	50	\%	Changeable only at stop	"BE-89" on page 758
BE-90	0xBE5A	FVC-SVC switchover hysteresis	10\% to $100 \%$	10	\%	Changeable only at stop	"BE-90" on page 758
BF-00	0xBF00	Minimum speed measurement interval of resolver	0.010 s to 10.000 s	0.450	S	Changeable only at stop	"BF-00" on page 758
BF-01	0xBF01	Dynamic parameter adaption factor	20.0\% to 200.0\%	100.0	\%	Changeable only at stop	"BF-01" on page 758
BF-02	0xBF02	Saturation model auto-tuning voltage setting mode	0 to 1	1	-	Changeable at any time	"BF-02" on page 759
BF-03	0xBF03	Reserved 2   saturation model auto-tuning carrier frequency reference	0.0 to 10.0	6.0	-	Changeable at any time	"BF-03" on page $759$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BF-04	0xBF04	Saturation model auto-tuning target rated current multiple	0\% to 250\%	200	\%	Changeable at any time	"BF-04" on page   759
BF-05	0xBF05	Saturation model auto-tuning manual voltage setpoint	0 to 4096	2000	-	Changeable at any time	"BF-05" on page $759$
BF-06	0xBF06	Bus voltage filter time	0 ms to 10000 ms	0	ms	Changeable at any time	"BF-06" on page 759
BF-07	0xBF07	Inverter protection	Bit00: Pulse-by-pulse current limit protection (reserved)   0 : Disabled   1: Enabled   Bit01: Output phase loss (reserved)   0: Disabled   1: Enabled   Bit02: Leakage current protection (reserved)   0 : Disabled   1: Enabled   Bit03: PL signal input phase loss detection (reserved)   0 : Disabled   1: Enabled   Bit04: Bus input phase loss detection (reserved)   0 : Disabled   1: Enabled   Bit05: Derating at low frequency   0 : Disabled   1: Enabled   Bit06: Reporting overvoltage upon shutdown   0: Enabled   1: Disabled   Bit07: Zero drift detection fault   0: Disabled   1: Enabled   Bit08: Pre-charge fault detection (reserved)   0 : Disabled   1: Enabled   Bit09: Bus voltage collection and analysis   0 : Disabled   1: Enabled	128	-	Changeable at any time	$\begin{aligned} & \text { "BF-07" on page } \\ & 760 \end{aligned}$
BF-09	0xBF09	AC drive preoverload threshold	0.0\% to $+100.0 \%$	90.0	\%	Changeable at any time	"BF-09" on page 760
BF-12	0xBFOC	Input phase loss detection time	1.0 s to 10.0 s	2.0	s	Changeable at any time	"BF-12" on page   761
BF-13	OxBFOD	Allowable bus fluctuation range	10.0 V to 500.0 V	65.0	V	Changeable at any time	"BF-13" on page 761


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BF-14	OxBFOE	Module preovertemperature to overtemperature margin	0.0\% to 60.0\%	5.0	\%	Changeable at any time	$\begin{aligned} & \text { "BF-14" on page } \\ & 761 \end{aligned}$
BF-15	0xBFOF	Maximum output current	0.0\% to 1000.0\%	1000.0	\%	Changeable at any time	$\begin{aligned} & \text { "BF-15" on page } \\ & 761 \end{aligned}$
BF-16	$0 \times B F 10$	PWM setting	Bit00: Carrier frequency adjusted with temperature   0: Disabled   1: Enabled   Bit01: Carrier frequency adjusted with sync frequency   0 : Disabled   1: Enabled   Bit02-Bit03:   0 : Asynchronous modulation   1: Pseudo synchronous modulation   2: Synchronous modulation (reserved)   Bit04-Bit06:   0: CPWM   1: DPWM0   2: DPWM1   3: DPWM2   4: DPWM3   5: DPWMph   Bit07: Deadzone compensation   0 : Disabled   1: Enabled   Bit08: Overmodulation mode   0 : Amplitude   1: Phase	130	-	Changeable at any time	"BF-16" on page 761
BF-17	$0 \times B F 11$	Hysteresis for adjusting carrier frequency with sync frequency	0.0 Hz to 100.0 Hz	3.0	Hz	Changeable at any time	" $B F-17$ " on page   762
BF-18	0xBF12	Cut-off frequency for deadzone compensation	0.0 Hz to 600.0 Hz	70.0	Hz	Changeable at any time	$\begin{aligned} & \text { "BF-18" on page } \\ & 762 \end{aligned}$
BF-19	$0 \times B F 13$	Narrow pulse coefficient	0.0\% to $+100.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "BF-19" on page } \\ & 762 \end{aligned}$
BF-20	0xBF14	Start frequency for adjusting carrier frequency with sync frequency	0.0 Hz to 600.0 Hz	5.0	Hz	Changeable at any time	"BF-20" on page $763$
BF-21	0xBF15	Modulation ratio limit	A5-05 to 115.5\%	105.0	\%	Changeable at any time	"BF-21" on page 763


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BF-22	0xBF16	Drive transistor   voltage drop   voltage	0.00 V to 5.00 V	0.80	V	Changeable only at stop	"BF-22" on page 763
BF-23	0xBF17	Current 1 of deadzone time curve	0.0\% to $150.0 \%$	1.0	\%	Changeable only at stop	"BF-23" on page 763
BF-24	0xBF18	Current 2 of deadzone time curve	0.0\% to $150.0 \%$	2.0	\%	Changeable only at stop	"BF-24" on page 763
BF-25	0xBF19	Current 3 of deadzone time curve	0.0\% to $150.0 \%$	5.0	\%	Changeable only at stop	"BF-25" on page 764
BF-26	0xBF1A	Current 4 of deadzone time curve	0.0\% to $150.0 \%$	10.0	\%	Changeable only at stop	"BF-26" on page 764
BF-27	0xBF1B	Current 5 of deadzone time curve	0.0\% to $150.0 \%$	20.0	\%	Changeable only at stop	"BF-27" on page $764$
BF-28	0xBF1C	Current 6 of deadzone time curve	0.0\% to $150.0 \%$	40.0	\%	Changeable only at stop	"BF-28" on page 764
BF-29	0xBF1D	Current 7 of deadzone time curve	0.0\% to $150.0 \%$	60.0	\%	Changeable only at stop	"BF-29" on page $764$
BF-30	0xBF1E	Current 8 of deadzone time curve	0.0\% to $150.0 \%$	80.0	\%	Changeable only at stop	"BF-30" on page 765
BF-31	0xBF1F	Time 1 of deadzone time curve	0.0\% to 300.0\%	10.0	\%	Changeable only at stop	"BF-31" on page 765
BF-32	0xBF20	Time 2 of deadzone time curve	0.0\% to 300.0\%	20.0	\%	Changeable only at stop	"BF-32" on page 765
BF-33	0xBF21	Time 3 of deadzone time curve	0.0\% to 300.0\%	50.0	\%	Changeable only at stop	"BF-33" on page 765
BF-34	0xBF22	Time 4 of deadzone time curve	0.0\% to 300.0\%	80.0	\%	Changeable only at stop	"BF-34" on page $765$
BF-35	0xBF23	Time 5 of deadzone time curve	0.0\% to 300.0\%	90.0	\%	Changeable only at stop	"BF-35" on page $766$
BF-36	0xBF24	Time 6 of deadzone time curve	0.0\% to 300.0\%	90.0	\%	Changeable only at stop	"BF-36" on page $766$
BF-37	0xBF25	Time 7 of deadzone time curve	0.0\% to 300.0\%	90.0	\%	Changeable only at stop	"BF-37" on page $766$
BF-38	0xBF26	Time 8 of deadzone time curve	0.0\% to 300.0\%	90.0	\%	Changeable only at stop	$\begin{aligned} & \text { "BF-38" on page } \\ & 766 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
BF-39	0xBF27	Detection of excessive leakage current	0: Disabled   1: Enabled	0	-	Changeable only at stop	$\begin{aligned} & \text { "BF-39" on page } \\ & 766 \end{aligned}$
BF-40	0xBF28	Excessive leakage current fault threshold protection gain	50.0\% to $100.0 \%$	100.0	\%	Changeable at any time	"BF-40" on page 767
BF-44	0xBF2C	Start voltage for actuating braking unit	200.0 V to 2000.0 V	760.0	V	Changeable at any time	"BF-44" on page 767
BF-45	0xBF2D	Load loss detection level	0.0\% to +100.0\%	10.0	\%	Changeable at any time	"BF-45" on page 767
BF-46	0xBF2E	Load loss detection time	0.0 s to 60.0s	1.0	s	Changeable at any time	"BF-46" on page 767
C0-00	0xC000	Communication mapping	0 : Disabled   1: Enabled	0	-	Changeable at any time	"C0-00" on page 767
C0-01	0xC001	Automatic address detection	0 : Disabled   1: Reset detection (overwriting the index)   2: Incremental detection (without overwriting the index)	0	-	Changeable at any time	"C0-01" on page 768
C0-02	0xC002	Automatic address detection time	Os to 65535s	60	S	Changeable at any time	"C0-02" on page $768$
C0-03	0xC003	Confirmation of automatic address detection	0 : Cancel   1: Confirm	0	-	Changeable at any time	"C0-03" on page   768
C0-04	0xC004	Data transmission endian mode	Ones: RX data   0: Low-order bytes before high-order bytes   1: High-order bytes before low-order bytes	0	-	Changeable at any time	"C0-04" on page 768


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
C0-05	0xC005	Read data type selection 1	Ones: Read index 1   0: Ulnt16   1: Int16   2: Ulnt32   3: Int32   4: Unsigned Float32   5: Signed Float32   Tens: Read index 2   0: Ulnt16   1: Int16   2: UInt32   3: Int32   4: Unsigned Float32   5: Signed Float32   Hundreds: Read index 3   0: Ulnt16   1: Int16   2: UInt32   3: Int32   4: Unsigned Float32   5: Signed Float32   Thousands: Read index 4   0: UInt16   1: Int16   2: Ulnt32   3: Int32   4: Unsigned Float32   5: Signed Float32   Ten thousands: Read index 5   0: Ulnt16   1: Int16   2: Ulnt32   3: Int32   4: Unsigned Float32   5: Signed Float32	0	-	Changeable at any time	"C0-05" on page $768$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C0-06	0xC006	Read data type selection 2	Ones: Read index 6   0: Ulnt16   1: Int16   2: UInt32   3: Int32   4: Unsigned Float32   5: Signed Float32   Tens: Read index 7   0: Ulnt16   1: Int16   2: UInt32   3: Int32   4: Unsigned Float32   5: Signed Float32   Hundreds: Read index 8   0: Ulnt16   1: Int16   2: UInt32   3: Int32   4: Unsigned Float32   5: Signed Float32   Thousands: Read index 9   0: Ulnt16   1: Int16   2: UInt32   3: Int32   4: Unsigned Float32   5: Signed Float32   Ten thousands: Read index 10   0: UInt16   1: Int16   2: Ulnt32   3: Int32   4: Unsigned Float32   5: Signed Float32	0		Changeable at any time	"C0-06" on page $769$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C0-07	0xC007	Read data scale factor selection 1	Ones: Read index 1   0 : x1   1: x0.1   2: x0.01   3: x0.001   4: x10   5: x100   6: x1000   7: $\times 0.0001$   8: x10000   Tens: Read index 2   0 : x1   1: x0.1   2: x0.01   3: x0.001   4: x10   5: x100   6: x1000   7: $\times 0.0001$   8: x10000   Hundreds: Read index 3   0 : x1   1: x0.1   2: x0.01   3: x0.001   4: x10   5: x100   6: x1000   7: $\times 0.0001$   8: x10000   Thousands: Read index 4   0 : x1   1: x0.1   2: x0.01   3: x0.001   4: x10   5: x100   6: x1000   7: $\times 0.0001$   8: x10000   Ten thousands: Read index 5   0 : x1   1: x0.1   2: $\times 0.01$   3: x0.001   4: x10   5: $\times 100$	0	-	Changeable at any time	"C0-07" on page 770


Para.	Comm. Addr.	Name	Reference	De fault	Unit	Change	Page
C0-08	0xC008	Read data scale factor selection 2	Ones: Read index 6   0 : x1   1: x0.1   2: $\times 0.01$   3: x0.001   4: x10   5: x100   6: x1000   7: x0.0001   8: x10000   Tens: Read index 7   0: x1   1: x0.1   2: x0.01   3: x0.001   4: x10   5: x100   6: x1000   7: x0.0001   8: x10000   Hundreds: Read index 8   0: x1   1: x0.1   2: x0.01   3: $\times 0.001$   4: x10   5: x100   6: x1000   7: $\times 0.0001$   8: x10000   Thousands: Read index 9   0: x1   1: x0.1   2: $\times 0.01$   3: x0.001   4: x10   5: x100   6: x1000   7: $\times 0.0001$   8: x10000   Ten thousands: Read index 10   0 : x1   1: x0.1   2: $\times 0.01$   3: $\times 0.001$   4: x10   5: $\times 100$	0	-	Changeable at any time	"CO-08" on page 772
C0-09	0xC009	Write data type	$0 \times 0$ to 0xFFFF	0x0	-	Changeable at any time	"C0-09" on page 774


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
C0-10	0xCOOA	Address mapping status	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-10" on page 774
C0-18	0xC012	Number of read mapping addresses	0 to 10	10	-	Changeable at any time	"C0-18" on page 774
C0-19	0xC013	Number of write mapping addresses	0 to 10	10	-	Changeable at any time	"C0-19" on page 775
C0-20	0xC014	Read index 1	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-20" on page 775
C0-21	0xC015	Read subindex 1	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-21" on page 775
C0-22	0xC016	Read mapping internal address index 1	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "C0-22" on page } \\ & 775 \end{aligned}$
C0-23	0xC017	Read mapping internal address subindex 1	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "C0-23" on page } \\ & 775 \end{aligned}$
C0-24	0xC018	Read index 2	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-24" on page 776
C0-25	0xC019	Read subindex 2	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-25" on page 776
C0-26	0xC01A	Read mapping internal address index 2	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-26" on page 776
C0-27	0xC01B	Read mapping internal address subindex 2	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-27" on page 776
C0-28	0xC01C	Read index 3	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "C0-28" on page } \\ & 776 \end{aligned}$
C0-29	0xC01D	Read subindex 3	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "C0-29" on page } \\ & 776 \end{aligned}$
C0-30	0xC01E	Read mapping internal address index 3	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-30" on page 777
C0-31	0xC01F	Read mapping internal address subindex 3	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-31" on page 777
C0-32	0xC020	Read index 4	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-32" on page 777
C0-33	0xC021	Read subindex 4	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-33" on page 777
C0-34	0xC022	Read mapping internal address index 4	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-34" on page 777


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C0-35	0xC023	Read mapping internal address subindex 4	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C0-35" on page 778
C0-36	0xC024	Read index 5	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C0-36" on page   778
C0-37	0xC025	Read subindex 5	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C0-37" on page   778
C0-38	0xC026	Read mapping internal address index 5	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C0-38" on page 778
C0-39	0xC027	Read mapping internal address subindex 5	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C0-39" on page 778
C0-40	0xC028	Read index 6	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"CO-40" on page 779
C0-41	0xC029	Read subindex 6	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-41" on page $779$
C0-42	0xC02A	Read mapping   internal address   index 6	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C0-42" on page   779
C0-43	0xC02B	Read mapping internal address subindex 6	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C0-43" on page $779$
C0-44	0xC02C	Read index 7	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C0-44" on page $779$
C0-45	0xC02D	Read subindex 7	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C0-45" on page $780$
C0-46	0xC02E	Read mapping internal address index 7	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C0-46" on page $780$
C0-47	0xC02F	Read mapping internal address subindex 7	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"CO-47" on page $780$
C0-48	0xC030	Read index 8	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	$\begin{aligned} & \text { "C0-48" on page } \\ & 780 \end{aligned}$
C0-49	0xC031	Read subindex 8	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	$\begin{aligned} & \text { "C0-49" on page } \\ & 780 \end{aligned}$
C0-50	0xC032	Read mapping   internal address   index 8	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C0-50" on page 781
C0-51	0xC033	Read mapping   internal address   subindex 8	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C0-51" on page 781
C0-52	0xC034	Read index 9	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C0-52" on page 781


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C0-53	0xC035	Read subindex 9	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-53" on page 781
C0-54	0xC036	Read mapping internal address index 9	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-54" on page 781
C0-55	0xC037	Read mapping internal address subindex 9	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-55" on page 781
C0-56	0xC038	Read index 10	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-56" on page 782
C0-57	0xC039	Read subindex 10	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-57" on page 782
C0-58	0xC03A	Read mapping internal address index 10	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "C0-58" on page } \\ & 782 \end{aligned}$
C0-59	0xC03B	Read mapping internal address subindex 10	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-59" on page 782
C0-60	0xC03C	Write index 1	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-60" on page 782
C0-61	0xC03D	Write subindex 1	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-61" on page 783
C0-62	0xC03E	Write mapping internal address index 1	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-62" on page 783
C0-63	0xC03F	Write mapping internal address subindex 1	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-63" on page $783$
C0-64	0xC040	Write index 2	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-64" on page 783
C0-65	$0 \times C 041$	Write subindex 2	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-65" on page 783
C0-66	0xC042	Write mapping internal address index 2	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-66" on page 784
C0-67	0xC043	Write mapping internal address subindex 2	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-67" on page $784$
C0-68	0xC044	Write index 3	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-68" on page 784
C0-69	0xC045	Write subindex 3	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-69" on page 784
C0-70	0xC046	Write mapping internal address index 3	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-70" on page 784


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C0-71	0xC047	Write mapping internal address subindex 3	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-71" on page $785$
C0-72	0xC048	Write index 4	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-72" on page 785
C0-73	0xC049	Write subindex 4	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-73" on page 785
C0-74	0xC04A	Write mapping internal address index 4	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-74" on page $785$
C0-75	0xC04B	Write mapping internal address subindex 4	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-75" on page 785
C0-76	0xC04C	Write index 5	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-76" on page $786$
C0-77	0xC04D	Write subindex 5	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-77" on page $786$
C0-78	0xC04E	Write mapping internal address index 5	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-78" on page $786$
C0-79	0xC04F	Write mapping internal address subindex 5	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-79" on page   786
C0-80	0xC050	Write index 6	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-80" on page 786
C0-81	0xC051	Write subindex 6	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-81" on page $786$
C0-82	0xC052	Write mapping internal address index 6	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "C0-82" on page } \\ & 787 \end{aligned}$
C0-83	0xC053	Write mapping internal address subindex 6	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-83" on page 787
C0-84	0xC054	Write index 7	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-84" on page 787
C0-85	0xC055	Write subindex 7	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-85" on page 787
C0-86	0xC056	Write mapping internal address index 7	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-86" on page $787$
C0-87	0xC057	Write mapping internal address subindex 7	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "C0-87" on page } \\ & 788 \end{aligned}$
C0-88	0xC058	Write index 8	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-88" on page $788$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C0-89	0xC059	Write subindex 8	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-89" on page $788$
C0-90	0xC05A	Write mapping internal address index 8	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-90" on page 788
C0-91	0xC05B	Write mapping internal address subindex 8	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-91" on page 788
C0-92	0xC05C	Write index 9	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-92" on page 789
C0-93	0xC05D	Write subindex 9	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "C0-93" on page } \\ & 789 \end{aligned}$
C0-94	0xC05E	Write mapping internal address index 9	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-94" on page 789
C0-95	0xC05F	Write mapping internal address subindex 9	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-95" on page   789
C0-96	0xC060	Write index 10	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C0-96" on page $789$
C0-97	0xC061	Write subindex 10	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "C0-97" on page } \\ & 790 \end{aligned}$
C0-98	0xC062	Write mapping internal address index 10	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "C0-98" on page } \\ & 790 \end{aligned}$
C0-99	0xC063	Write mapping   internal address   subindex 10	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "C0-99" on page } \\ & 790 \end{aligned}$
C1-00	0xC100	Input of W2B   module A	$\text { 0: } 0$   Others: K connector	0	-	Changeable at any time	"C1-00" on page $790$
C1-01	0xC101	Input of W2B module B	Same as C1-00	0	-	Changeable at any time	"C1-01" on page $791$
C1-02	0xC102	Input of W2B module C	Same as C1-00	0	-	Changeable at any time	"C1-02" on page $791$
C1-03	0xC103	Input of W2B   module D	Same as C1-00	0	-	Changeable at any time	$\begin{aligned} & \text { "C1-03" on page } \\ & 791 \end{aligned}$
C1-04	0xC104	Input of W2B module E	Same as C1-00	0	-	Changeable at any time	"C1-04" on page $791$
C1-05	0xC105	Input of W2B module F	Same as C1-00	0	-	Changeable at any time	$\begin{aligned} & \text { "C1-05" on page } \\ & 791 \end{aligned}$
C1-06	0xC106	Input of W2B   module G	Same as C1-00	0	-	Changeable at any time	$\begin{aligned} & \text { "C1-06" on page } \\ & 791 \end{aligned}$
C1-07	0xC107	Input of W2B   module H	Same as C1-00	0	-	Changeable at any time	"C1-07" on page $792$


Para.	Comm.   Addr.	Name		De   fault	Unit	Change	Page


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C1-25	0xC119	B2W module A -   Bit11	Same as C1-14	0	-	Changeable at any time	"C1-25" on page 795
C1-26	$0 \times C 11 \mathrm{~A}$	B2W module A -   Bit12	Same as C1-14	0	-	Changeable at any time	"C1-26" on page 795
C1-27	$0 \times C 11 B$	B2W module A -   Bit13	Same as C1-14	0	-	Changeable at any time	"C1-27" on page 795
C1-28	0xC11C	B2W module A -   Bit14	Same as C1-14	0	-	Changeable at any time	"C1-28" on page 796
C1-29	0xC11D	B2W module A -   Bit15	Same as C1-14	0	-	Changeable at any time	"C1-29" on page 796
C1-30	0xC11E	B2W module B enable	Same as C1-12	0	-	Changeable at any time	"C1-30" on page $796$
C1-31	0xC11F	Bit inversion flag of B2W module B	0 to 65535	0	-	Changeable at any time	"C1-31" on page 796
C1-32	0xC120	B2W module B - Bit00	Same as C1-14	0	-	Changeable at any time	$\begin{aligned} & \text { "C1-32" on page } \\ & 796 \end{aligned}$
C1-33	0xC121	B2W module B -   Bit01	Same as C1-14	0	-	Changeable at any time	"C1-33" on page 797
C1-34	0xC122	B2W module B - Bit02	Same as C1-14	0	-	Changeable at any time	"C1-34" on page 797
C1-35	0xC123	B2W module B -   Bit03	Same as C1-14	0	-	Changeable at any time	"C1-35" on page 797
C1-36	0xC124	B2W module B Bit04	Same as C1-14	0	-	Changeable at any time	"C1-36" on page 797
C1-37	0xC125	B2W module B Bit05	Same as C1-14	0	-	Changeable at any time	"C1-37" on page 797
C1-38	0xC126	B2W module B Bit06	Same as C1-14	0	-	Changeable at any time	"C1-38" on page 798
C1-39	0xC127	B2W module B Bit07	Same as C1-14	0	-	Changeable at any time	"C1-39" on page 798
C1-40	0xC128	B2W module B Bit08	Same as C1-14	0	-	Changeable at any time	"C1-40" on page   798
C1-41	0xC129	B2W module B - Bit09	Same as C1-14	0	-	Changeable at any time	"C1-41" on page 798
C1-42	0xC12A	B2W module B -   Bit10	Same as C1-14	0	-	Changeable at any time	"C1-42" on page 798
C1-43	0xC12B	B2W module B -   Bit11	Same as C1-14	0	-	Changeable at any time	"C1-43" on page 798
C1-44	0xC12C	B2W module B -   Bit12	Same as C1-14	0	-	Changeable at any time	"C1-44" on page 799
C1-45	0xC12D	B2W module B Bit13	Same as C1-14	0	-	Changeable at any time	"C1-45" on page 799


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C1-46	0xC12E	B2W module B Bit14	Same as C1-14	0	-	Changeable at any time	"C1-46" on page 799
C1-47	$0 \times C 12 F$	B2W module B -   Bit15	Same as C1-14	0	-	Changeable at any time	"C1-47" on page 799
C1-48	$0 \times C 130$	B2W module C enable	0: Disabled   1: Enabled	0	-	Changeable at any time	"C1-48" on page 799
C1-49	$0 \times C 131$	Bit inversion flag of B2W module C	0 to 65535	0	-	Changeable at any time	"C1-49" on page $800$
C1-50	$0 \times C 132$	B2W module C -   Bit00	Same as C1-14	0	-	Changeable at any time	"C1-50" on page $800$
C1-51	$0 \times C 133$	B2W module C -   Bit01	Same as C1-14	0	-	Changeable at any time	"C1-51" on page 800
C1-52	$0 \times \mathrm{C} 134$	B2W module C -   Bit02	Same as C1-14	0	-	Changeable at any time	$\begin{aligned} & \text { "C1-52" on page } \\ & 800 \end{aligned}$
C1-53	$0 \times C 135$	B2W module C -   Bit03	Same as C1-14	0	-	Changeable at any time	$\begin{aligned} & \text { "C1-53" on page } \\ & 800 \end{aligned}$
C1-54	$0 \times C 136$	B2W module C -   Bit04	Same as C1-14	0	-	Changeable at any time	"C1-54" on page 801
C1-55	$0 \times C 137$	B2W module C Bit05	Same as C1-14	0	-	Changeable at any time	"C1-55" on page   801
C1-56	0xC138	B2W module C -   Bit06	Same as C1-14	0	-	Changeable at any time	"C1-56" on page 801
C1-57	0xC139	B2W module C -   Bit07	Same as C1-14	0	-	Changeable at any time	"C1-57" on page   801
C1-58	$0 \times C 13 A$	B2W module C -   Bit08	Same as C1-14	0	-	Changeable at any time	"C1-58" on page   801
C1-59	$0 \times C 13 B$	B2W module C -   Bit09	Same as C1-14	0	-	Changeable at any time	"C1-59" on page $802$
C1-60	$0 \times C 13 C$	B2W module C -   Bit10	Same as C1-14	0	-	Changeable at any time	"C1-60" on page 802
C1-61	0xC13D	B2W module C -   Bit11	Same as C1-14	0	-	Changeable at any time	"C1-61" on page $802$
C1-62	0xC13E	B2W module C -   Bit12	Same as C1-14	0	-	Changeable at any time	"C1-62" on page 802
C1-63	$0 \times \mathrm{Cl} 13 \mathrm{~F}$	B2W module C -   Bit13	Same as C1-14	0	-	Changeable at any time	"C1-63" on page $802$
C1-64	0xC140	B2W module C -   Bit14	Same as C1-14	0	-	Changeable at any time	"C1-64" on page 803
C1-65	0xC141	B2W module C -   Bit15	Same as C1-14	0	-	Changeable at any time	"C1-65" on page $803$
C1-66	0xC142	B2W module D enable	Same as C1-12	0	-	Changeable at any time	"C1-66" on page 803


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C1-67	0xC143	Bit inversion flag of B2W module D	0 to 65535	0	-	Changeable at any time	"C1-67" on page $803$
C1-68	0xC144	B2W module D -   Bit00	Same as C1-14	0	-	Changeable at any time	"C1-68" on page 803
C1-69	0xC145	B2W module D -   Bit01	Same as C1-14	0	-	Changeable at any time	"C1-69" on page 803
C1-70	0xC146	B2W module D -   Bit02	Same as C1-14	0	-	Changeable at any time	"C1-70" on page 804
C1-71	0xC147	B2W module D -   Bit03	Same as C1-14	0	-	Changeable at any time	$\begin{aligned} & \text { "C1-71" on page } \\ & 804 \end{aligned}$
C1-72	0xC148	B2W module D -   Bit04	Same as C1-14	0	-	Changeable at any time	"C1-72" on page 804
C1-73	0xC149	B2W module D -   Bit05	Same as C1-14	0	-	Changeable at any time	$\begin{aligned} & \text { "C1-73" on page } \\ & 804 \end{aligned}$
C1-74	0xC14A	B2W module D -   Bit06	Same as C1-14	0	-	Changeable at any time	"C1-74" on page 804
C1-75	$0 \times C 14 B$	B2W module D -   Bit07	Same as C1-14	0	-	Changeable at any time	$\begin{aligned} & \text { "C1-75" on page } \\ & 805 \end{aligned}$
C1-76	0xC14C	B2W module D -   Bit08	Same as C1-14	0	-	Changeable at any time	$\begin{aligned} & \text { "C1-76" on page } \\ & 805 \end{aligned}$
C1-77	0xC14D	B2W module D -   Bit09	Same as C1-14	0	-	Changeable at any time	"C1-77" on page $805$
C1-78	0xC14E	B2W module D -   Bit10	Same as C1-14	0	-	Changeable at any time	"C1-78" on page $805$
C1-79	0xC14F	B2W module D -   Bit11	Same as C1-14	0	-	Changeable at any time	"C1-79" on page $805$
C1-80	0xC150	B2W module D -   Bit12	Same as C1-14	0	-	Changeable at any time	"C1-80" on page $806$
C1-81	0xC151	B2W module D -   Bit13	Same as C1-14	0	-	Changeable at any time	"C1-81" on page $806$
C1-82	0xC152	B2W module D -   Bit14	Same as C1-14	0	-	Changeable at any time	"C1-82" on page $806$
C1-83	0xC153	B2W module D -   Bit15	Same as C1-14	0	-	Changeable at any time	$\begin{aligned} & \text { "C1-83" on page } \\ & 806 \end{aligned}$
C2-00	0xC200	LOWORD of W-DW conversion A	$\text { 0: } 0$   Others: K connector	0	-	Changeable at any time	"C2-00" on page $806$
C2-01	0xC201	HIWORD of W-DW conversion A	0: Disabled   Others: K connector	0	-	Changeable at any time	"C2-01" on page $807$
C2-02	0xC202	Low-order bits of base value of W-DW conversion A	0 to 65535	0	-	Changeable at any time	"C2-02" on page $807$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C2-03	0xC203	High-order bits of base value of W-DW conversion A	0 to 65535	0	-	Changeable at any time	"C2-03" on page 807
C2-04	0xC204	LOWORD of W-DW conversion B	$0: 0$   Others: K connector	0	-	Changeable at any time	"C2-04" on page 807
C2-05	0xC205	HIWORD of W-DW conversion B	0: Disabled   Others: K connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C2-05" on page } \\ & 808 \end{aligned}$
C2-06	0xC206	Low-order bits of base value of W-DW conversion B	0 to 65535	0	-	Changeable at any time	"C2-06" on page 808
C2-07	0xC207	High-order bits of base value of W-DW conversion B	0 to 65535	0	-	Changeable at any time	"C2-07" on page 808
C2-08	0xC208	LOWORD of W-DW conversion C	$0: 0$   Others: K connector	0	-	Changeable at any time	"C2-08" on page 808
C2-09	0xC209	HIWORD of W-DW conversion C	0 : Disabled   Others: K connector	0	-	Changeable at any time	"C2-09" on page 808
C2-10	0xC20A	Low-order bits of base value of W-DW conversion C	0 to 65535	0	-	Changeable at any time	"C2-10" on page   809
C2-11	0xC20B	High-order bits of base value of W-DW conversion C	0 to 65535	0	-	Changeable at any time	"C2-11" on page   809
C2-12	0xC20C	LOWORD of W-DW conversion D	$\text { 0: } 0$   Others: K connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C2-12" on page } \\ & 809 \end{aligned}$
C2-13	0xC20D	HIWORD of W-DW conversion D	0 : Disabled   Others: K connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C2-13" on page } \\ & 809 \end{aligned}$
C2-14	0xC20E	Low-order bits of base value of W-DW conversion D	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C2-14" on page } \\ & 809 \end{aligned}$
C2-15	0xC20F	High-order bits of base value of W-DW conversion D	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C2-15" on page } \\ & 810 \end{aligned}$
C2-32	0xC220	DW-W conversion A	0: Disabled   Others: K connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C2-32" on page } \\ & 810 \end{aligned}$
C2-33	0xC221	Low-order bits of base value of DW-W conversion A	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C2-33" on page } \\ & 810 \end{aligned}$
C2-34	0xC222	High-order bits of base value of DW-W conversion A	0 to 65535	0	-	Changeable at any time	"C2-34" on page $810$
C2-35	0xC223	DW-W conversion B	0: Disabled   Others: K connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C2-35" on page } \\ & 811 \end{aligned}$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C2-36	0xC224	Low-order bits of base value of DW-W conversion B	0 to 65535	0	-	Changeable at any time	"C2-36" on page   811
C2-37	0xC225	High-order bits of base value of DW-W conversion B	0 to 65535	0	-	Changeable at any time	"C2-37" on page $811$
C2-38	0xC226	DW-W conversion C	0 : Disabled   Others: K connector	0	-	Changeable at any time	"C2-38" on page   811
C2-39	0xC227	Low-order bits of base value of DW-W conversion C	0 to 65535	0	-	Changeable at any time	"C2-39" on page 811
C2-40	0xC228	High-order bits of base value of DW-W conversion C	0 to 65535	0	-	Changeable at any time	"C2-40" on page   812
C2-41	0xC229	DW-W conversion D	0 : Disabled   Others: K connector	0	-	Changeable at any time	"C2-41" on page $812$
C2-42	0xC22A	Low-order bits of base value of DW-W conversion D	0 to 65535	0	-	Changeable at any time	"C2-42" on page   812
C2-43	0xC22B	High-order bits of base value of DW-W conversion D	0 to 65535	0	-	Changeable at any time	"C2-43" on page 812
C3-00	0xC300	Function of logic AND-OR module A	$\begin{aligned} & \text { 0: Disabled } \\ & \text { 1: AND } \\ & \text { 2: OR } \end{aligned}$	0	-	Changeable at any time	"C3-00" on page $812$
C3-01	0xC301	Input 1 of logic   AND-OR module A	$\begin{aligned} & \text { 0: Logic } 0 \\ & \text { 1: Logic } 1 \\ & \text { 2: Logic } 0 \\ & \text { 3: DI1 } \\ & \text { 4: DI2 } \\ & \text { 5: DI3 } \\ & \text { 6: DI4 } \\ & \text { 7: DI5 } \\ & \text { 8: DI6 } \\ & \text { 9: DI7 } \\ & \text { 10: DI8 } \\ & \text { 11: DI9 } \\ & \text { 12: DI10 } \\ & \text { 13: DI11 } \\ & \text { 14: DI12 } \\ & \text { 15: DI13 } \\ & \text { 16: DI14 } \\ & \text { 17: DI15 } \\ & \text { 18: DI16 } \end{aligned}$   Others: B connector	0	-	Changeable at any time	"C3-01" on page 813
C3-02	0xC302	Input 2 of logic   AND-OR module A	Same as C3-01	0	-	Changeable at any time	$\begin{aligned} & \text { "C3-02" on page } \\ & 813 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C3-03	0xC303	Input 3 of logic AND-OR module A	Same as C3-01	0	-	Changeable at any time	"C3-03" on page   814
C3-04	0xC304	Input 4 of logic   AND-OR module A	Same as C3-01	0	-	Changeable at any time	"C3-04" on page $814$
C3-05	0xC305	Function of logic AND-OR module B	$\begin{aligned} & \text { 0: Disabled } \\ & \text { 1: AND } \\ & \text { 2: OR } \end{aligned}$	0	-	Changeable at any time	"C3-05" on page $814$
C3-06	0xC306	Input 1 of logic   AND-OR module B	Same as C3-01	0	-	Changeable at any time	"C3-06" on page   814
C3-07	0xC307	Input 2 of logic AND-OR module B	Same as C3-01	0	-	Changeable at any time	"C3-07" on page   814
C3-08	0xC308	Input 3 of logic AND-OR module B	Same as C3-01	0	-	Changeable at any time	"C3-08" on page $815$
C3-09	0xC309	Input 4 of logic AND-OR module B	Same as C3-01	0	-	Changeable at any time	"C3-09" on page $815$
C3-10	0xC30A	Function of logic AND-OR module C	Same as C3-05	0	-	Changeable at any time	"C3-10" on page $815$
C3-11	0xC30B	Input 1 of logic AND-OR module C	Same as C3-01	0	-	Changeable at any time	"C3-11" on page $815$
C3-12	0xC30C	Input 2 of logic AND-OR module C	Same as C3-01	0	-	Changeable at any time	"C3-12" on page $815$
C3-13	0xC30D	Input 3 of logic AND-OR module C	Same as C3-01	0	-	Changeable at any time	"C3-13" on page $816$
C3-14	0xC30E	Input 4 of logic AND-OR module C	Same as C3-01	0	-	Changeable at any time	"C3-14" on page $816$
C3-15	0xC30F	Function of logic AND-OR module D	Same as C3-05	0	-	Changeable at any time	"C3-15" on page $816$
C3-16	0xC310	Input 1 of logic AND-OR module D	Same as C3-01	0	-	Changeable at any time	"C3-16" on page $816$
C3-17	$0 \times C 311$	Input 2 of logic AND-OR module D	Same as C3-01	0	-	Changeable at any time	"C3-17" on page $816$
C3-18	0xC312	Input 3 of logic AND-OR module D	Same as C3-01	0	-	Changeable at any time	"C3-18" on page   817
C3-19	$0 \times C 313$	Input 4 of logic AND-OR module D	Same as C3-01	0	-	Changeable at any time	"C3-19" on page $817$
C3-20	$0 \times C 314$	Function of logic AND-OR module E	Same as C3-05	0	-	Changeable at any time	"C3-20" on page 817
C3-21	0xC315	Input 1 of logic AND-OR module E	Same as C3-01	0	-	Changeable at any time	"C3-21" on page 817
C3-22	0xC316	Input 2 of logic AND-OR module E	Same as C3-01	0	-	Changeable at any time	"C3-22" on page $817$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C3-23	0xC317	Input 3 of logic AND-OR module E	Same as C3-01	0	-	Changeable at any time	"C3-23" on page $818$
C3-24	$0 \times C 318$	Function of logic AND-OR module F	Same as C3-05	0	-	Changeable at any time	"C3-24" on page $818$
C3-25	0xC319	Input 1 of logic AND-OR module F	Same as C3-01	0	-	Changeable at any time	"C3-25" on page $818$
C3-26	$0 \times C 31 \mathrm{~A}$	Input 2 of logic AND-OR module F	Same as C3-01	0	-	Changeable at any time	"C3-26" on page $818$
C3-27	$0 \times C 31 B$	Input 3 of logic AND-OR module F	Same as C3-01	0	-	Changeable at any time	"C3-27" on page $818$
C3-28	0xC31C	Function of logic AND-OR module G	Same as C3-05	0	-	Changeable at any time	$\begin{aligned} & \text { "C3-28" on page } \\ & 819 \end{aligned}$
C3-29	0xC31D	Input 1 of logic   AND-OR module G	Same as C3-01	0	-	Changeable at any time	$\begin{aligned} & \text { "C3-29" on page } \\ & 819 \end{aligned}$
C3-30	0xC31E	Input 2 of logic   AND-OR module G	Same as C3-01	0	-	Changeable at any time	"C3-30" on page $819$
C3-31	0xC31F	Input 3 of logic AND-OR module G	Same as C3-01	0	-	Changeable at any time	"C3-31" on page $819$
C3-32	0xC320	Function of logic AND-OR module H	Same as C3-05	0	-	Changeable at any time	$\begin{aligned} & \text { "C3-32" on page } \\ & 819 \end{aligned}$
C3-33	0xC321	Input 1 of logic   AND-OR module H	Same as C3-01	0	-	Changeable at any time	"C3-33" on page $819$
C3-34	0xC322	Input 2 of logic AND-OR module H	Same as C3-01	0	-	Changeable at any time	"C3-34" on page $820$
C3-35	0xC323	Input 3 of logic   AND-OR module H	Same as C3-01	0	-	Changeable at any time	"C3-35" on page $820$
C3-36	0xC324	Function of logic AND-OR module I	Same as C3-05	0	-	Changeable at any time	"C3-36" on page $820$
C3-37	0xC325	Input 1 of logic   AND-OR module I	Same as C3-01	0	-	Changeable at any time	"C3-37" on page $820$
C3-38	0xC326	Input 2 of logic   AND-OR module I	Same as C3-01	0	-	Changeable at any time	"C3-38" on page $820$
C3-39	0xC327	Input 3 of logic   AND-OR module I	Same as C3-01	0	-	Changeable at any time	"C3-39" on page $821$
C3-40	0xC328	Function of logic AND-OR module J	Same as C3-05	0	-	Changeable at any time	"C3-40" on page $821$
C3-41	0xC329	Input 1 of logic   AND-OR module J	Same as C3-01	0	-	Changeable at any time	"C3-41" on page $821$
C3-42	$0 \times C 32 \mathrm{~A}$	Input 2 of logic   AND-OR module J	Same as C3-01	0	-	Changeable at any time	"C3-42" on page $821$
C3-43	0xC32B	Input 3 of logic   AND-OR module J	Same as C3-01	0	-	Changeable at any time	"C3-43" on page   821


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C3-44	0xC32C	Function of logic AND-OR module K	Same as C3-05	0	-	Changeable at any time	"C3-44" on page $822$
C3-45	0xC32D	Input 1 of logic AND-OR module K	Same as C3-01	0	-	Changeable at any time	"C3-45" on page $822$
C3-46	0xC32E	Input 2 of logic AND-OR module K	Same as C3-01	0	-	Changeable at any time	"C3-46" on page $822$
C3-47	0xC32F	Input 3 of logic AND-OR module K	Same as C3-01	0	-	Changeable   at any time	"C3-47" on page $822$
C3-48	0xC330	Function of logic AND-OR module L	Same as C3-05	0	-	Changeable at any time	"C3-48" on page 822
C3-49	0xC331	Input 1 of logic AND-OR module L	Same as C3-01	0	-	Changeable   at any time	"C3-49" on page $823$
C3-50	0xC332	Input 2 of logic AND-OR module L	Same as C3-01	0	-	Changeable   at any time	"C3-50" on page $823$
C3-51	0xC333	Input 3 of logic AND-OR module L	Same as C3-01	0	-	Changeable at any time	"C3-51" on page $823$
C3-56	0xC338	Input of logic NOT module A	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C3-56" on page $823$
C3-57	0xC339	Input of logic NOT module B	C3-56	0	-	Changeable at any time	"C3-57" on page   824
C3-58	0xC33A	Input of logic NOT module C	C3-56	0	-	Changeable at any time	"C3-58" on page   824
C3-59	0xC33B	Input of logic NOT module D	C3-56	0	-	Changeable at any time	"C3-59" on page $825$
C3-60	0xC33C	Input of logic NOT module E	C3-56	0	-	Changeable   at any time	"C3-60" on page $825$


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
C3-61	0xC33D	Input of logic NOT module F	C3-56	0	-	Changeable at any time	"C3-61" on page $825$
C3-62	0xC33E	Input of logic NOT module G	C3-56	0	-	Changeable at any time	"C3-62" on page 825
C3-63	0xC33F	Input of logic NOT module H	C3-56	0	-	Changeable at any time	"C3-63" on page $825$
C3-64	0xC340	Input of logic NOT module I	C3-56	0	-	Changeable at any time	"C3-64" on page $825$
C3-65	0xC341	Input of logic NOT module J	C3-56	0	-	Changeable at any time	"C3-65" on page $826$
C3-66	0xC342	Input of logic NOT module K	C3-56	0	-	Changeable at any time	"C3-66" on page $826$
C3-67	0xC343	Input of logic NOT module L	C3-56	0	-	Changeable at any time	"C3-67" on page $826$
C3-68	0xC344	Input of logic NOT module M	C3-56	0	-	Changeable at any time	"C3-68" on page $826$
C3-69	0xC345	Input of logic NOT module N	C3-56	0	-	Changeable at any time	"C3-69" on page 826
C3-70	0xC346	Input of logic NOT module 0	C3-56	0	-	Changeable at any time	"C3-70" on page $827$
C3-71	0xC347	Input of logic NOT module P	C3-56	0	-	Changeable at any time	"C3-71" on page $827$
C3-72	0xC348	Function of logic XOR/XNOR module A	$\begin{aligned} & \text { 0: Disabled } \\ & \text { 1: XOR } \\ & \text { 2: XNOR } \end{aligned}$	0	-	Changeable at any time	"C3-72" on page $827$
C3-73	0xC349	Input 1 of logic XOR/XNOR module A	Same as C3-01	0	-	Changeable at any time	"C3-73" on page $827$
C3-74	0xC34A	Input 2 of logic XOR/XNOR module A	Same as C3-01	0	-	Changeable at any time	"C3-74" on page $828$
C3-75	0xC34B	Function of logic XOR/XNOR module B	$\begin{aligned} & \text { 0: Disabled } \\ & \text { 1: XOR } \\ & \text { 2: XNOR } \end{aligned}$	0	-	Changeable at any time	"C3-75" on page $828$
C3-76	0xC34C	Input 1 of logic XOR/XNOR module B	Same as C3-01	0	-	Changeable at any time	"C3-76" on page $828$
C3-77	0xC34D	Input 2 of logic XOR/XNOR module B	Same as C3-01	0	-	Changeable at any time	"C3-77" on page $828$
C3-78	0xC34E	Function of logic XOR/XNOR module C	$\begin{array}{\|l\|} \hline \text { 0: Disabled } \\ \text { 1: XOR } \\ \text { 2: XNOR } \end{array}$	0	-	Changeable at any time	"C3-78" on page $828$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C3-79	0xC34F	Input 1 of logic XOR/XNOR module C	Same as C3-01	0	-	Changeable at any time	"C3-79" on page $829$
C3-80	0xC350	Input 2 of logic XOR/XNOR module C	Same as C3-01	0	-	Changeable at any time	"C3-80" on page 829
C3-81	0xC351	Function of logic XOR/XNOR module D	0 : Disabled   1: XOR   2: XNOR	0	-	Changeable at any time	"C3-81" on page   829
C3-82	0xC352	Input 1 of logic XOR/XNOR module D	Same as C3-01	0	-	Changeable at any time	"C3-82" on page $829$
C3-83	0xC353	Input 2 of logic XOR/XNOR module D	Same as C3-01	0	-	Changeable at any time	"C3-83" on page $829$
C3-84	0xC354	Function of logic XOR/XNOR module E	0 : Disabled   1: XOR   2: XNOR	0	-	Changeable at any time	"C3-84" on page $830$
C3-85	0xC355	Input 1 of logic XOR/XNOR module E	Same as C3-01	0	-	Changeable at any time	$\begin{aligned} & \text { "C3-85" on page } \\ & 830 \end{aligned}$
C3-86	0xC356	Input 2 of logic XOR/XNOR module E	Same as C3-01	0	-	Changeable at any time	"C3-86" on page $830$
C3-87	0xC357	Function of logic XOR/XNOR module F	$\begin{aligned} & \text { 0: Disabled } \\ & \text { 1: XOR } \\ & \text { 2: XNOR } \end{aligned}$	0	-	Changeable at any time	"C3-87" on page 830
C3-88	0xC358	Input 1 of logic XOR/XNOR module F	Same as C3-01	0	-	Changeable at any time	$\begin{aligned} & \text { "C3-88" on page } \\ & 830 \end{aligned}$
C3-89	0xC359	Input 2 of logic XOR/XNOR module F	Same as C3-01	0	-	Changeable at any time	"C3-89" on page 831
C3-90	0xC35A	Function of logic XOR/XNOR module G	0: Disabled   1: XOR   2: XNOR	0	-	Changeable at any time	"C3-90" on page 831
C3-91	0xC35B	Input 1 of logic XOR/XNOR module G	Same as C3-01	0	-	Changeable at any time	"C3-91" on page 831
C3-92	0xC35C	Input 2 of logic XOR/XNOR module G	Same as C3-01	0	-	Changeable at any time	"C3-92" on page 831
C3-93	0xC35D	Function of logic XOR/XNOR module H	0 : Disabled   1: XOR   2: XNOR	0	-	Changeable at any time	"C3-93" on page 831


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C3-94	0xC35E	Input 1 of logic XOR/XNOR module H	Same as C3-01	0	-	Changeable at any time	"C3-94" on page $832$
C3-95	0xC35F	Input 2 of logic XOR/XNOR module H	Same as C3-01	0	-	Changeable at any time	"C3-95" on page $832$
C4-00	0xC400	Input of floatingpoint absolute value module A	0 : Disabled   1: Al1   2: AI2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C4-00" on page $832$
C4-01	0xC401	Input of floating-   point absolute   value module $B$	Same as C4-00	0	-	Changeable at any time	"C4-01" on page $833$
C4-02	0xC402	Input of floatingpoint absolute value module C	Same as C4-00	0	-	Changeable at any time	"C4-02" on page $833$
C4-03	0xC403	Input of floating-   point absolute   value module D	Same as C4-00	0	-	Changeable at any time	"C4-03" on page $833$
C4-04	0xC404	Input of floating-   point absolute   value module E	Same as C4-00	0	-	Changeable at any time	"C4-04" on page 833
C4-05	0xC405	Input of fixed-point absolute value module F	0 : Disabled Others: K connector	0	-	Changeable at any time	"C4-05" on page $833$
C4-06	0xC406	Input of fixed-point absolute value module G	0: Disabled Others: K connector	0	-	Changeable at any time	"C4-06" on page 834
C4-07	0xC407	Input of fixed-point absolute value module H	0 : Disabled Others: K connector	0	-	Changeable at any time	"C4-07" on page $834$
C4-08	0xC408	Input 1 of floatingpoint ADD/ SUBTRACT module A	0 : Disabled   1: Al1   2: Al2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C4-08" on page $834$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C4-09	0xC409	Input 2 of ADD/ SUBTRACT module A (ADD)		0	-	Changeable at any time	"C4-09" on page 834
C4-10	0xC40A	Input 3 of ADD/ SUBTRACT module A (ADD)	Same as C4-09	0	-	Changeable at any time	"C4-10" on page $835$
C4-11	0xC40B	Input 4 of ADD/   SUBTRACT module   A (SUBTRACT)	Same as C4-09	0	-	Changeable at any time	"C4-11" on page 835
C4-12	0xC40C	Input 1 of floatingpoint ADD/ SUBTRACT module B	Same as C4-09	0	-	Changeable at any time	"C4-12" on page 835
C4-13	0xC40D	Input 2 of ADD/ SUBTRACT module B (ADD)	Same as C4-09	0	-	Changeable at any time	"C4-13" on page 835
C4-14	0xC40E	Input 3 of ADD/ SUBTRACT module B (ADD)	Same as C4-09	0	-	Changeable at any time	"C4-14" on page $836$
C4-15	0xC40F	Input 4 of ADD/   SUBTRACT module   B (SUBTRACT)	Same as C4-09	0	-	Changeable at any time	"C4-15" on page $836$
C4-16	0xC410	Input 1 of floatingpoint ADD/ SUBTRACT module C	Same as C4-09	0	-	Changeable at any time	"C4-16" on page $836$
C4-17	0xC411	Input 2 of ADD/ SUBTRACT module C (ADD)	Same as C4-09	0	-	Changeable at any time	"C4-17" on page $836$
C4-18	0xC412	Input 3 of ADD/ SUBTRACT module C (ADD)	Same as C4-09	0	-	Changeable at any time	"C4-18" on page $836$
C4-19	0xC413	Input 4 of ADD/ SUBTRACT module C (SUBTRACT)	Same as C4-09	0	-	Changeable at any time	"C4-19" on page 837
C4-20	0xC414	Input 1 of floatingpoint ADD/ SUBTRACT module D	Same as C4-09	0	-	Changeable at any time	"C4-20" on page $837$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C4-21	0xC415	Input 2 of ADD/ SUBTRACT module D (ADD)	Same as C4-09	0	-	Changeable at any time	"C4-21" on page 837
C4-22	0xC416	Input 3 of ADD/ SUBTRACT module D (ADD)	Same as C4-09	0	-	Changeable at any time	"C4-22" on page 837
C4-23	0xC417	Input 4 of ADD/   SUBTRACT module   D (SUBTRACT)	Same as C4-09	0	-	Changeable at any time	"C4-23" on page $837$
C4-24	0xC418	Input 1 of floatingpoint ADD/ SUBTRACT module E	Same as C4-09	0	-	Changeable at any time	"C4-24" on page 837
C4-25	0xC419	Input 2 of ADD/ SUBTRACT module E (ADD)	Same as C4-09	0	-	Changeable at any time	"C4-25" on page $838$
C4-26	0xC41A	Input 3 of ADD/ SUBTRACT module E (ADD)	Same as C4-09	0	-	Changeable at any time	"C4-26" on page 838
C4-27	0xC41B	Input 4 of ADD/   SUBTRACT module   E (SUBTRACT)	Same as C4-09	0	-	Changeable at any time	"C4-27" on page $838$
C4-28	0xC41C	Input 1 of fixed-   point ADD/   SUBTRACT module   F	0 : Disabled   Others: K connector	0	-	Changeable at any time	"C4-28" on page 838
C4-29	0xC41D	Input 2 of ADD/ SUBTRACT module F (ADD)	Same as C4-28	0	-	Changeable at any time	"C4-29" on page 838
C4-30	0xC41E	Input 3 of ADD/ SUBTRACT module F (ADD)	Same as C4-28	0	-	Changeable at any time	"C4-30" on page $839$
C4-31	0xC41F	Input 4 of ADD/   SUBTRACT module   F (SUBTRACT)	Same as C4-28	0	-	Changeable at any time	"C4-31" on page 839
C4-32	0xC420	Input 1 of fixed-   point ADD/   SUBTRACT module   G	Same as C4-28	0	-	Changeable at any time	"C4-32" on page $839$
C4-33	0xC421	Input 2 of ADD/ SUBTRACT module G (ADD)	Same as C4-28	0	-	Changeable at any time	"C4-33" on page 839
C4-34	0xC422	Input 3 of ADD/ SUBTRACT module G (ADD)	Same as C4-28	0	-	Changeable at any time	"C4-34" on page 839


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C4-35	0xC423	Input 4 of ADD/ SUBTRACT module G (SUBTRACT)	Same as C4-28	0	-	Changeable at any time	"C4-35" on page $840$
C4-36	0xC424	Input 1 of fixed-   point ADD/   SUBTRACT module   H	Same as C4-28	0	-	Changeable at any time	"C4-36" on page 840
C4-37	0xC425	Input 2 of ADD/ SUBTRACT module H (ADD)	Same as C4-28	0	-	Changeable at any time	"C4-37" on page $840$
C4-38	0xC426	Input 3 of ADD/ SUBTRACT module H (ADD)	Same as C4-28	0	-	Changeable at any time	"C4-38" on page $840$
C4-39	0xC427	Input 4 of ADD/   SUBTRACT module   H (SUBTRACT)	Same as C4-28	0	-	Changeable at any time	"C4-39" on page $840$
C4-40	0xC428	Input 1 of floatingpoint MULTIPLY/ DIVIDE module A	C4-08	0	-	Changeable at any time	"C4-40" on page $841$
C4-41	0xC429	Input 2 of MULTIPLY/DIVIDE module A (MULTIPLY)	0: 1   1: Al1   2: Al2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C4-41" on page $841$
C4-42	0xC42A	Input 3 of MULTIPLY/DIVIDE module A (DIVIDE)	Same as C4-41	0	-	Changeable at any time	"C4-42" on page   841
C4-43	0xC42B	Input 1 of floatingpoint MULTIPLY/ DIVIDE module B	0 : Disabled   1: Al1   2: Al2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C4-43" on page $841$
C4-44	0xC42C	Input 2 of MULTIPLY/DIVIDE module B (MULTIPLY)	Same as C4-41	0	-	Changeable at any time	"C4-44" on page $842$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C4-45	0xC42D	Input 3 of MULTIPLY/DIVIDE module B (DIVIDE)	Same as C4-41	0	-	Changeable at any time	"C4-45" on page $842$
C4-46	0xC42E	Input 1 of floatingpoint MULTIPLY/ DIVIDE module C	0 : Disabled   1: Al1   2: AI2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C4-46" on page $842$
C4-47	0xC42F	Input 2 of MULTIPLY/DIVIDE module C (MULTIPLY)	Same as C4-41	0	-	Changeable at any time	"C4-47" on page 843
C4-48	0xC430	Input 3 of MULTIPLY/DIVIDE module C (DIVIDE)	Same as C4-41	0	-	Changeable at any time	"C4-48" on page 843
C4-49	$0 \times C 431$	Input 1 of floatingpoint MULTIPLY/ DIVIDE module D	0: Disabled   1: Al1   2: Al2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C4-49" on page $843$
C4-50	0xC432	Input 2 of MULTIPLY/DIVIDE module D (MULTIPLY)	Same as C4-41	0	-	Changeable at any time	"C4-50" on page $843$
C4-51	0xC433	Input 3 of MULTIPLY/DIVIDE module D (DIVIDE)	Same as C4-41	0	-	Changeable at any time	"C4-51" on page 844
C4-52	0xC434	Input 1 of floatingpoint MULTIPLY/ DIVIDE module E	0 : Disabled   1: AI1   2: Al2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C4-52" on page 844


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C4-53	0xC435	Input 2 of MULTIPLY/DIVIDE module E (MULTIPLY)	Same as C4-41	0	-	Changeable at any time	"C4-53" on page   844
C4-54	0xC436	Input 3 of MULTIPLY/DIVIDE module E (DIVIDE)	Same as C4-41	0	-	Changeable at any time	"C4-54" on page 844
C4-55	0xC437	Input 1 of fixed-   point MULTIPLY/   DIVIDE module F	0: Disabled   Others: K connector	0	-	Changeable at any time	"C4-55" on page $845$
C4-56	0xC438	Input 2 of MULTIPLY/DIVIDE module F (MULTIPLY)	Same as C4-55	0	-	Changeable at any time	"C4-56" on page 845
C4-57	0xC439	Input 3 of MULTIPLY/DIVIDE module F (DIVIDE)	Same as C4-55	0	-	Changeable at any time	"C4-57" on page $845$
C4-58	0xC43A	Input 1 of fixed-   point MULTIPLY/   DIVIDE module G	Same as C4-55	0	-	Changeable at any time	"C4-58" on page 845
C4-59	0xC43B	Input 2 of MULTIPLY/DIVIDE module G (MULTIPLY)	Same as C4-55	0	-	Changeable at any time	"C4-59" on page 845
C4-60	0xC43C	Input 3 of MULTIPLY/DIVIDE module G (DIVIDE)	Same as C4-55	0	-	Changeable at any time	"C4-60" on page $846$
C4-61	0xC43D	Input 1 of fixed-   point MULTIPLY/   DIVIDE module H	Same as C4-55	0	-	Changeable at any time	"C4-61" on page $846$
C4-62	0xC43E	Input 2 of MULTIPLY/DIVIDE module H (MULTIPLY)	Same as C4-55	0	-	Changeable at any time	"C4-62" on page 846
C4-63	0xC43F	Input 3 of MULTIPLY/DIVIDE module H (DIVIDE)	Same as C4-55	0	-	Changeable at any time	"C4-63" on page $846$
C4-64	0xC440	Function of floatingpoint comparison module A	0 : Module disabled   1: Input $1>$ Input 2   2: Input $1<$ Input 2   3: Input $1=$ Input 2	0	-	Changeable at any time	"C4-64" on page $846$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C4-65	0xC441	Input 1 of floatingpoint comparison module A		0	-	Changeable at any time	"C4-65" on page 847
C4-66	0xC442	Input 2 of floatingpoint comparison module A	0: 0   1: Al1   2: Al2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C4-66" on page 847
C4-67	0xC443	Hysteresis input of floating-point comparison module A	0.00\% to 655.35\%	0.00	\%	Changeable at any time	"C4-67" on page 847
C4-68	0xC444	Function of floatingpoint comparison module B	0 : Module disabled   1: Input $1>$ Input 2   2: Input $1<$ Input 2   3: Input $1=$ Input 2	0	-	Changeable at any time	"C4-68" on page 848
C4-69	0xC445	Input 1 of floatingpoint comparison module B	0: 0   1: Al1   2: AI2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C4-69" on page $848$
C4-70	0xC446	Input 2 of floatingpoint comparison module B	0: 0   1: Al1   2: Al2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C4-70" on page   848


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C4-71	0xC447	Hysteresis input of floating-point comparison module B	0.00\% to 655.35\%	0.00	\%	Changeable at any time	"C4-71" on page $849$
C4-72	0xC448	Function of floatingpoint comparison module C	0 : Module disabled   1: Input $1>$ Input 2   2 : Input $1<$ Input 2   3: Input 1 = Input 2	0	-	Changeable at any time	"C4-72" on page $849$
C4-73	0xC449	Input 1 of floatingpoint comparison module C	0: 0   1: Al1   2: Al2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C4-73" on page $849$
C4-74	0xC44A	Input 2 of floating-   point comparison   module C	0: 0   1: Al1   2: AI2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C4-74" on page 850
C4-75	$0 \times C 44 B$	Hysteresis input of floating-point comparison module C	0.00\% to 655.35\%	0.00	\%	Changeable at any time	"C4-75" on page $850$
C4-76	0xC44C	Function of floatingpoint comparison module D	0 : Module disabled   1: Input $1>\operatorname{Input} 2$   2: Input $1<$ Input 2   3: Input 1 = Input 2	0	-	Changeable at any time	"C4-76" on page $850$
C4-77	0xC44D	Input 1 of floatingpoint comparison module D	0: 0   1: Al1   2: AI2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C4-77" on page 851


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C4-78	0xC44E	Input 2 of floatingpoint comparison module D		0	-	Changeable at any time	"C4-78" on page $851$
C4-79	0xC44F	Hysteresis input of floating-point comparison module D	0.00\% to 655.35\%	0.00	\%	Changeable at any time	"C4-79" on page $851$
C4-80	0xC450	Function of fixedpoint comparison module E	0 : Module disabled   1: Input $1>$ Input 2   2: Input $1<$ Input 2   3: Input $1=$ Input 2	0	-	Changeable at any time	"C4-80" on page $852$
C4-81	0xC451	Input 1 of fixedpoint comparison module E	$0: 0$   Others: K connector	0	-	Changeable at any time	"C4-81" on page 852
C4-82	0xC452	Input 2 of fixedpoint comparison module E	$0: 0$   Others: K connector	0	-	Changeable at any time	"C4-82" on page 852
C4-83	0xC453	Hysteresis input of fixed-point comparison module E	0.00\% to 655.35\%	0.00	\%	Changeable at any time	"C4-83" on page 852
C4-84	0xC454	Function of fixedpoint comparison module F	0 : Module disabled   1: Input $1>$ Input 2   2: Input 1 < Input 2   3: Input $1=$ Input 2	0	-	Changeable at any time	"C4-84" on page 853
C4-85	0xC455	Input 1 of fixedpoint comparison module F	$0: 0$   Others: K connector	0	-	Changeable at any time	"C4-85" on page $853$
C4-86	0xC456	Input 2 of fixedpoint comparison module F	$0: 0$   Others: K connector	0	-	Changeable at any time	"C4-86" on page $853$
C4-87	0xC457	Hysteresis input of fixed-point comparison module F	0.00\% to 655.35\%	0.00	\%	Changeable at any time	"C4-87" on page 853
C4-88	0xC458	Function of fixedpoint comparison module G	0 : Module disabled   1: Input $1>$ Input 2   2: Input $1<$ Input 2   3: Input 1 = Input 2	0	-	Changeable at any time	"C4-88" on page 853


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C4-89	0xC459	Input 1 of fixedpoint comparison module G	$\text { 0: } 0$   Others: K connector	0	-	Changeable at any time	"C4-89" on page $854$
C4-90	0xC45A	Input 2 of fixedpoint comparison module G	$0: 0$   Others: K connector	0	-	Changeable at any time	"C4-90" on page 854
C4-91	0xC45B	Hysteresis input of fixed-point comparison module G	0.00\% to 655.35\%	0.00	\%	Changeable at any time	"C4-91" on page 854
C4-92	0xC45C	Function of fixedpoint comparison module H	0 : Module disabled   1: Input $1>$ Input 2   2: Input $1<$ Input 2   3: Input $1=$ Input 2	0	-	Changeable at any time	"C4-92" on page 854
C4-93	0xC45D	Input 1 of fixed-   point comparison   module H	$\text { 0: } 0$   Others: K connector	0	-	Changeable at any time	"C4-93" on page 855
C4-94	0xC45E	Input 2 of fixed-   point comparison   module H	$0: 0$   Others: K connector	0	-	Changeable at any time	"C4-94" on page 855
C4-95	0xC45F	Hysteresis input of fixed-point comparison module H	0.00\% to 655.35\%	0.00	\%	Changeable at any time	"C4-95" on page $855$
C5-00	0xC500	Input source of binary selector module A	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-00" on page $855$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-01	0xC501	Input 1 of binary selector module A	$\begin{aligned} & \text { 0: Logic } 0 \\ & \text { 1: Logic } 1 \\ & \text { 2: Logic } 0 \\ & \text { 3: DI1 } \\ & \text { 4: DI2 } \\ & \text { 5: DI3 } \\ & \text { 6: DI4 } \\ & \text { 7: DI5 } \\ & \text { 8: DI6 } \\ & \text { 9: DI7 } \\ & \text { 10: DI8 } \\ & \text { 11: DI9 } \\ & \text { 12: DI10 } \\ & \text { 13: DI11 } \\ & \text { 14: DI12 } \\ & \text { 15: DI13 } \\ & \text { 16: DI14 } \\ & \text { 17: DI15 } \\ & \text { 18: DI16 } \end{aligned}$   Others: B connector	0	-	Changeable at any time	"C5-01" on page 856
C5-02	0xC502	Input 2 of binary selector module A	Same as C5-01	0	-	Changeable at any time	"C5-02" on page 857
C5-03	0xC503	Input source of binary selector module B	Same as C5-01	0	-	Changeable at any time	"C5-03" on page $857$
C5-04	0xC504	Input 1 of binary   selector module B	Same as C5-01	0	-	Changeable at any time	"C5-04" on page   857
C5-05	0xC505	Input 2 of binary   selector module B	Same as C5-01	0	-	Changeable at any time	"C5-05" on page 858
C5-06	0xC506	Input source of binary selector module C	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-06" on page $858$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-07	0xC507	Input 1 of binary selector module C	0: Logic 0 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-07" on page $858$
C5-08	0xC508	Input 2 of binary selector module C	Same as C5-01	0	-	Changeable at any time	"C5-08" on page $859$
C5-09	0xC509	Input source of binary selector module D	0: Disabled   1: Logic 1   2: Logic 0   3: DII   4: DI2   5: DI3   6: DI4   7: DI5   8: DI6   9: DI7   10: DI8   11: DI9   12: DIIO   13: DI11   14: DII2   15: DI13   16: DI14   17: DI15   18: DII6   Others: B connector	0	-	Changeable at any time	"C5-09" on page $859$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-10	$0 \times C 50 \mathrm{~A}$	Input 1 of binary selector module D	0: Logic 0 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-10" on page   860
C5-11	0xC50B	Input 2 of binary selector module D	0: Logic 0 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI21 Others: B connector	0	-	Changeable at any time	"C5-11" on page   861


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-12	0xC50C	Input source of binary selector module E	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-12" on page $862$
C5-13	0xC50D	Input 1 of binary selector module E	$\begin{aligned} & \text { 0: Logic } 0 \\ & \text { 1: Logic } 1 \\ & \text { 2: Logic } 0 \\ & \text { 3: DI1 } \\ & \text { 4: DI2 } \\ & \text { 5: DI3 } \\ & \text { 6: DI4 } \\ & \text { 7: DI5 } \\ & \text { 8: DI6 } \\ & \text { 9: DI7 } \\ & \text { 10: DI8 } \\ & \text { 11: DI9 } \\ & \text { 12: DI10 } \\ & \text { 13: DI11 } \\ & \text { 14: DI12 } \\ & \text { 15: DI13 } \\ & \text { 16: DI14 } \\ & \text { 17: DI15 } \\ & \text { 18: DI16 } \end{aligned}$   Others: B connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C5-13" on page } \\ & 863 \end{aligned}$
C5-14	0xC50E	Input 2 of binary selector module E	Same as C5-01	0	-	Changeable at any time	"C5-14" on page   864


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-15	0xC50F	Input source of binary selector module F	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-15" on page 864
C5-16	0xC510	Input 1 of binary selector module F	$\begin{aligned} & \text { 0: Logic } 0 \\ & \text { 1: Logic } 1 \\ & \text { 2: Logic } 0 \\ & \text { 3: DI1 } \\ & \text { 4: DI2 } \\ & \text { 5: DI3 } \\ & \text { 6: DI4 } \\ & \text { 7: DI5 } \\ & \text { 8: DI6 } \\ & \text { 9: DI7 } \\ & \text { 10: DI8 } \\ & \text { 11: DI9 } \\ & \text { 12: DI10 } \\ & \text { 13: DI11 } \\ & \text { 14: DI12 } \\ & \text { 15: DI13 } \\ & \text { 16: DI14 } \\ & \text { 17: DI15 } \\ & \text { 18: DI16 } \end{aligned}$   Others: B connector	0	-	Changeable at any time	"C5-16" on page   865


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-17	0xC511	Input 2 of binary selector module F	$\begin{aligned} & \text { 0: Logic } 0 \\ & \text { 1: Logic } 1 \\ & \text { 2: Logic } 0 \\ & \text { 3: DI1 } \\ & \text { 4: DI2 } \\ & \text { 5: DI3 } \\ & \text { 6: DI4 } \\ & \text { 7: DI5 } \\ & \text { 8: DI6 } \\ & \text { 9: DI7 } \\ & \text { 10: DI8 } \\ & \text { 11: DI9 } \\ & \text { 12: DI10 } \\ & \text { 13: DI11 } \\ & \text { 14: DI12 } \\ & \text { 15: DI13 } \\ & \text { 16: DI14 } \\ & \text { 17: DI15 } \\ & \text { 18: DI21 } \end{aligned}$   Others: B connector	0	-	Changeable at any time	"C5-17" on page   866
C5-18	0xC512	Input source of binary selector module G	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16	0	-	Changeable at any time	"C5-18" on page   867


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-19	$0 \times C 513$	Input 1 of binary selector module G	0: Logic 0 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0		Changeable at any time	"C5-19" on page $868$
C5-20	0xC514	Input 2 of binary selector module G	0: Logic 0 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI21 Others: B connector	0	-	Changeable at any time	"C5-20" on page   869


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-21	0xC515	Input source of binary selector module H	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-21" on page $870$
C5-22	0xC516	Input 1 of binary selector module H	$\begin{aligned} & \text { 0: Logic } 0 \\ & \text { 1: Logic } 1 \\ & \text { 2: Logic } 0 \\ & \text { 3: DI1 } \\ & \text { 4: DI2 } \\ & \text { 5: DI3 } \\ & \text { 6: DI4 } \\ & \text { 7: DI5 } \\ & \text { 8: DI6 } \\ & \text { 9: DI7 } \\ & \text { 10: DI8 } \\ & \text { 11: DI9 } \\ & \text { 12: DI10 } \\ & \text { 13: DI11 } \\ & \text { 14: DI12 } \\ & \text { 15: DI13 } \\ & \text { 16: DI14 } \\ & \text { 17: DI15 } \\ & \text { 18: DI16 } \end{aligned}$   Others: B connector	0	-	Changeable at any time	"C5-22" on page 871


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-23	0xC517	Input 2 of binary selector module H	$\begin{aligned} & \text { 0: Logic } 0 \\ & \text { 1: Logic } 1 \\ & \text { 2: Logic } 0 \\ & \text { 3: DI1 } \\ & \text { 4: DI2 } \\ & \text { 5: DI3 } \\ & \text { 6: DI4 } \\ & \text { 7: DI5 } \\ & \text { 8: DI6 } \\ & \text { 9: DI7 } \\ & \text { 10: DI8 } \\ & \text { 11: DI9 } \\ & \text { 12: DI10 } \\ & \text { 13: DI11 } \\ & \text { 14: DI12 } \\ & \text { 15: DI13 } \\ & \text { 16: DI14 } \\ & \text { 17: DI15 } \\ & \text { 18: DI21 } \end{aligned}$   Others: B connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C5-23" on page } \\ & 872 \end{aligned}$
C5-24	0xC518	Input source of word selector module A	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C5-24" on page } \\ & 873 \end{aligned}$
C5-25	0xC519	Input 1 of word selector module A	$0: 0$   Others: K connector	0	-	Changeable at any time	"C5-25" on page   874
C5-26	0xC51A	Input 2 of word selector module A	$0: 0$   Others: K connector	0	-	Changeable at any time	"C5-26" on page   874


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-27	0xC51B	Input source of word selector module B	$\begin{aligned} & \text { 0: Disabled } \\ & \text { 1: Logic } 1 \\ & \text { 2: Logic } 0 \\ & \text { 3: DI1 } \\ & \text { 4: DI2 } \\ & \text { 5: DI3 } \\ & \text { 6: DI4 } \\ & \text { 7: DI5 } \\ & \text { 8: DI6 } \\ & \text { 9: DI7 } \\ & \text { 10: DI8 } \\ & \text { 11: DI9 } \\ & \text { 12: DI10 } \\ & \text { 13: DI11 } \\ & \text { 14: DI12 } \\ & \text { 15: DI13 } \\ & \text { 16: DI14 } \\ & \text { 17: DI15 } \\ & \text { 18: DI16 } \end{aligned}$   Others: B connector	0	-	Changeable at any time	"C5-27" on page   874
C5-28	0xC51C	Input 1 of word selector module B	$\text { 0: } 0$   Others: K connector	0	-	Changeable at any time	"C5-28" on page   875
C5-29	0xC51D	Input 2 of word selector module B	$\text { 0: } 0$   Others: K connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C5-29" on page } \\ & 875 \end{aligned}$
C5-30	0xC51E	Input source of word selector module C	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-30" on page $875$
C5-31	0xC51F	Input 1 of word selector module C	$0: 0$   Others: K connector	0	-	Changeable at any time	"C5-31" on page 876
C5-32	0xC520	Input 2 of word   selector module C	$\text { 0: } 0$   Others: K connector	0	-	Changeable at any time	"C5-32" on page 876


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-33	0xC521	Input source of word selector module D	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0		Changeable at any time	$\begin{aligned} & \text { "C5-33" on page } \\ & 877 \end{aligned}$
C5-34	0xC522	Input 1 of word selector module D	$0: 0$   Others: K connector	0	-	Changeable at any time	"C5-34" on page 877
C5-35	0xC523	Input 2 of word selector module D	$0: 0$   Others: K connector	0	-	Changeable at any time	"C5-35" on page 877
C5-36	0xC524	Input source of DWord selector module A	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-36" on page 878
C5-37	0xC525	Input 1 of DWord selector module A	$0: 0$   Others: K connector	0	-	Changeable at any time	"C5-37" on page $878$
C5-38	0xC526	Input 2 of DWord selector module A	$0: 0$   Others: K connector	0	-	Changeable at any time	"C5-38" on page $878$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-39	0xC527	Input source of DWord selector module B	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C5-39" on page } \\ & 879 \end{aligned}$
C5-40	0xC528	Input 1 of DWord selector module B	$\text { 0: } 0$   Others: K connector	0	-	Changeable at any time	"C5-40" on page $879$
C5-41	0xC529	Input 2 of DWord selector module B	$0: 0$   Others: K connector	0	-	Changeable at any time	"C5-41" on page   879
C5-42	0xC52A	Input source of DWord selector module C	0: Disabled   1: Logic 1   2: Logic 0   3: DII   4: DI2   5: DI3   6: DI4   7: DI5   8: DI6   9: DI7   10: DI8   11: DI9   12: DIIO   13: DII1   14: DII2   15: DII3   16: DII4   17: DII5   18: DII6   Others: B connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C5-42" on page } \\ & 880 \end{aligned}$
C5-43	0xC52B	Input 1 of DWord selector module C	$\text { 0: } 0$   Others: K connector	0	-	Changeable at any time	"C5-43" on page $880$
C5-44	0xC52C	Input 2 of DWord selector module C	$0: 0$   Others: K connector	0	-	Changeable at any time	"C5-44" on page $880$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-45	0xC52D	Input source of DWord selector module D	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-45" on page $881$
C5-46	0xC52E	Input 1 of DWord selector module D	$0: 0$   Others: K connector	0	-	Changeable at any time	"C5-46" on page $881$
C5-47	0xC52F	Input 2 of DWord selector module D	$0: 0$   Others: K connector	0	-	Changeable at any time	"C5-47" on page 882
C5-48	0xC530	Input source of floating-point number selector module A	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-48" on page   882


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-49	0xC531	Input 1 of floating-   point number   selector module A	0: 0   1: Al1   2: Al2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-49" on page 882
C5-50	0xC532	Input 2 of floating-   point number   selector module A	0: 0   1: Al1   2: Al2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-50" on page 883
C5-51	0xC533	Input source of floating-point number selector module B	0 : Disabled   1: Logic 1   2: Logic 0   3: DII   4: DI2   5: DI3   6: DI4   7: DI5   8: DI6   9: DI7   10: DI8   11: DI9   12: DI10   13: DII1   14: DII2   15: DII3   16: DII4   17: DI15   18: DI16   Others: B connector	0	-	Changeable at any time	"C5-51" on page 883
C5-52	0xC534	Input 1 of floating-   point number   selector module B	0: 0   1: AI1   2: Al2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-52" on page   884


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-53	0xC535	Input 2 of floating-   point number   selector module B		0	-	Changeable at any time	"C5-53" on page 884
C5-54	0xC536	Input source of floating-point number selector module C	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-54" on page 885
C5-55	0xC537	Input 1 of floating-   point number   selector module C	0: 0   1: Al1   2: Al2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-55" on page $885$
C5-56	0xC538	Input 2 of floating-   point number   selector module C	0: 0   1: Al1   2: Al2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-56" on page $886$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-57	0xC539	Input source of floating-point number selector module D	0 : Disabled   1: Logic 1   2: Logic 0   3: DII   4: DI2   5: DI3   6: DI4   7: DI5   8: DI6   9: DI7   10: DI8   11: DI9   12: DIIO   13: DII1   14: DI12   15: DII3   16: DI14   17: DI15   18: DII6   Others: B connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C5-57" on page } \\ & 886 \end{aligned}$
C5-58	0xC53A	Input 1 of floatingpoint number selector module D	0: 0   1: Al1   2: Al2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-58" on page 887
C5-59	0xC53B	Input 2 of floatingpoint number selector module D	0: 0   1: Al1   2: AI2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-59" on page 887


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-60	0xC53C	Input source of floating-point number selector module E	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16	0	-	Changeable at any time	"C5-60" on page   888
C5-61	0xC53D	Input 1 of floating-   point number   selector module E	0: 0   1: Al1   2: Al2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-61" on page $888$
C5-62	0xC53E	Input 2 of floating-   point number   selector module E	0: 0   1: AI1   2: Al2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-62" on page   889


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-63	0xC53F	Input source of floating-point number selector module F	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-63" on page   889
C5-64	0xC540	Input 1 of floatingpoint number selector module F	0: 0   1: Al1   2: Al2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-64" on page $890$
C5-65	0xC541	Input 2 of floating-   point number selector module F	0: 0   1: Al1   2: AI2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-65" on page   890


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-66	0xC542	Input source of floating-point number selector module G	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-66" on page 891
C5-67	0xC543	Input 1 of floating-   point number   selector module G	0: 0   1: AI1   2: AI2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-67" on page 891
C5-68	0xC544	Input 2 of floatingpoint number selector module G	0: 0   1: AI1   2: AI2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-68" on page   892


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C5-69	0xC545	Input source of floating-point number selector module H	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C5-69" on page $892$
C5-70	0xC546	Input 1 of floatingpoint number selector module H	0: 0   1: Al1   2: Al2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-70" on page $893$
C5-71	0xC547	Input 2 of floatingpoint number selector module H	0: 0   1: Al1   2: AI2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C5-71" on page   893


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-00	0xC600	Floating-point filter module A enable	0: Module disabled 1: Filter disabled 2: Filter enabled 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C6-00" on page 894
C6-01	0xC601	Input of floatingpoint filter module A	0: 0   1: AI1   2: AI2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C6-01" on page 894
C6-02	0xC602	Filter time of filter module A	0.000 s to 65.535 s	0.000	s	Changeable at any time	$\begin{aligned} & \text { "C6-02" on page } \\ & 895 \end{aligned}$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-03	0xC603	Floating-point filter module B enable	0 : Module disabled   1: Filter disabled   2: Filter enabled   3: DII   4: DI2   5: DI3   6: DI4   7: DI5   8: DI6   9: DI7   10: DI8   11: DI9   12: DIIO   13: DII1   14: DII2   15: DII3   16: DI14   17: DII5   18: DI16   Others: B connector	0	-	Changeable at any time	"C6-03" on page 895
C6-04	0xC604	Input of floatingpoint filter module B	0: 0   1: AI1   2: AI2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C6-04" on page   896
C6-05	0xC605	Filter time of filter module B	0.000 s to 65.535 s	0.000	s	Changeable at any time	"C6-05" on page $896$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-06	0xC606	Floating-point filter module $C$ enable	0 : Module disabled   1: Filter disabled   2: Filter enabled   3: DI1   4: DI2   5: DI3   6: DI4   7: DI5   8: DI6   9: DI7   10: DI8   11: DI9   12: DIIO   13: DI11   14: DI12   15: DI13   16: DI14   17: DI15   18: DI16   Others: B connector	0	-	Changeable at any time	"C6-06" on page 897
C6-07	0xC607	Input of floatingpoint filter module C	0: 0   1: Al1   2: Al2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C6-07" on page 897
C6-08	0xC608	Filter time of filter module C	0.000 s to 65.535 s	0.000	s	Changeable at any time	"C6-08" on page 898


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-09	0xC609	Floating-point filter module D enable	0: Module disabled 1: Filter disabled 2: Filter enabled 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-09" on page } \\ & 898 \end{aligned}$
C6-10	0xC60A	Input of floatingpoint filter module D	0: 0   1: AI1   2: AI2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-10" on page } \\ & 898 \end{aligned}$
C6-11	0xC60B	Filter time of filter module D	0.000 s to 65.535 s	0.000	s	Changeable at any time	"C6-11" on page $899$


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
C6-12	0xC60C	Fixed-point filter module E enable	0: Module disabled 1: Filter disabled 2: Filter enabled 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-12" on page } \\ & 899 \end{aligned}$
C6-13	0xC60D	Input of fixed-point filter module E	$0: 0$   Others: K connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-13" on page } \\ & 900 \end{aligned}$
C6-14	0xC60E	Filter time of fixedpoint filter module E	0.000 s to 65.535 s	0.000	s	Changeable at any time	$\begin{aligned} & \text { "C6-14" on page } \\ & 900 \end{aligned}$
C6-15	0xC60F	Fixed-point filter module $F$ enable	0: Module disabled   1: Filter disabled   2: Filter enabled   3: DII   4: DI2   5: DI3   6: DI4   7: DI5   8: DI6   9: DI7   10: DI8   11: DI9   12: DIIO   13: DII1   14: DI12   15: DII3   16: DII4   17: DI15   18: DII6   Others: B connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-15" on page } \\ & 900 \end{aligned}$
C6-16	0xC610	Input of fixed-point filter module F	$0: 0$   Others: K connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-16" on page } \\ & 901 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-17	0xC611	Filter time of fixedpoint filter module F	0.000 s to 65.535 s	0.000	s	Changeable at any time	$\begin{aligned} & \text { "C6-17" on page } \\ & 901 \end{aligned}$
C6-24	0xC618	Function of level-topulse conversion module A	0: Disabled   1: Conversion from level to pulse   2: Conversion from pulse to level	0	-	Changeable at any time	"C6-24" on page   901
C6-25	0xC619	Input of level-topulse conversion module A	0: Logic 0 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-25" on page } \\ & 901 \end{aligned}$
C6-26	0xC61A	Pulse width of level-to-pulse conversion module A	0.00s to 655.35s	0.00	s	Changeable at any time	"C6-26" on page $902$
C6-27	$0 \times C 61 B$	Function of level-topulse conversion module B	0: Disabled   1: Conversion from level to pulse   2: Conversion from pulse to level	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-27" on page } \\ & 902 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-28	0xC61C	Input of level-topulse conversion module B	$\begin{aligned} & \text { 0: Logic } 0 \\ & \text { 1: Logic } 1 \\ & \text { 2: Logic } 0 \\ & \text { 3: DI1 } \\ & \text { 4: DI2 } \\ & \text { 5: DI3 } \\ & \text { 6: DI4 } \\ & \text { 7: DI5 } \\ & \text { 8: DI6 } \\ & \text { 9: DI7 } \\ & \text { 10: DI8 } \\ & \text { 11: DI9 } \\ & \text { 12: DI10 } \\ & \text { 13: DI11 } \\ & \text { 14: DI12 } \\ & \text { 15: DI13 } \\ & \text { 16: DI14 } \\ & \text { 17: DI15 } \\ & \text { 18: DI16 } \end{aligned}$   Others: B connector	0	-	Changeable at any time	"C6-28" on page   902
C6-29	0xC61D	Pulse width of level-to-pulse conversion module B	0.00s to 655.35s	0.00	s	Changeable at any time	"C6-29" on page 903
C6-30	0xC61E	Function of level-topulse conversion module C	0: Disabled   1: Conversion from level to pulse   2: Conversion from pulse to level	0	-	Changeable at any time	"C6-30" on page 903
C6-31	0xC61F	Input of level-topulse conversion module C	$\begin{aligned} & \text { 0: Logic } 0 \\ & \text { 1: Logic } 1 \\ & \text { 2: Logic } 0 \\ & \text { 3: DI1 } \\ & \text { 4: DI2 } \\ & \text { 5: DI3 } \\ & \text { 6: DI4 } \\ & \text { 7: DI5 } \\ & \text { 8: DI6 } \\ & \text { 9: DI7 } \\ & \text { 10: DI8 } \\ & \text { 11: DI9 } \\ & \text { 12: DI10 } \\ & \text { 13: DI11 } \\ & \text { 14: DI12 } \\ & \text { 15: DI13 } \\ & \text { 16: DI14 } \\ & \text { 17: DI15 } \\ & \text { 18: DI16 } \end{aligned}$   Others: B connector	0	-	Changeable at any time	"C6-31" on page 903
C6-32	0xC620	Pulse width of level-to-pulse conversion module C	0.00s to 655.35s	0.00	s	Changeable at any time	"C6-32" on page $904$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-33	0xC621	Function of level-topulse conversion module D	0: Disabled   1: Conversion from level to pulse   2: Conversion from pulse to level	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-33" on page } \\ & 904 \end{aligned}$
C6-34	0xC622	Input of level-topulse conversion module D	0: Logic 0 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C6-34" on page $905$
C6-35	0xC623	Pulse width of level-to-pulse conversion module D	0.00s to 655.35s	0.00	s	Changeable at any time	$\begin{aligned} & \text { "C6-35" on page } \\ & 905 \end{aligned}$
C6-36	0xC624	Input of floatingpoint limiting module A	0: Disabled   1: Al1   2: Al2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-36" on page } \\ & 905 \end{aligned}$
C6-37	0xC625	Upper limit of floating-point limiting module A	0 : Inactive   1: Al1   2: Al2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-37" on page } \\ & 906 \end{aligned}$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-38	0xC626	Lower limit of floating-point limiting module A	0: Inactive 1: AI1 2: AI2 3: AI3 4: HDI 5: Aim 6: Multi-reference 7: Motor-driven potentiometer 8: PID Others: F connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-38" on page } \\ & 906 \end{aligned}$
C6-39	0xC627	Input of floatingpoint limiting module B	0 : Disabled   1: Al1   2: AI2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-39" on page } \\ & 907 \end{aligned}$
C6-40	0xC628	Upper limit of floating-point limiting module B	0: Inactive 1: AI1 2: AI2 3: Al3 4: HDI 5: Aim 6: Multi-reference 7: Motor-driven potentiometer 8: PID Others: F connector	0	-	Changeable at any time	"C6-40" on page $907$
C6-41	0xC629	Lower limit of floating-point limiting module $B$	0: Inactive 1: AI1 2: Al2 3: Al3 4: HDI 5: Aim 6: Multi-reference 7: Motor-driven potentiometer 8: PID Others: F connector	0	-	Changeable at any time	"C6-41" on page   907
C6-42	0xC62A	Input of floatingpoint limiting module C	0 : Disabled   1: Al1   2: Al2   3: AI3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-42" on page } \\ & 908 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-43	0xC62B	Upper limit of floating-point limiting module C	0: Inactive 1: AI1 2: AI2 3: AI3 4: HDI 5: Aim 6: Multi-reference 7: Motor-driven potentiometer 8: PID Others: F connector	0	-	Changeable at any time	"C6-43" on page 908
C6-44	0xC62C	Lower limit of floating-point limiting module C	0: Inactive 1: AI1 2: AI2 3: Al3 4: HDI 5: Aim 6: Multi-reference 7: Motor-driven potentiometer 8: PID Others: F connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-44" on page } \\ & 909 \end{aligned}$
C6-45	0xC62D	Input of floatingpoint limiting module D	0 : Disabled   1: AI1   2: AI2   3: Al3   4: HDI   5: Aim   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"C6-45" on page 909
C6-46	0xC62E	Upper limit of floating-point limiting module $D$	0: Inactive 1: AI1 2: AI2 3: Al3 4: HDI 5: Aim 6: Multi-reference 7: Motor-driven potentiometer 8: PID Others: F connector	0	-	Changeable at any time	"C6-46" on page   909
C6-47	0xC62F	Lower limit of floating-point limiting module D	0: Inactive 1: Al1 2: Al2 3: Al3 4: HDI 5: Aim 6: Multi-reference 7: Motor-driven potentiometer 8: PID Others: F connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-47" on page } \\ & 910 \end{aligned}$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-48	0xC630	Input of fixed-point limiting module E	0 : Disabled Others: K connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-48" on page } \\ & 910 \end{aligned}$
C6-49	0xC631	Upper limit of fixedpoint limiting module E	0 : Inactive   Others: K connector	0	-	Changeable at any time	"C6-49" on page $910$
C6-50	0xC632	Lower limit of fixedpoint limiting module E	0 : Inactive   Others: K connector	0	-	Changeable at any time	"C6-50" on page $911$
C6-51	0xC633	Input of fixed-point limiting module $F$	0: Disabled Others: K connector	0	-	Changeable at any time	"C6-51" on page   911
C6-52	0xC634	Upper limit of fixedpoint limiting module F	0 : Inactive   Others: K connector	0	-	Changeable at any time	"C6-52" on page $911$
C6-53	0xC635	Lower limit of fixedpoint limiting module F	0 : Inactive   Others: K connector	0	-	Changeable at any time	"C6-53" on page   911
C6-54	0xC636	Input of logic delay module A	0: Disabled   1: Logic 1   2: Logic 0   3: DI1   4: DI2   5: DI3   6: DI4   7: DI5   8: DI6   9: DI7   10: DI8   11: DI9   12: DIIO   13: DI11   14: DI12   15: DI13   16: DI14   17: DI15   18: DI16   Others: B connector	0	-	Changeable at any time	"C6-54" on page   911
C6-55	0xC637	Switch-on delay of logic delay module A	0 to 65535	0	-	Changeable at any time	"C6-55" on page $912$
C6-56	0xC638	Switch-off delay of logic delay module A	0 to 65535	0	-	Changeable at any time	"C6-56" on page $912$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-57	0xC639	Delay time unit of logic delay module A	0: No delay 1: 10 ms 10: 100 ms 100: 1 s 1000: 10 s 6000: 1 min 12000: 2 min 0: Added at the background	1	-	Changeable at any time	"C6-57" on page $912$
C6-58	0xC63A	Input of logic delay module B	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"C6-58" on page $913$
C6-59	0xC63B	Switch-on delay of logic delay module B	0 to 65535	0	-	Changeable at any time	"C6-59" on page $913$
C6-60	0xC63C	Switch-off delay of logic delay module B	0 to 65535	0	-	Changeable at any time	"C6-60" on page   914
C6-61	0xC63D	Delay time unit of logic delay module B	0: No delay 1: 10 ms 10: 100 ms 100: 1 s 1000: 10 s 6000: 1 min 12000: 2 min 0 : Added at the background	1	-	Changeable at any time	"C6-61" on page   914


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-62	0xC63E	Input of logic delay module C	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0		Changeable at any time	"C6-62" on page   914
C6-63	0xC63F	Switch-on delay of logic delay module C	0 to 65535	0		Changeable at any time	"C6-63" on page $915$
C6-64	0xC640	Switch-off delay of logic delay module C	0 to 65535	0	-	Changeable at any time	"C6-64" on page $915$
C6-65	0xC641	Delay time unit of logic delay module C	0: No delay 1: 10 ms 10: 100 ms 100: 1 s 1000: 10 s 6000: 1 min 12000: 2 min 0: Added at the background	1	-	Changeable at any time	"C6-65" on page $915$


Para.	Comm. Addr.	Name	Reference	De fault	Unit	Change	Page
C6-66	0xC642	Input of logic delay module D	0: Disabled   1: Logic 1   2: Logic 0   3: DII   4: DI2   5: DI3   6: DI4   7: DI5   8: DI6   9: DI7   10: DI8   11: DI9   12: DIIO   13: DI11   14: DII2   15: DII3   16: DI14   17: DI15   18: DII6   Others: B connector	0	-	Changeable at any time	"C6-66" on page $916$
C6-67	0xC643	Switch-on delay of logic delay module D	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-67" on page } \\ & 916 \end{aligned}$
C6-68	0xC644	Switch-off delay of logic delay module D	0 to 65535	0	-	Changeable at any time	"C6-68" on page 917
C6-69	0xC645	Delay time unit of logic delay module D	0: No delay 1: 10 ms 10: 100 ms 100: 1 s 1000: 10 s 6000: 1 min 12000: 2 min 0: Added at the background	1	-	Changeable at any time	"C6-69" on page   917


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-70	0xC646	Input of logic delay module E	0 : Disabled   1: Logic 1   2: Logic 0   3: DII   4: DI2   5: DI3   6: DI4   7: DI5   8: DI6   9: DI7   10: DI8   11: DI9   12: DIIO   13: DI11   14: DII2   15: DI13   16: DI14   17: DI15   18: DI16   Others: B connector	0	-	Changeable at any time	"C6-70" on page   917
C6-71	0xC647	Switch-on delay of logic delay module E	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-71" on page } \\ & 918 \end{aligned}$
C6-72	0xC648	Switch-off delay of logic delay module E	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-72" on page } \\ & 918 \end{aligned}$
C6-73	0xC649	Delay time unit of logic delay module E	0: No delay 1: 10 ms 10: 100 ms 100: 1 s 1000: 10 s 6000: 1 min 12000: 2 min 0: Added at the background	1	-	Changeable at any time	$\begin{aligned} & \text { "C6-73" on page } \\ & 918 \end{aligned}$


Para.	Comm. Addr.	Name	Reference	De fault	Unit	Change	Page
C6-74	0xC64A	Input of logic delay module F	0: Disabled   1: Logic 1   2: Logic 0   3: DII   4: DI2   5: DI3   6: DI4   7: DI5   8: DI6   9: DI7   10: DI8   11: DI9   12: DIIO   13: DI11   14: DII2   15: DII3   16: DI14   17: DI15   18: DII6   Others: B connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-74" on page } \\ & 919 \end{aligned}$
C6-75	0xC64B	Switch-on delay of logic delay module F	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-75" on page } \\ & 919 \end{aligned}$
C6-76	0xC64C	Switch-off delay of logic delay module F	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-76" on page } \\ & 920 \end{aligned}$
C6-77	0xC64D	Delay time unit of logic delay module F	0: No delay 1: 10 ms 10: 100 ms 100: 1 s 1000: 10 s 6000: 1 min 12000: 2 min 0: Added at the background	1	-	Changeable at any time	$\begin{aligned} & \text { "C6-77" on page } \\ & 920 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-78	0xC64E	Input of logic delay module G	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0		Changeable at any time	"C6-78" on page $920$
C6-79	0xC64F	Switch-on delay of logic delay module G	0 to 65535	0		Changeable at any time	"C6-79" on page   921
C6-80	0xC650	Switch-off delay of logic delay module G	0 to 65535	0	-	Changeable at any time	"C6-80" on page   921
C6-81	0xC651	Delay time unit of logic delay module G	0: No delay 1: 10 ms 10: 100 ms 100: 1 s 1000: 10 s 6000: 1 min 12000: 2 min 0: Added at the background	1		Changeable at any time	"C6-81" on page   921


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C6-82	0xC652	Input of logic delay module H	0: Disabled 1: Logic 1 2: Logic 0 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-82" on page } \\ & 922 \end{aligned}$
C6-83	0xC653	Switch-on delay of logic delay module H	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C6-83" on page } \\ & 922 \end{aligned}$
C6-84	0xC654	Switch-off delay of logic delay module H	0 to 65535	0	-	Changeable at any time	"C6-84" on page $923$
C6-85	0xC655	Delay time unit of logic delay module H	0: No delay 1: 10 ms 10: 100 ms 100: 1 s 1000: 10 s 6000: 1 min 12000: 2 min 0: Added at the background	1	-	Changeable at any time	"C6-85" on page $923$
C7-00	0xC700	Input of multi-point curve module A	0 : Disabled   Others: F connector	0	-	Changeable at any time	"C7-00" on page $923$
C7-01	0xC701	Setpoint X1 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-01" on page $923$
C7-02	0xC702	Setpoint X2 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-02" on page   924
C7-03	0xC703	Setpoint X3 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-03" on page $924$
C7-04	0xC704	Setpoint X4 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-04" on page   924


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C7-05	0xC705	Setpoint X5 of multi-point curve module A	-600\% to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-05" on page   924
C7-06	0xC706	Setpoint X6 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-06" on page   924
C7-07	0xC707	Setpoint X7 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-07" on page $925$
C7-08	0xC708	Setpoint X8 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-08" on page $925$
C7-09	0xC709	Setpoint X9 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "C7-09" on page } \\ & 925 \end{aligned}$
C7-10	0xC70A	Setpoint X10 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-10" on page   925
C7-11	$0 \times C 70 B$	Setpoint Y 1 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-11" on page $925$
C7-12	0xC70C	Setpoint Y2 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "C7-12" on page } \\ & 926 \end{aligned}$
C7-13	0xC70D	Setpoint Y3 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "C7-13" on page } \\ & 926 \end{aligned}$
C7-14	0xC70E	Setpoint Y4 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-14" on page 926
C7-15	0xC70F	Setpoint Y5 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "C7-15" on page } \\ & 926 \end{aligned}$
C7-16	0xC710	Setpoint Y 6 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "C7-16" on page } \\ & 926 \end{aligned}$
C7-17	0xC711	Setpoint Y7 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-17" on page $926$
C7-18	0xC712	Setpoint Y8 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-18" on page   927
C7-19	0xC713	Setpoint Y9 of multi-point curve module A	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "C7-19" on page } \\ & 927 \end{aligned}$


Para.	Comm.   Addr.	Name		De   fault	Unit	Change	Page


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C7-35	0xC723	Setpoint Y 4 of multi-point curve module B	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "C7-35" on page } \\ & 930 \end{aligned}$
C7-36	0xC724	Setpoint Y5 of multi-point curve module B	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "C7-36" on page } \\ & 930 \end{aligned}$
C7-37	0xC725	Setpoint Y 6 of multi-point curve module B	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	$\begin{aligned} & \text { "C7-37" on page } \\ & 930 \end{aligned}$
C7-38	0xC726	Setpoint Y7 of multi-point curve module B	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-38" on page   931
C7-39	0xC727	Setpoint Y 8 of multi-point curve module B	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-39" on page   931
C7-40	0xC728	Setpoint Y 9 of multi-point curve module B	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-40" on page $931$
C7-41	0xC729	Setpoint Y10 of multi-point curve module B	$-600 \%$ to $+600.0 \%$	0.0	\%	Changeable at any time	"C7-41" on page   931
C8-00	0xC800	Constant setpoint 1	$-300 \%$ to $+300.00 \%$	0.00	\%	Changeable at any time	"C8-00" on page $931$
C8-01	0xC801	Constant setpoint 2	-300\% to +300.00\%	100.00	\%	Changeable at any time	"C8-01" on page $932$
C8-02	0xC802	Constant setpoint 3	$-300 \%$ to $+300.00 \%$	-100	\%	Changeable at any time	"C8-02" on page $932$
C8-03	0xC803	Constant setpoint 4	$-300 \%$ to $+300.00 \%$	200.00	\%	Changeable at any time	"C8-03" on page $932$
C8-04	0xC804	Constant setpoint 5	-300\% to +300.00\%	-200	\%	Changeable at any time	"C8-04" on page $932$
C8-05	0xC805	Constant setpoint 6	$-3000 \%$ to $+3000.0 \%$	0.0	\%	Changeable at any time	"C8-05" on page $932$
C8-06	0xC806	Constant setpoint 7	-3000\% to +3000.0\%	0.0	\%	Changeable at any time	"C8-06" on page $933$
C8-07	0xC807	Constant setpoint 8	$-3000 \%$ to $+3000.0 \%$	0.0	\%	Changeable at any time	"C8-07" on page $933$
C8-08	0xC808	Constant setpoint 9	-3000\% to +3000.0\%	0.0	\%	Changeable at any time	"C8-08" on page $933$
C8-09	0xC809	Constant setpoint 10	$-3000 \%$ to $+3000.0 \%$	0.0	\%	Changeable at any time	"C8-09" on page $933$
C8-10	0xC80A	Constant setpoint 11	-3000\% to +3000.0\%	0.0	\%	Changeable at any time	"C8-10" on page $933$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C8-11	0xC80B	Constant setpoint $12$	$-3000 \%$ to $+3000.0 \%$	0.0	\%	Changeable at any time	"C8-11" on page $933$
C8-12	0xC80C	Constant setpoint $13$	-3000\% to +3000.0\%	0.0	\%	Changeable at any time	"C8-12" on page   934
C8-13	0xC80D	Constant setpoint $14$	$-3000 \%$ to $+3000.0 \%$	0.0	\%	Changeable at any time	"C8-13" on page $934$
C8-14	0xC80E	Constant setpoint 15	-3000\% to +3000.0\%	0.0	\%	Changeable at any time	"C8-14" on page $934$
C8-15	0xC80F	Constant setpoint 16	$-3000 \%$ to $+3000.0 \%$	0.0	\%	Changeable at any time	"C8-15" on page $934$
C8-16	0xC810	Constant setpoint 17	-3000\% to +3000.0\%	0.0	\%	Changeable at any time	"C8-16" on page $934$
C8-17	$0 \times C 811$	Constant setpoint 18	$-3000 \%$ to $+3000.0 \%$	0.0	\%	Changeable at any time	"C8-17" on page $935$
C8-18	0xC812	Constant setpoint 19	$-3000 \%$ to $+3000.0 \%$	0.0	\%	Changeable at any time	"C8-18" on page $935$
C8-19	$0 \times C 813$	Constant setpoint $20$	$-3000 \%$ to $+3000.0 \%$	0.0	\%	Changeable at any time	"C8-19" on page $935$
C8-20	$0 \times C 814$	Constant setpoint $21$	-3000\% to +3000.0\%	0.0	\%	Changeable at any time	"C8-20" on page $935$
C8-21	0xC815	Constant setpoint 22	$-300 \%$ to $+300.00 \%$	0.00	\%	Changeable at any time	"C8-21" on page $935$
C8-22	$0 \times C 816$	Constant setpoint 23	$-300 \%$ to $+300.00 \%$	100.00	\%	Changeable at any time	"C8-22" on page $936$
C8-23	$0 \times C 817$	Constant setpoint 24	$-300 \%$ to $+300.00 \%$	-100	\%	Changeable at any time	"C8-23" on page 936
C8-24	$0 \times C 818$	Constant setpoint 25	$-300 \%$ to $+300.00 \%$	200.00	\%	Changeable at any time	"C8-24" on page $936$
C8-25	0xC819	Constant setpoint 26	-300\% to +300.00\%	-200	\%	Changeable at any time	"C8-25" on page $936$
C8-26	$0 \times C 81 A$	Constant setpoint 27	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C8-26" on page } \\ & 936 \end{aligned}$
C8-27	0xC81B	Constant setpoint 28	0 to 65535	0	-	Changeable at any time	"C8-27" on page 937
C8-28	0xC81C	Constant setpoint 29	0 to 65535	0	-	Changeable at any time	"C8-28" on page $937$
C8-29	0xC81D	Constant setpoint 30	0 to 65535	0	-	Changeable at any time	"C8-29" on page $937$
C8-30	0xC81E	Constant setpoint $31$	0 to 65535	0	-	Changeable at any time	"C8-30" on page 937
C8-31	0xC81F	Constant setpoint 32	0 to 65535	0	-	Changeable at any time	"C8-31" on page 937


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C8-32	0xC820	Constant setpoint 33	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C8-32" on page } \\ & 938 \end{aligned}$
C8-33	$0 \times C 821$	Constant setpoint 34	0 to 65535	0	-	Changeable at any time	"C8-33" on page   938
C8-34	0xC822	Constant setpoint 35	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C8-34" on page } \\ & 938 \end{aligned}$
C8-35	0xC823	Constant setpoint 36	0 to 65535	0	-	Changeable at any time	"C8-35" on page $938$
C8-36	0xC824	Constant setpoint 37	0 to 65535	0	-	Changeable at any time	"C8-36" on page $938$
C8-37	0xC825	Constant setpoint 38	0 to 65535	0	-	Changeable at any time	"C8-37" on page $938$
C8-38	0xC826	Constant setpoint 39	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C8-38" on page } \\ & 939 \end{aligned}$
C8-39	$0 \times C 827$	Constant setpoint $40$	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "C8-39" on page } \\ & 939 \end{aligned}$
C8-40	0xC828	Constant setpoint 41	0 to 65535	0	-	Changeable at any time	"C8-40" on page $939$
C8-41	0xC829	Constant setpoint $42$	0 to 65535	0	-	Changeable at any time	"C8-41" on page $939$
C9-00	0xC900	LOWORD of 16-bit data RAM address 1	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-00" on page $940$
C9-01	0xC901	HIWORD of 16-bit data RAM address 1	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-01" on page $940$
C9-02	0xC902	LOWORD of 16-bit data RAM address 2	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C9-02" on page $940$
C9-03	0xC903	HIWORD of 16-bit data RAM address 2	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "C9-03" on page } \\ & 940 \end{aligned}$
C9-04	0xC904	LOWORD of 16-bit data RAM address 3	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-04" on page $940$
C9-05	0xC905	HIWORD of 16-bit data RAM address 3	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C9-05" on page $941$
C9-06	0xC906	LOWORD of 16-bit data RAM address 4	0x0 to 0xFFFF	0x0	-	Changeable at any time	$\begin{aligned} & \text { "C9-06" on page } \\ & 941 \end{aligned}$
C9-07	0xC907	HIWORD of 16-bit data RAM address 4	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-07" on page   941
C9-08	0xC908	LOWORD of 16-bit data RAM address 5	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	"C9-08" on page $941$
C9-09	0xC909	HIWORD of 16-bit data RAM address 5	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-09" on page $941$
C9-10	0xC90A	32-bit data type selection 1	0 to 1	0	-	Changeable at any time	"C9-10" on page $942$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
C9-11	0xC90B	32-bit data amplification coefficient 1	0 to 10000	0	-	Changeable at any time	"C9-11" on page $942$
C9-12	0xC90C	LOWORD of 32-bit data RAM address 1	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-12" on page $942$
C9-13	0xC90D	HIWORD of 32-bit data RAM address 1	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-13" on page $942$
C9-14	0xC90E	32-bit data type selection 2	0 to 1	0	-	Changeable at any time	"C9-14" on page $942$
C9-15	0xC90F	32-bit data amplification coefficient 2	0 to 10000	0	-	Changeable at any time	"C9-15" on page $943$
C9-16	0xC910	LOWORD of 32-bit data RAM address 2	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-16" on page $943$
C9-17	$0 \times C 911$	HIWORD of 32-bit data RAM address 2	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-17" on page $943$
C9-18	0xC912	32-bit data type selection 3	0 to 1	0	-	Changeable at any time	"C9-18" on page $943$
C9-19	0xC913	32-bit data amplification coefficient 3	0 to 10000	0	-	Changeable at any time	$\begin{aligned} & \text { "C9-19" on page } \\ & 943 \end{aligned}$
C9-20	$0 \times C 914$	LOWORD of 32-bit data RAM address 3	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-20" on page 944
C9-21	0xC915	HIWORD of 32-bit data RAM address 3	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-21" on page 944
C9-22	0xC916	32-bit data type selection 4	0 to 1	0	-	Changeable at any time	"C9-22" on page   944
C9-23	$0 \times C 917$	32-bit data amplification coefficient 4	0 to 10000	0	-	Changeable at any time	"C9-23" on page   944
C9-24	0xC918	LOWORD of 32-bit data RAM address 4	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-24" on page 944
C9-25	0xC919	HIWORD of 32-bit data RAM address 4	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-25" on page $945$
C9-26	$0 \times C 91$ A	32-bit data type selection 5	0 to 1	0	-	Changeable at any time	"C9-26" on page $945$
C9-27	0xC91B	32-bit data amplification coefficient 5	0 to 10000	0	-	Changeable at any time	"C9-27" on page 945
C9-28	0xC91C	LOWORD of 32-bit data RAM address 5	0x0 to 0xFFFF	$0 \times 0$	-	Changeable at any time	$\begin{aligned} & \text { "C9-28" on page } \\ & 945 \end{aligned}$
C9-29	0xC91D	HIWORD of 32-bit data RAM address 5	0x0 to 0xFFFF	0x0	-	Changeable at any time	"C9-29" on page 945


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C9-30	0xC91E	Internal parameter monitoring input 1	0 to 97	0	-	Changeable at any time	"C9-30" on page $946$
C9-31	0xC91F	Internal parameter monitoring input 2	0 to 97	0	-	Changeable at any time	"C9-31" on page $946$
C9-32	0xC920	Internal parameter monitoring input 3	0 to 97	0	-	Changeable at any time	"C9-32" on page $946$
C9-33	0xC921	Internal parameter monitoring input 4	0 to 97	0	-	Changeable at any time	$\begin{aligned} & \text { "C9-33" on page } \\ & 946 \end{aligned}$
C9-34	0xC922	Internal parameter monitoring input 5	0 to 97	0	-	Changeable at any time	"C9-34" on page   946
C9-35	0xC923	Internal parameter monitoring input 6	0 to 97	0	-	Changeable at any time	"C9-35" on page $946$
C9-36	0xC924	Internal parameter monitoring input 7	0 to 97	0	-	Changeable at any time	"C9-36" on page $947$
C9-37	0xC925	Internal parameter monitoring input 8	0 to 97	0	-	Changeable at any time	"C9-37" on page $947$
C9-40	0xC928	Variable connector value viewing input 1	0 to 65535	0	-	Changeable at any time	"C9-40" on page $947$
C9-41	0xC929	Variable connector value viewing input 2	0 to 65535	0	-	Changeable at any time	"C9-41" on page   947
C9-42	0xC92A	Variable connector value viewing input 3	0 to 65535	0	-	Changeable at any time	"C9-42" on page   947
C9-43	0xC92B	Variable connector value viewing input 4	0 to 65535	0	-	Changeable at any time	"C9-43" on page $948$
C9-44	0xC92C	Variable connector value viewing input 5	0 to 65535	0	-	Changeable at any time	"C9-44" on page   948
C9-45	0xC92D	Variable connector value viewing input 6	0 to 65535	0	-	Changeable at any time	"C9-45" on page   948
C9-46	0xC92E	Variable connector value viewing input 7	0 to 65535	0	-	Changeable at any time	"C9-46" on page $948$
C9-47	0xC92F	Variable connector value viewing input 8	0 to 65535	0	-	Changeable at any time	"C9-47" on page   948
C9-50	0xC932	Monitoring variable   0	-32768 to +32767	0	-	Unchangea ble	"C9-50" on page 949
C9-51	0xC933	Monitoring variable 1	-32768 to +32767	0	-	Unchangea ble	"C9-51" on page 949


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
C9-52	0xC934	Monitoring variable $2$	-32768 to +32767	0	-	Unchangea ble	$\begin{aligned} & \text { "C9-52" on page } \\ & 949 \end{aligned}$
C9-53	0xC935	Monitoring variable $3$	-32768 to +32767	0	-	Unchangea ble	"C9-53" on page $949$
C9-54	0xC936	Monitoring variable $4$	-32768 to +32767	0	-	Unchangea ble	$\begin{aligned} & \text { "C9-54" on page } \\ & 949 \end{aligned}$
C9-55	0xC937	Monitoring variable $5$	-32768 to +32767	0	-	Unchangea ble	"C9-55" on page 950
C9-56	0xC938	Monitoring variable $6$	-32768 to +32767	0	-	Unchangea ble	"C9-56" on page $950$
C9-57	0xC939	Monitoring variable 7	-32768 to +32767	0	-	Unchangea ble	"C9-57" on page $950$
C9-58	0xC93A	Monitoring variable   8	-32768 to +32767	0	-	Unchangea ble	$\begin{aligned} & \text { "C9-58" on page } \\ & 950 \end{aligned}$
C9-59	0xC93B	Monitoring variable 9	-32768 to +32767	0	-	Unchangea ble	"C9-59" on page $950$
C9-70	0xC946	Commissioning variable 0	-32768 to +32767	0	-	Changeable at any time	"C9-70" on page 951
C9-71	0xC947	Commissioning variable 1	-32768 to +32767	0	-	Changeable at any time	"C9-71" on page $951$
C9-72	0xC948	Commissioning variable 2	-32768 to +32767	0	-	Changeable at any time	"C9-72" on page $951$
C9-73	0xC949	Commissioning variable 3	-32768 to +32767	0	-	Changeable at any time	"C9-73" on page $951$
C9-74	$0 \times C 94 \mathrm{~A}$	Commissioning variable 4	-32768 to +32767	0	-	Changeable at any time	"C9-74" on page   951
C9-75	0xC94B	Commissioning variable 5	-32768 to +32767	0	-	Changeable at any time	"C9-75" on page $951$
C9-76	0xC94C	Commissioning variable 6	-32768 to +32767	0	-	Changeable at any time	"C9-76" on page $952$
C9-77	0xC94D	Commissioning variable 7	-32768 to +32767	0	-	Changeable at any time	"C9-77" on page $952$
C9-78	0xC94E	Commissioning variable 8	-32768 to +32767	0	-	Changeable at any time	"C9-78" on page $952$
C9-79	0xC94F	Commissioning variable 9	-32768 to +32767	0	-	Changeable at any time	"C9-79" on page $952$
CA-00	0xCA00	Motor type	0: Common asynchronous motor   1: Variable frequency asynchronous motor   2: Permanent magnet synchronous motor	0	-	Changeable only at stop	"CA-00" on page $953$
CA-01	0xCA01	Rated motor power	0.1 kW to 1000.0 kW	3.7	kW	Changeable only at stop	"CA-01" on page $953$
CA-02	0xCA02	Rated motor voltage	1 V to 2000 V	380	V	Changeable only at stop	"CA-02" on page 953


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CA-03	0xCA03	Rated motor current	0.01 A to 655.35 A	9.00	A	Changeable only at stop	"CA-03" on page 953
CA-04	0xCA04	Rated motor frequency	0.01 Hz to F0-10	50.00	Hz	Changeable only at stop	"CA-04" on page 953
CA-05	0xCA05	Rated motor speed	1 RPM to 65535 RPM	1460	RPM	Changeable only at stop	"CA-05" on page 954
CA-06	0xCA06	Number of parallel motors	1 to 200	1	-	Changeable only at stop	"CA-06" on page 954
CA-07	0xCA07	Motor information command word	Bit00: Mutual inductance curve   0: Disabled   1: Enabled   Bit01: D- and Q-axis inductance curve   0 : Disabled   1: Enabled   Bit02: Rotor resistance online auto-tuning   0: Disabled   1: Enabled   Bit03: Rotor resistance online auto-tuning method   0: Amplitude   1: Phase   Bit04: Motor thermal model   0: Disabled   1: Enabled   Bit05: Temperature source of motor thermal model   0: Estimated temperature   1: Temperature detected by sensor   Bit06: Torque coefficient calculation of asynchronous motor   0 : Torque formula   1: Current distribution   Bit07: Torque coefficient calculation of synchronous motor   0 : Torque formula   1: Torque matching the rated torque   Bit08: Zero speed friction torque calculation   0 : Torque linearly decreasing to zero   1: Torque to maintain minimum speed   Bit09: Calculation of model parameters based on nameplate parameters   0: Disabled   1: Enabled   Bit10: Confirmation of calculating model parameters based on nameplate parameters   0: Default   1: Confirm	$0 \times 3$	-	Changeable only at stop	"CA-07" on page $954$
CA-08	0xCA08	Number of motor pole pairs	0 to 64	0	-	Changeable only at stop	"CA-08" on page $955$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CA-09	0xCA09	Motor power factor	0.600 to 1.000	0.860	-	Changeable only at stop	"CA-09" on page 956
CA-10	0xCAOA	Encoder PPR	1 to 65535	1024	-	Changeable only at stop	"CA-10" on page $956$
CA-11	$0 \times C A O B$	Encoder type	0 : $A B Z$ incremental encoder   1: 23-bit encoder   2: Resolver   3: External input	0	-	Changeable only at stop	"CA-11" on page $956$
CA-12	OxCAOC	Speed feedback PG card	0: Local PG card   1: Extension PG card	0	-	Changeable only at stop	"CA-12" on page 956
CA-13	OxCAOD	Number of resolver pole pairs	1 to 65535	1	-	Changeable only at stop	"CA-13" on page 956
CA-15	0xCAOF	Speed feedback PG wire breakage detection time	0.0 s to 10.0 s	0.0	s	Changeable only at stop	"CA-15" on page 957
CA-16	0xCA10	A/B phase sequence of encoder	0: Forward   1: Reverse	0	-	Changeable only at stop	"CA-16" on page 957
CA-17	$0 \times C A 11$	Encoder installation angle	$0.0^{\circ}$ to $359.9^{\circ}$	0.0	-	Changeable only at stop	"CA-17" on page 957
CA-18	0xCA12	Expansion card	1: Expansion card 1   2: Expansion card 2	1	-	Changeable only at stop	"CA-18" on page 957
CA-19	0xCA13	ABZ encoder speed measurement mode at low speed	0 : Maintain   1: Attenuate   2: Optimized solution	2	-	Changeable only at stop	"CA-19" on page 957
CA-20	0xCA14	Encoder speed measurement filter time constant	0.000 s to 10.000 s	0.004	s	Changeable at any time	"CA-20" on page 958
CA-21	0xCA15	Encoder wire breakage software detection coefficient	0.000 to 8.000	1.000	-	Changeable at any time	"CA-21" on page 958
CA-22	0xCA16	Encoder control word	Bit00: Speed measurement   0: Disabled   1: Enabled   Bit01: Software detection of wire breakage   0 : Disabled   1: Enabled   Bit02: Glitch removal   0 : Disabled   1: Enabled   Bit03: ABZ encoder speed measurement mode   0: Quadruplicated frequency   1: Single pulse	0	-	Changeable only at stop	"CA-22" on page 958


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CA-23	0xCA17	Speed   measurement   exception count   threshold	1 to 100	10	-	Changeable only at stop	"CA-23" on page 958
CA-24	$0 \times C A 18$	Motor gear ratio (numerator)	1 to 65535	1	-	Changeable only at stop	"CA-24" on page $959$
CA-25	0xCA19	Motor gear ratio (denominator)	1 to 65535	1	-	Changeable only at stop	"CA-25" on page $959$
CA-26	$0 \times C A 1 A$	External input source of encoder	0: 0   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Unchangea ble	"CA-26" on page 959
CA-29	0xCA1D	Auto-tuning	0 : No operation   1: Static auto-tuning on partial parameters of asynchronous motor   2: Dynamic auto-tuning on asynchronous motor   3: Static auto-tuning on all parameters of asynchronous motor   4: Inertia auto-tuning   5: Deadzone auto-tuning   11: With-load auto-tuning on synchronous motor (excluding back EMF)   12: No-load dynamic auto-tuning on synchronous motor   13: Static auto-tuning on all parameters of synchronous motor (excluding zero point angle)	0	-	Changeable only at stop	"CA-29" on page 959
CA-30	0xCA1E	Asynchronous   motor stator   resistance	$0.001 \Omega$ to $65.535 \Omega$	1.204	$\Omega$	Changeable only at stop	"CA-30" on page $960$
CA-31	0xCA1F	Asynchronous   motor rotor   resistance	$0.001 \Omega$ to $65.535 \Omega$	0.908	$\Omega$	Changeable only at stop	"CA-31" on page $960$
CA-32	0xCA20	Asynchronous motor leakage inductance	0.01 mH to 655.35 mH	5.28	mH	Changeable only at stop	"CA-32" on page   960
CA-33	0xCA21	Asynchronous motor mutual inductance	0.1 mH to 6553.5 mH	156.8	mH	Changeable only at stop	"CA-33" on page $960$
CA-34	0xCA22	Asynchronous motor no-load current	0.01 A to CA-03	4.20	A	Changeable only at stop	"CA-34" on page $961$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CA-35	0xCA23	Synchronous motor stator resistance	$0.001 \Omega$ to $65.535 \Omega$	1.204	$\Omega$	Changeable only at stop	"CA-35" on page   961
CA-36	0xCA24	Synchronous motor   D axis inductance	0.01 mH to 655.35 mH	5.28	mH	Changeable only at stop	"CA-36" on page   961
CA-37	0xCA25	Synchronous motor Q axis inductance	0.01 mH to 655.35 mH	5.28	mH	Changeable only at stop	"CA-37" on page $961$
CA-39	0xCA27	Synchronous motor   back EMF   coefficient	0.0 V to 6553.5 V	300.0	V	Changeable only at stop	"CA-39" on page $961$
CA-40	0xCA28	Stator leakage inductance	0.000 mH to 65.535 mH	6.540	mH	Changeable only at stop	"CA-40" on page $962$
CA-41	0xCA29	Electromechanical time constant	1 ms to 65535 ms	100	ms	Unchangea ble	"CA-41" on page $962$
CA-42	0xCA2A	Inertia ratio	0.0\% to 6553.5\%	120.0	\%	Changeable only at stop	"CA-42" on page $962$
CA-43	0xCA2B	Friction torque	0.0\% to 6553.5\%	2.0	\%	Changeable only at stop	"CA-43" on page $962$
CA-44	0xCA2C	Excitation current coefficient 1 of mutual inductance curve (rated)	5.0\% to $100.0 \%$	50.0	\%	Changeable only at stop	"CA-44" on page $962$
CA-45	0xCA2D	Excitation current coefficient 2 of mutual inductance curve (rated)	5.0\% to $100.0 \%$	75.0	\%	Changeable only at stop	"CA-45" on page $962$
CA-46	0xCA2E	Excitation current coefficient 3 of mutual inductance curve	100.0\% to 800.0\%	150.0	\%	Changeable only at stop	"CA-46" on page $963$
CA-47	0xCA2F	Excitation current coefficient 4 of mutual inductance curve	100.0\% to 800.0\%	210.0	\%	Changeable only at stop	"CA-47" on page   963
CA-48	0xCA30	Flux coefficient 1 of mutual inductance curve (rated)	10.0\% to $100.0 \%$	50.0	\%	Changeable only at stop	"CA-48" on page $963$
CA-49	$0 \times C A 31$	Flux coefficient 2 of mutual inductance curve (rated)	10.0\% to $100.0 \%$	85.0	\%	Changeable only at stop	"CA-49" on page $963$
CA-50	0xCA32	Flux coefficient 3 of mutual inductance curve	100.0\% to 300.0\%	115.0	\%	Changeable only at stop	"CA-50" on page $963$
CA-51	0xCA33	Flux coefficient 4 of mutual inductance curve	100.0\% to 300.0\%	125.0	\%	Changeable only at stop	"CA-51" on page $964$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CA-52	0xCA34	Speed point 1 of friction curve	0 RPM to 30000 RPM	15	RPM	Changeable only at stop	"CA-52" on page $964$
CA-53	0xCA35	Speed point 2 of friction curve	0 RPM to 30000 RPM	30	RPM	Changeable only at stop	"CA-53" on page $964$
CA-54	0xCA36	Speed point 3 of friction curve	0 RPM to 30000 RPM	60	RPM	Changeable only at stop	"CA-54" on page $964$
CA-55	0xCA37	Speed point 4 of friction curve	0 RPM to 30000 RPM	120	RPM	Changeable only at stop	"CA-55" on page 964
CA-56	0xCA38	Speed point 5 of friction curve	0 RPM to 30000 RPM	150	RPM	Changeable only at stop	"CA-56" on page $965$
CA-57	0xCA39	Speed point 6 of friction curve	0 RPM to 30000 RPM	300	RPM	Changeable only at stop	"CA-57" on page $965$
CA-58	$0 \times C A 3 A$	Speed point 7 of friction curve	0 RPM to 30000 RPM	600	RPM	Changeable only at stop	"CA-58" on page $965$
CA-59	0xCA3B	Speed point 8 of friction curve	0 RPM to 30000 RPM	1200	RPM	Changeable only at stop	"CA-59" on page $965$
CA-60	0xCA3C	Speed point 9 of friction curve	0 RPM to 30000 RPM	1500	RPM	Changeable only at stop	"CA-60" on page 965
CA-61	0xCA3D	Speed point 10 of friction curve	0 RPM to 30000 RPM	3000	RPM	Changeable only at stop	"CA-61" on page $966$
CA-62	0xCA3E	Torque point 1 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"CA-62" on page $966$
CA-63	0xCA3F	Torque point 2 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"CA-63" on page $966$
CA-64	0xCA40	Torque point 3 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"CA-64" on page $966$
CA-65	0xCA41	Torque point 4 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"CA-65" on page $966$
CA-66	0xCA42	Torque point 5 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"CA-66" on page $967$
CA-67	0xCA43	Torque point 6 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"CA-67" on page $967$
CA-68	0xCA44	Torque point 7 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"CA-68" on page $967$
CA-69	0xCA45	Torque point 8 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"CA-69" on page 967
CA-70	0xCA46	Torque point 9 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"CA-70" on page $967$
CA-71	0xCA47	Torque point 10 of friction curve	$-320 \mathrm{~N} \cdot \mathrm{~m}$ to $+320 \mathrm{~N} \cdot \mathrm{~m}$	0.00	$N \cdot m$	Changeable only at stop	"CA-71" on page $967$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
CA-72	0xCA48	Current coefficient starting point of Dand Q-axis inductance curve	$-800 \%$ to $+800.0 \%$	-200	\%	Changeable only at stop	"CA-72" on page 968
CA-73	0xCA49	Current coefficient end point of $D$ - and Q-axis inductance curve	$-800 \%$ to $+800.0 \%$	200.0	\%	Changeable only at stop	"CA-73" on page $968$
CA-74	0xCA4A	D axis inductance 1 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-74" on page $968$
CA-75	$0 \times C A 4 B$	D axis inductance 2 of $D$ - and $Q$-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-75" on page 968
CA-76	0xCA4C	D axis inductance 3 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-76" on page $968$
CA-77	0xCA4D	D axis inductance 4 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-77" on page $969$
CA-78	0xCA4E	D axis inductance 5 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-78" on page   969
CA-79	0xCA4F	D axis inductance 6 of $D$ - and $Q$-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-79" on page $969$
CA-80	0xCA50	D axis inductance 7 of $D$ - and $Q$-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-80" on page $969$
CA-81	0xCA51	D axis inductance 8 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-81" on page 969
CA-82	0xCA52	D axis inductance 9 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-82" on page 970
CA-83	0xCA53	D axis inductance 10 of D - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-83" on page $970$
CA-84	0xCA54	D axis inductance   11 of $D$ - and Q -axis   inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-84" on page $970$
CA-85	0xCA55	D axis inductance 12 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-85" on page $970$
CA-86	0xCA56	Q axis inductance 1 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-86" on page $970$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CA-87	0xCA57	Q axis inductance 2 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-87" on page   971
CA-88	0xCA58	Q axis inductance 3 of D - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-88" on page 971
CA-89	0xCA59	Q axis inductance 4 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-89" on page $971$
CA-90	0xCA5A	Q axis inductance 5 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-90" on page 971
CA-91	0xCA5B	Q axis inductance 6 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-91" on page   971
CA-92	0xCA5C	Q axis inductance 7 of $D$ - and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-92" on page $972$
CA-93	0xCA5D	Q axis inductance 8 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-93" on page $972$
CA-94	0xCA5E	Q axis inductance 9 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-94" on page $972$
CA-95	0xCA5F	Q axis inductance 10 of D- and Q-axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-95" on page $972$
CA-96	0xCA60	Q axis inductance 11 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-96" on page $972$
CA-97	0xCA61	Q axis inductance 12 of $D$ - and Q -axis inductance curve	0.0\% to 6553.5\%	100.0	\%	Changeable only at stop	"CA-97" on page $972$
CB-00	0xCB00	V/f curve	0: Straight-line V/f curve   1: Multi-point V/f curve   2: Reserved   3: Reserved   4: Reserved   5: Reserved   6: Reserved   7: Reserved   8: Reserved   9: Reserved   10: V/f complete separation mode   11: V/f half separation mode	0	-	Changeable only at stop	"CB-00" on page 973
CB-01	0xCB01	Torque boost	0.0\% to 30.0\%	3.0	\%	Changeable at any time	"CB-01" on page $973$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CB-02	0xCB02	Cut-off frequency of torque boost	0.00 Hz to FO-10	50.00	Hz	Changeable only at stop	$\begin{aligned} & \text { "CB-02" on page } \\ & 973 \end{aligned}$
CB-03	0xCB03	Multi-point V/f frequency 1	0.00 Hz to CB-05	0.00	Hz	Changeable only at stop	"CB-03" on page   974
CB-04	0xCB04	Multi-point $\mathrm{V} / \mathrm{f}$ voltage 1	0.0\% to +100.0\%	0.0	\%	Changeable only at stop	"CB-04" on page   974
CB-05	0xCB05	Multi-point V/f   frequency 2	CB-03 to CB-07	0.00	Hz	Changeable only at stop	"CB-05" on page 974
CB-06	0xCB06	Multi-point $\mathrm{V} / \mathrm{f}$ voltage 2	0.0\% to +100.0\%	0.0	\%	Changeable only at stop	"CB-06" on page   974
CB-07	0xCB07	Multi-point V/f frequency 3	CB-05 to CA-04	0.00	Hz	Changeable only at stop	"CB-07" on page 974
CB-08	0xCB08	Multi-point V/f voltage 3	0.0\% to +100.0\%	0.0	\%	Changeable only at stop	"CB-08" on page $975$
CB-09	0xCB09	V/fslip compensation gain	0.0 to 200.0	0.0	-	Changeable at any time	"CB-09" on page 975
CB-10	0xCBOA	V/f overexcitation gain	0 to 200	64	-	Changeable at any time	"CB-10" on page 975
CB-11	0xCB0B	V/f oscillation suppression gain	0 to 100	40	-	Changeable at any time	$\begin{aligned} & \text { "CB-11" on page } \\ & 975 \end{aligned}$
CB-12	OxCBOC	V/f oscillation suppression	0: Disabled   1: Enabled	1	-	Changeable at any time	$\begin{aligned} & \text { "CB-12" on page } \\ & 975 \end{aligned}$
CB-13	0xCB0D	Voltage source for   V/f separation	0 : Digital setting (CB-14)   1: Al1   2: Al2   3: Al3   4: Pulse reference (DI5)   5: Multi-reference   6: Simple PLC   7: PID   8: Communication   Others: F connector	0	-	Changeable at any time	$\begin{aligned} & \text { "CB-13" on page } \\ & 976 \end{aligned}$
CB-14	OxCBOE	V/f separation voltage	0 V to CA-02	0	V	Changeable at any time	"CB-14" on page 977
CB-15	0xCBOF	Voltage rise time of V/f separation	0.0s to 1000.0s	0.0	s	Changeable at any time	"CB-15" on page 977
CB-16	0xCB10	Voltage fall time of V/f separation	0.0 s to 1000.0 s	0.0	s	Changeable at any time	"CB-16" on page 977
CB-17	0xCB11	Stop mode for V/f separation	0 : Frequency and voltage decline to 0 independently   1: Frequency declines to 0 after voltage declines to 0   2: Coast to stop (new)	0	-	Changeable at any time	"CB-17" on page 977


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CB-18	0xCB12	Overcurrent stall suppression action current	50\% to 200\%	150	\%	Changeable only at stop	$\begin{aligned} & \text { " } C B-18 \text { " on page } \\ & 978 \end{aligned}$
CB-19	$0 \times C B 13$	Overcurrent stall suppression	0 : Disabled   1: Enabled	1	-	Changeable only at stop	"CB-19" on page   978
CB-20	0xCB14	Overcurrent stall suppression gain	1 to 100	20	-	Changeable at any time	"CB-20" on page 978
CB-21	0xCB15	Compensation coefficient of speed multiplying overcurrent stall suppression action current	50\% to 200\%	100	\%	Changeable only at stop	"CB-21" on page 978
CB-22	0xCB16	Overvoltage stall suppression action voltage	330.0 V to 800.0 V	770.0	V	Changeable at any time	$\begin{aligned} & \text { "CB-22" on page } \\ & 978 \end{aligned}$
CB-23	0xCB17	Overvoltage stall suppression	0: Disabled   1: Enabled	1	-	Changeable only at stop	"CB-23" on page 979
CB-24	0xCB18	Overvoltage stall   suppression   frequency gain	1 to 100	30	-	Changeable at any time	"CB-24" on page 979
CB-25	0xCB19	Overvoltage stall suppression voltage gain	1 to 100	30	-	Changeable at any time	"CB-25" on page $979$
CB-26	$0 \times C B 1 A$	Frequency rise threshold for overvoltage stall suppression	0 Hz to 50 Hz	5	Hz	Changeable only at stop	"CB-26" on page 979
CB-27	$0 \times C B 1 B$	Slip compensation filter time	0.1 s to 10.0 s	0.5	S	Changeable only at stop	"CB-27" on page 979
CB-28	0xCB1C	Multi-point curve source	0: 3-point curve   1: Multi-point curve module A   2: Multi-point curve module B	0	-	Changeable only at stop	"CB-28" on page 980
CB-33	0xCB21	Online torque compensation gain	80 to 150	100	-	Changeable only at stop	"CB-33" on page 980
CB-34	0xCB22	ImaxKi coefficient	10\% to $1000 \%$	100	\%	Changeable only at stop	"CB-34" on page 980
CB-35	0xCB23	Overcurrent suppression threshold (relative to rated motor current)	80\% to 300\%	200	\%	Changeable only at stop	"CB-35" on page 980


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CB-36	0xCB24	Frequency threshold for overcurrent suppression field weakening	100\% to 500\%	100	\%	Changeable only at stop	$\begin{aligned} & \text { "CB-36" on page } \\ & 980 \end{aligned}$
CB-37	0xCB25	IT filter time	10 ms to 1000 ms	100	ms	Changeable only at stop	"CB-37" on page   981
CB-38	0xCB26	Slip compensation mode	0: Disabled   1: Slip compensation without PG   2: Slip compensation with PG	1	-	Changeable only at stop	"CB-38" on page $981$
CB-39	0xCB27	VdcMaxCtrl allowed runtime	0.0 s to 100.0 s	0.0	s	Changeable only at stop	"CB-39" on page   981
CB-40	0xCB28	Upper limit of $\mathrm{V} / \mathrm{f}$ separation voltage	50.0\% to 200.0\%	100.0	\%	Changeable only at stop	"CB-40" on page   981
CB-41	0xCB29	RFG time of $V / f$ separation frequency	0 : RFG time forced to 0   1: Preset RFG time	0	-	Changeable only at stop	"CB-41" on page $981$
CB-42	0xCB2A	Cut-off frequency of V/f oscillation suppression filter	1.0 Hz to 50.0 Hz	8.0	Hz	Changeable at any time	$\begin{aligned} & \text { "CB-42" on page } \\ & 982 \end{aligned}$
CB-43	0xCB2B	Cut-off frequency threshold for $\mathrm{V} / \mathrm{f}$ oscillation suppression	10 Hz to 3000 Hz	200	Hz	Changeable at any time	"CB-43" on page   982
CB-44	0xCB2C	VdcMaxCtrl   feedforward coefficient	0\% to 500\%	0	\%	Changeable at any time	"CB-44" on page 982
CB-50	0xCB32	PMVVC low-speed IF	0 : Disabled   1: Enabled	1	-	Changeable only at stop	"CB-50" on page $982$
CB-51	$0 \times C B 33$	PMVVC low-speed IF current	30 to 250	100	-	Changeable only at stop	"CB-51" on page $983$
CB-52	0xCB34	PMVVC low-speed IF speed switching threshold	2.0\% to $100.0 \%$	10.0	\%	Changeable only at stop	"CB-52" on page 983
CB-53	0xCB35	PMVVC oscillation suppression gain coefficient	0 to 500	100	-	Changeable at any time	"CB-53" on page $983$
CB-54	0xCB36	PMVVC filter time coefficient	0 to 500	100	-	Changeable at any time	"CB-54" on page $983$
CB-55	$0 \times C B 37$	PMVVC energy   conservation   control mode	0 : Fixed straight-line V/f curve   1: Fixed $30 \%$ reactive current   2: MTPA control	2	-	Changeable only at stop	"CB-55" on page 983


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CC-00	0xCC00	Startup mode	0 : Direct start   1: Flying start   2: Pre-excitation start (AC asynchronous motor)   3: SVC quick start	0	-	Changeable at any time	"CC-00" on page 984
CC-01	0xCC01	Speed tracking mode	0 : From the stop frequency   1: From the power frequency   2: From the maximum frequency   3: Reserved   4: Magnetic field directional speed tracking (MD290)	0	-	Changeable at any time	"CC-01" on page 984
CC-02	0xCC02	Speed of speed tracking	1 to 100	20	-	Changeable at any time	"CC-02" on page 984
CC-03	0xCC03	Startup frequency	0.00 Hz to 10.00 Hz	0.00	Hz	Changeable at any time	"CC-03" on page 984
CC-04	0xCC04	Startup frequency hold time	0.0 s to 100.0 s	0.0	s	Changeable only at stop	"CC-04" on page 985
CC-05	0xCC05	DC braking current at startup	0\% to $100 \%$	50	\%	Changeable only at stop	"CC-05" on page 985
CC-06	0xCC06	DC braking time at startup	0.0s to 100.0 s	0.0	s	Changeable only at stop	"CC-06" on page 985
CC-07	0xCC07	Stop mode	0: Decelerate to stop   1: Coast to stop   2: Stop at maximum capability	0	-	Changeable at any time	"CC-07" on page 985
CC-08	0xCC08	Start frequency of DC braking at stop	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"CC-08" on page 985
CC-09	0xCC09	DC braking delay at stop	0.0s to 100.0 s	0.0	s	Changeable at any time	"CC-09" on page 986
CC-10	0xCCOA	DC braking current at stop	0\% to $100 \%$	50	\%	Changeable at any time	"CC-10" on page 986
CC-11	$0 \times C C O B$	DC braking time at stop	0.0 s to 100.0 s	0.0	s	Changeable at any time	"CC-11" on page 986
CC-12	0xCCOC	Speed tracking   sweep current limit closed loop Kp	0 to 1000	500	-	Changeable at any time	$\begin{aligned} & \text { "CC-12" on page } \\ & 986 \end{aligned}$
CC-13	OXCCOD	Speed tracking   sweep current limit closed loop Ki	0 to 1000	800	-	Changeable at any time	$\begin{aligned} & \text { "CC-13" on page } \\ & 986 \end{aligned}$
CC-14	OxCCOE	Speed tracking current	$30 \%$ to 200\%	80	\%	Changeable only at stop	"CC-14" on page 987
CC-15	0xCCOF	Current loop multiple	10\% to 600\%	100	\%	Changeable at any time	"CC-15" on page 987


Para.	Comm   Addr.	Name	Reference	De   fault	Unit	Change	Page
CC-16	0xCC10	Demagnetization time (valid for asynchronous motors)	0.00 s to 5.00 s	0.50	s	Changeable at any time	"CC-16" on page 987
CC-17	$0 \times C C 11$	Overexcitation enable	0 : Disabled   2: Enabled during deceleration   3: Enabled always	0	-	Changeable at any time	"CC-17" on page 987
CC-18	0xCC12	Overexcitation suppression current	0\% to $150 \%$	100	\%	Changeable at any time	$\begin{aligned} & \text { "CC-18" on page } \\ & 988 \end{aligned}$
CC-19	$0 \times \mathrm{CC} 13$	Overexcitation gain	0.01 to 2.50	1.25	-	Changeable at any time	$\begin{aligned} & \text { "CC-19" on page } \\ & 988 \end{aligned}$
CC-20	0xCC14	Parameter autotuning upon startup	Bit00: Synchronous motor pole position autotuning upon startup   0: Disabled   1: Enabled   Bit01: Quick stator resistance auto-tuning upon startup   0: Disabled   1: Enabled   Bit02-Bit03: HFI pole position auto-tuning   0: Disabled   1: Enabled   2: Adaptive   Bit04: IGBT shoot-through self-check upon   startup   0: Disabled   1: Enabled   Bit05: Short-to-ground self-check upon startup (reserved)   0 : Disabled   1: Enabled   Bit06: Phase loss self-check upon startup (reserved)   0 : Disabled   1: Enabled	1	-	Changeable only at stop	"CC-20" on page 988
CC-21	$0 \times C C 15$	Auto-tuning direction	0 to 1	1	-	Changeable only at stop	"CC-21" on page 989
CC-22	$0 \times \mathrm{CC} 16$	Oscillation suppression gain of synchronous motor back EMF autotuning	0.0 to 30.0	3.2	-	Changeable only at stop	"CC-22" on page 989
CC-23	0xCC17	Target speed of rotation autotuning	$30.0 \%$ to $100.0 \%$	70.0	\%	Changeable only at stop	"CC-23" on page 989
CC-24	0xCC18	Target speed 1 of inertia auto-tuning	10.0\% to CC-25	40.0	\%	Changeable only at stop	"CC-24" on page 989


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CC-25	0xCC19	Target speed 2 of inertia auto-tuning	CC-24 to 100.0\%	60.0	\%	Changeable only at stop	$\begin{aligned} & \text { "CC-25" on page } \\ & 989 \end{aligned}$
CC-26	$0 \times C C 1 A$	Overcurrent prevention of mutual inductance saturation curve	0 to 1	1	-	Changeable only at stop	"CC-26" on page 989
CC-27	$0 \times C C 1 B$	Auto-tuning items	Bit00: Speed loop parameter adaptation   0 : Disabled   1: Enabled   Bit01: Current loop parameter adaptation   0 : Disabled   1: Enabled   Bit02: Drive nonlinear auto-tuning   0 : Disabled   1: Enabled   Bit03: Inter-phase deviation coefficient autotuning   0 : Disabled   1: Enabled   Bit04: Auto-tuning of initial pole position of synchronous motor   0 : Disabled   1: Enabled   Bit05: Auto-tuning of D - and Q -axis inductance   model of synchronous motor   0 : Disabled   1: Enabled   Bit06: System inertia auto-tuning   0: Disabled   1: Enabled   Bit07: HFI pole position auto-tuning   0: Disabled   1: Enabled	117	-	Changeable only at stop	$\begin{aligned} & \text { "CC-27" on page } \\ & 990 \end{aligned}$
CC-28	$0 \times C C 1 C$	OFF3 stop mode	0: Quick stop   1: Stop at maximum capability	0	-	Changeable only at stop	"CC-28" on page 990
CC-29	0xCC1D	Stop mode during running	0: OFF1 stop mode   1: OFF2 stop mode   2: OFF3 stop mode	1	-	Changeable only at stop	$\begin{aligned} & \text { "CC-29" on page } \\ & 991 \end{aligned}$
CC-30	0xCC1E	Stop mode for torque control	0 : Coast to stop forcibly   1: Switch to speed control mode and then stop   2: Maintain torque control mode until zero speed and then block	1	-	Changeable only at stop	"CC-30" on page 991
CC-32	0xCC20	Proportional gain adjustment coefficient	0.1 to 2.0	1.0	-	Changeable at any time	"CC-32" on page 991
CC-33	$0 \times C C 21$	Integral gain adjustment coefficient	0.1 to 2.0	1.0	-	Changeable at any time	"CC-33" on page 991


Para.	Comm.   Addr.	Name		De   fault	Unit	Change	Page


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CC-46	0xCC2E	Ramp (FRG) selection bit0	0: 0 1: 1 2: Terminal function input 3: DI1 4: DI2 5: DI3 6: DI4 7: DI5 8: DI6 9: DI7 10: DI8 11: DI9 12: DI10 13: DI11 14: DI12 15: DI13 16: DI14 17: DI15 18: DI16 Others: B connector	0	-	Changeable at any time	"CC-46" on page 994
CC-47	0xCC2F	Ramp (FRG) selection bit1	Same as CC-46	0	-	Changeable at any time	$\begin{aligned} & \text { "CC-47" on page } \\ & 994 \end{aligned}$
CC-50	0xCC32	Motor overload protection	0 : Disabled   1: Enabled	1	-	Changeable at any time	$\begin{aligned} & \text { "CC-50" on page } \\ & 995 \end{aligned}$
CC-51	0xCC33	Motor overload protection gain	0.20 to 10.00	1.00	-	Changeable at any time	$\begin{aligned} & \text { "CC-51" on page } \\ & 995 \end{aligned}$
CC-52	0xCC34	Motor overload prewarning coefficient	50\% to $100 \%$	80	\%	Changeable at any time	$\begin{aligned} & \text { "CC-52" on page } \\ & 995 \end{aligned}$
CC-53	0xCC35	Overvoltage stall suppression gain	1 to 100	30	-	Changeable at any time	$\begin{aligned} & \text { "CC-53" on page } \\ & 995 \end{aligned}$
CC-54	0xCC36	Overvoltage stall protection voltage	330.0 V to 800.0 V	770.0	V	Changeable at any time	$\begin{aligned} & \text { "CC-54" on page } \\ & 995 \end{aligned}$
CC-55	0xCC37	Input phase loss/   Contactor pickup protection	Ones: Input phase loss protection   0: Disabled   1: Protection enabled when both software and hardware input phase loss conditions are met   2: Protection enabled when software input phase loss conditions are met   3: Protection enabled when hardware input phase loss conditions are met   Tens: Contactor pickup protection   0: Disabled   1: Enabled	11	-	Changeable at any time	$\begin{aligned} & \text { "CC-55" on page } \\ & 996 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CC-56	$0 \times C C 38$	Output phase loss protection	Ones: Output phase loss protection upon power-on   0 : Disabled   1: Enabled   Tens: Output phase loss protection before running   0: Disabled   1: Enabled	1	-	Changeable at any time	"CC-56" on page 996
CC-57	0xCC39	Power dip ridethrough	0 : Disabled   1: Decelerate   2: Decelerate to stop   3: Suppress voltage dip	0	-	Changeable only at stop	"CC-57" on page 996
CC-58	$0 \times C C 3 A$	Voltage threshold for disabling power dip ride-through	$80 \%$ to $100 \%$	85	\%	Changeable only at stop	"CC-58" on page 996
CC-59	$0 \times C C 3 B$	Delay of voltage recovery from power dip	0.0 s to 100.0 s	0.5	s	Changeable only at stop	"CC-59" on page 997
CC-60	0xCC3C	Voltage threshold for enabling power dip ride-through	60\% to $100 \%$	80	\%	Changeable only at stop	"CC-60" on page 997
CC-61	0xCC3D	Protection upon load loss	0: Disabled   1: Enabled	0	-	Changeable at any time	"CC-61" on page 997
CC-62	0xCC3E	Load loss detection level	0.0\% to +100.0\%	10.0	\%	Changeable at any time	"CC-62" on page 997
CC-63	0xCC3F	Load loss detection time	0.0s to 60.0s	1.0	s	Changeable at any time	"CC-63" on page 997
CC-64	0xCC40	Overspeed detection level	0.0\% to 50.0\%	20.0	\%	Changeable at any time	"CC-64" on page 998
CC-65	$0 \times C C 41$	Overspeed detection time	0.0 s to 60.0 s	1.0	s	Changeable at any time	"CC-65" on page 998
CC-66	$0 \times C C 42$	Detection level of excessive speed deviation	0.0\% to 50.0\%	20.0	\%	Changeable at any time	"CC-66" on page 998
CC-67	$0 \times C C 43$	Detection time of excessive speed deviation	0.0s to 60.0s	5.0	s	Changeable at any time	"CC-67" on page 998
CC-68	0xCC44	Power dip ridethrough gain Kp	1 to 100	40	-	Changeable at any time	"CC-68" on page 998
CC-69	$0 \times C C 45$	Power dip ridethrough integral coefficient Ki	1 to 100	30	-	Changeable at any time	"CC-69" on page 999
CC-70	0xCC46	Deceleration time of power dip ridethrough	0.0s to 300.0s	20.0	s	Changeable at any time	"CC-70" on page 999


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
CC-71	0xCC47	Voltage dip suppression time	0.1 s to 600.0 s	0.5	s	Changeable at any time	"CC-71" on page 999
CC-72	0xCC48	Motor protection	Bit00: Motor overload determination (reserved)   Bit01: Motor overheat detection (reserved)   Bit02: PG fault detection (reserved)   Bit03: Current control error detection   Bit04: Motor stall error detection   Bit05: Locked-rotor detection   Bit06: Synchronous motor demagnetization protection   Bit07: Protection against locked-rotor in SVC speed open-loop control   Bit08: Reserved   Bit09: Parameter setting error	537	-	Changeable at any time	$\begin{aligned} & \text { "CC-72" on page } \\ & 999 \end{aligned}$
CC-73	0xCC49	Locked-rotor time	0.0 s to 65.0s	2.0	s	Changeable at any time	"CC-73" on page 1000
CC-74	0xCC4A	Locked-rotor frequency	0.0\% to 600.0\%	6.0	\%	Changeable at any time	"CC-74" on page 1000
CC-75	$0 \times C C 4 B$	Motor stall detection time	0.0 s to 10.0 s	0.5	s	Changeable at any time	"CC-75" on page 1000
CC-76	0xCC4C	Stall detection threshold	0.0\% to +100.0\%	30.0	\%	Changeable at any time	"CC-76" on page 1000
CC-77	0xCC4D	Current control exception detection time	0.00 s to 1.00 s	0.05	s	Changeable at any time	"CC-77" on page 1000
CC-78	0xCC4E	Current control exception detection threshold	0.0\% to 200.0\%	25.0	\%	Changeable at any time	"CC-78" on page 1001
CC-79	0xCC4F	Synchronous motor overcurrent threshold	0.0\% to 500.0\%	300.0	\%	Changeable at any time	"CC-79" on page 1001
CC-81	0xCC51	Speed deviation detection	0 to 1	1	-	Changeable at any time	"CC-81" on page 1001
CC-82	0xCC52	Skip frequency 1	0.00 Hz to F0-10	0.00	Hz	Changeable at any time	"CC-82" on page 1001
CC-83	0xCC53	Skip frequency 2	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"CC-83" on page 1001
CC-84	0xCC54	Skip frequency 3	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"CC-84" on page 1001
CC-85	0xCC55	Skip frequency 4	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"CC-85" on page 1002
CC-86	0xCC56	Skip frequency band	0.00 Hz to FO-10	0.00	Hz	Changeable at any time	"CC-86" on page 1002


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CC-87	0xCC57	Source of frequency upper limit	0: F0-12   1: Al1   2: AI2   3: Al3   4: Pulse reference   5: Communication   Others: F connector	0	-	Changeable only at stop	"CC-87" on page 1002
CC-88	0xCC58	Frequency upper limit	CC-90 to F0-10	50.00	Hz	Changeable at any time	"CC-88" on page 1002
CC-89	0xCC59	Frequency upper limit offset	0.00 Hz to F0-10 (maximum frequency)	0.00	Hz	Changeable at any time	"CC-89" on page 1003
CC-90	$0 \times C C 5 A$	Frequency lower limit	0.00 Hz to CC-88	0.00	Hz	Changeable at any time	"CC-90" on page 1003
CC-91	$0 \times C C 5 B$	Speed/Torque control mode	0: Speed control   1: Torque control	0	-	Changeable at any time	"CC-91" on page 1003
CD-00	0xCD00	Asynchronous motor FVC model switchover frequency	0\% to $1000 \%$	20	\%	Changeable only at stop	"CD-00" on page 1003
CD-01	0xCD01	Asynchronous motor FVC model switchover hysteresis frequency	10\% to 50\%	20	\%	Changeable only at stop	"CD-01" on page $1003$
CD-02	0xCD02	Asynchronous   motor FVC observer   filter time	5 ms to 100 ms	15	ms	Changeable only at stop	"CD-02" on page 1004
CD-03	0xCD03	Asynchronous   motor FVC current   model mode	0 to 1	0	-	Changeable only at stop	"CD-03" on page   1004
CD-04	0xCD04	Asynchronous motor FVC preexcitation output observation angle mode	0 to 1	0	-	Changeable only at stop	"CD-04" on page $1004$
CD-05	0xCD05	Asynchronous motor SVC model switchover frequency	10\% to 20\%	15	\%	Changeable only at stop	"CD-05" on page 1004
CD-06	0xCD06	Asynchronous   motor SVC observer   filter time	5 ms to 50 ms	10	ms	Changeable at any time	"CD-06" on page $1004$
CD-07	0xCD07	Asynchronous   motor SVC observer   gain 1	10\% to 500\%	100	\%	Changeable at any time	"CD-07" on page 1005


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CD-08	0xCD08	Asynchronous   motor SVC observer   gain 2	10\% to $100 \%$	20	\%	Changeable at any time	"CD-08" on page   1005
CD-09	0xCD09	Asynchronous   motor SVC observer   mode	0 to 3	0	-	Changeable only at stop	"CD-09" on page $1005$
CD-10	0xCDOA	Asynchronous motor SVC preexcitation mode	0 to 1	0	-	Changeable only at stop	"CD-10" on page $1005$
CD-11	0xCDOB	Asynchronous   motor SVC speed   tracking mode	0 to 1	0	-	Changeable only at stop	"CD-11" on page $1005$
CD-14	0xCDOE	Synchronous motor   1 model control	Bit00: Low speed processing   Bit01: Low speed processing 1   Bit02: Online auto-tuning of resistance   Bit03: Online auto-tuning of back EMF   Bit04: KS	5	-	Changeable at any time	$\begin{aligned} & \text { "CD-14" on page } \\ & 1006 \end{aligned}$
CD-15	0xCDOF	Synchronous motor model K1	10 to 3000	200	-	Changeable at any time	"CD-15" on page $1006$
CD-16	0xCD10	Synchronous motor model K1Max	100 to 6000	3000	-	Changeable at any time	"CD-16" on page $1006$
CD-17	0xCD11	Synchronous motor model KsMin	0.0 to 4.0	0.3	-	Changeable at any time	$\begin{aligned} & \text { "CD-17" on page } \\ & 1006 \end{aligned}$
CD-18	0xCD12	Synchronous motor model Kspeed	50 to 2000	400	-	Changeable at any time	$\begin{aligned} & \text { "CD-18" on page } \\ & 1006 \end{aligned}$
CD-19	$0 \times C D 13$	Synchronous motor frequency filter time constant	2 ms to 100 ms	10	ms	Changeable at any time	"CD-19" on page 1007
CD-20	0xCD14	Frequency upper limit of synchronous motor Rs online autotuning	1.0\% to 20.0\%	3.5	\%	Changeable at any time	$\begin{aligned} & \text { "CD-20" on page } \\ & 1007 \end{aligned}$
CD-21	0xCD15	Synchronous motor model Kr	0 to 50	10	-	Changeable at any time	$\begin{aligned} & \text { "CD-21" on page } \\ & 1007 \end{aligned}$
CD-22	0xCD16	Synchronous motor model Kr1	0 to 50	5	-	Changeable at any time	"CD-22" on page $1007$
CD-23	0xCD17	Synchronous motor low-speed D axis injection current	0\% to $100 \%$	20	\%	Changeable at any time	"CD-23" on page $1007$
CD-24	0xCD18	Synchronous motor model LowFreqTime1	0 to 500	50	-	Changeable at any time	"CD-24" on page 1008


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CD-27	$0 \times C D 1 B$	Frequency lower limit of back EMF online auto-tuning	10\% to $100 \%$	25	\%	Changeable at any time	"CD-27" on page 1008
CD-28	0xCD1C	Synchronous motor model LowFreq	0.0\% to 2.0\%	0.3	\%	Changeable at any time	"CD-28" on page 1008
CD-29	0xCD1D	Synchronous motor model LowFreqTime	0 to 100	10	-	Changeable at any time	"CD-29" on page 1008
CD-30	0xCD1E	Percentage of pole auto-tuning current	50\% to 200\%	100	\%	Changeable at any time	"CD-30" on page 1008
CD-31	0xCD1F	Percentage of high frequency response current	0\% to $100 \%$	25	\%	Changeable at any time	"CD-31" on page 1009
CD-32	0xCD20	Percentage of HFI and SVC switching frequency	0\% to 30\%	10	\%	Changeable at any time	"CD-32" on page $1009$
CD-33	0xCD21	Observer parameter	10 to 200	100	-	Changeable at any time	"CD-33" on page 1009
CD-34	0xCD22	Speed filter cut-off frequency	1 Hz to 200 Hz	10	Hz	Changeable at any time	"CD-34" on page 1009
CD-35	0xCD23	Carrier frequency during NS autotuning	2.00 Hz to 16.00 Hz	8.00	Hz	Changeable at any time	"CD-35" on page 1009
CD-36	0xCD24	Automatic   calculation of NS   auto-tuning voltage	0 : Disabled   1: Enabled	1	-	Changeable at any time	"CD-36" on page $1010$
CD-37	0xCD25	Percentage of NS auto-tuning voltage set manually	0\% to 100\%	10	\%	Changeable at any time	"CD-37" on page 1010
CD-38	0xCD26	Duration of HFI stage 1	50 ms to 500 ms	150	ms	Changeable at any time	"CD-38" on page $1010$
CD-40	0xCD28	Speed loop proportional gain 1	1 to 100	30	-	Changeable at any time	"CD-40" on page $1010$
CD-41	0xCD29	Speed loop integral time 1	0.01s to 10.00 s	0.50	S	Changeable at any time	"CD-41" on page $1010$
CD-42	0xCD2A	Switchover frequency 1	0.00 Hz to CD-45	5.00	Hz	Changeable at any time	"CD-42" on page $1011$
CD-43	0xCD2B	Speed loop proportional gain 2	1 to 100	20	-	Changeable at any time	"CD-43" on page $1011$
CD-44	0xCD2C	Speed loop integral time 2	0.01 s to 10.00 s	1.00	s	Changeable at any time	"CD-44" on page 1011
CD-45	0xCD2D	Switchover frequency 2	CD-42 to F0-10	10.00	Hz	Changeable at any time	"CD-45" on page 1011


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CD-46	0xCD2E	Vector control slip gain	50\% to 200\%	100	\%	Changeable at any time	"CD-46" on page 1011
CD-47	0xCD2F	Speed feedback   filter time in SVC   mode	0.000 s to 0.100 s	0.015	s	Changeable at any time	"CD-47" on page 1011
CD-49	0xCD31	Torque upper limit source in speed control mode (motoring)	0: Digital setting (F2-10)   1: Al1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: MIN (AI1, AI2)   7: MAX (AI1, AI2)   Others: F connector	0	-	Changeable at any time	"CD-49" on page $1012$
CD-50	0xCD32	Torque upper limit in speed control mode	0.0\% to 200.0\%	150.0	\%	Changeable at any time	"CD-50" on page   1012
CD-51	0xCD33	Torque upper limit source in speed control mode (generating)	0: Digital setting (F2-10)   1: Al1   2: Al2   3: Al3   4: Pulse reference (DI5)   5: Communication   6: MIN (AI1, AI2)   7: MAX (AI1, AI2)   8: Digital setting (F2-12)   Others: F connector	0	-	Changeable at any time	"CD-51" on page $1012$
CD-52	0xCD34	Torque upper limit in speed control mode (generating)	0.0\% to 200.0\%	150.0	\%	Changeable at any time	"CD-52" on page $1013$
CD-53	0xCD35	Field weakening mode	0 : No field weakening   1: Auto adjustment   2: Calculation+Auto adjustment	1	-	Changeable only at stop	"CD-53" on page $1013$
CD-54	0xCD36	Field weakening gain	1 to 50	5	-	Changeable at any time	"CD-54" on page $1013$
CD-57	0xCD39	Generating power limiting	0 : Disabled   1: Enabled in the whole process   2: Enabled at constant speed   3: Enabled during deceleration	0	-	Changeable at any time	"CD-57" on page 1014
CD-58	0xCD3A	Generating power upper limit	0.0\% to 200.0\%	20.0	\%	Changeable at any time	"CD-58" on page 1014
CD-59	$0 \times C D 3 B$	Motor 4 control mode	$\begin{aligned} & \text { 0: SVC } \\ & \text { 1: FVC } \\ & \text { 2: V/f } \end{aligned}$	2	-	Changeable only at stop	"CD-59" on page $1014$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CD-60	0xCD3C	Initial position angle detection current of synchronous motor	50 to 180	80	-	Changeable only at stop	"CD-60" on page $1014$
CD-61	0xCD3D	Initial position angle detection of synchronous motor	0 : Detected upon running   1: Not detected   2: Detected upon initial running after power-on	0	-	Changeable at any time	"CD-61" on page 1015
CD-63	0xCD3F	Salient pole rate adjustment gain of synchronous motor	0.20 to 3.00	1.00	-	Changeable at any time	"CD-63" on page   1015
CD-64	0xCD40	Maximum torque-   to-current ratio   control of   synchronous motor	0: Disabled   1: Enabled	1	-	Changeable at any time	$\begin{aligned} & \text { "CD-64" on page } \\ & 1015 \end{aligned}$
CD-65	0xCD41	Z signal correction	0: Disabled   1: Enabled	1	-	Changeable at any time	$\begin{aligned} & \text { "CD-65" on page } \\ & 1015 \end{aligned}$
CD-67	0xCD43	Low speed carrier frequency	0.8 kHz to F0-15	2.0	kHz	Changeable at any time	"CD-67" on page 1016
CD-68	0xCD44	Position lock	0 to 1	0	-	Changeable at any time	"CD-68" on page $1016$
CD-69	0xCD45	Switchover frequency	0.00 Hz to CD-42	0.30	Hz	Changeable at any time	$\begin{aligned} & \text { "CD-69" on page } \\ & 1016 \end{aligned}$
CD-70	0xCD46	Position lock speed loop proportional gain	1 to 100	10	-	Changeable at any time	"CD-70" on page   1016
CD-71	0xCD47	Position lock speed loop integral time	0.01s to 10.00 s	0.50	s	Changeable at any time	$\begin{aligned} & \text { "CD-71" on page } \\ & 1016 \end{aligned}$
CD-74	0xCD4A	Auto-tuning free mode	0: Disabled   1: Auto-tuning upon initial running after poweron   2: Auto-tuning upon running	0	-	Changeable at any time	$\begin{aligned} & \text { "CD-74" on page } \\ & 1017 \end{aligned}$
CD-76	0xCD4C	Initial position compensation angle	0.0 to 359.9	0.0	-	Changeable at any time	$\begin{aligned} & \text { "CD-76" on page } \\ & 1017 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CD-80	0xCD50	Speed loop command word	Bit00: Speed loop   0: Disabled   1: Enabled   Bit01: Integration mode   0 : Conventional integration   1: Position integration   Bit02: Acceleration torque   0 : Disabled   1: Enabled   Bit03-Bit04: Acceleration source   0 : Function transfer torque   1: Automatic calculation   2: Function transfer acceleration   Bit05: Anti-load disturbance   0: Disabled   1: Enabled	11	-	Changeable at any time	"CD-80" on page 1017
CD-81	0xCD51	Locked-rotor fast integral cancel coefficient	0.0\% to +100.0\%	0.0	\%	Changeable at any time	"CD-81" on page 1017
CD-82	0xCD52	Integral torque	$-100 \%$ to $+100.0 \%$	0.0	\%	Changeable at any time	"CD-82" on page 1018
CD-83	0xCD53	Speed controller frequency window size	0.00 Hz to 10.00 Hz	0.00	Hz	Changeable only at stop	"CD-83" on page $1018$
CD-84	0xCD54	Current filter time for torque reference	0.0 ms to 100.0 ms	0.0	ms	Changeable only at stop	"CD-84" on page $1018$
CD-85	0xCD55	Acceleration torque	0 : Inactive   1: Al1   2: AI2   3: AI3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"CD-85" on page 1018
CD-87	0xCD57	Reference model bandwidth	0.00 Hz to 300.00 Hz	0.00	Hz	Changeable at any time	"CD-87" on page $1019$
CD-88	0xCD58	Torque feedforward coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"CD-88" on page   1019
CD-89	0xCD59	Vector control reference frequency filter time	0.0 ms to 100.0 ms	0.0	ms	Changeable only at stop	"CD-89" on page $1019$
CD-90	0xCD5A	Vector control feedback frequency filter time	0.0 ms to 100.0 ms	0.0	ms	Changeable only at stop	"CD-90" on page $1019$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CD-91	0xCD5B	Load observation bandwidth	0.00 Hz to 300.00 Hz	0.00	Hz	Changeable at any time	"CD-91" on page $1020$
CD-92	0xCD5C	Load observation coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"CD-92" on page $1020$
CD-93	0xCD5D	Pseudo integral coefficient	0.000 to 10.000	1.000	-	Changeable at any time	"CD-93" on page $1020$
CD-94	0xCD5E	Torque coefficient enable	0: Disabled   1: Enabled	0	-	Changeable at any time	"CD-94" on page 1020
CD-96	0xCD60	Center frequency of notch filter 1	0.0 to 4000.0	4000.0	-	Changeable at any time	"CD-96" on page $1020$
CD-97	0xCD61	Center frequency of notch filter 2	0.0 to 4000.0	4000.0	-	Changeable at any time	"CD-97" on page $1021$
CD-98	0xCD62	Integral setting control word	0 : Disabled   1: Enabled   Others: B connector	0	-	Changeable at any time	"CD-98" on page $1021$
CD-99	0xCD63	Integral reference source	0 : Digital setting   1: AI1   2: Al2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"CD-99" on page $1021$
CE-00	0xCE00	Externally transferred acceleration	0 : Inactive   1: AI1   2: AI2   3: Al3   4: Pulse reference   5: Communication   6: Multi-reference   7: Motor-driven potentiometer   8: PID   Others: F connector	0	-	Changeable at any time	"CE-00" on page   1021
CE-03	0xCE03	Overturning torque limiting coefficient	0.0\% to 400.0\%	100.0	\%	Changeable at any time	"CE-03" on page $1022$
CE-04	0xCE04	Motoring power limiting coefficient	0.0\% to 400.0\%	400.0	\%	Changeable at any time	"CE-04" on page 1022
CE-05	0xCE05	Generating power limiting coefficient	0.0\% to 400.0\%	400.0	\%	Changeable at any time	"CE-05" on page $1022$
CE-06	0xCE06	Overspeed limiting enable	0 to 1	1	-	Changeable at any time	"CE-06" on page $1022$
CE-07	0xCE07	Sine wave frequency of bandwidth test	0 Hz to 1000 Hz	0	Hz	Changeable at any time	"CE-07" on page   1023


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
CE-08	0xCE08	Sine wave amplitude of bandwidth test	0\% to 100\%	0	\%	Changeable at any time	"CE-08" on page   1023
CE-09	0xCE09	Bandwidth test enable	0 to 4	0	-	Changeable at any time	"CE-09" on page   1023
CE-11	0xCEOB	Speed loop   parameter   calculation mode	0 : New solution   1: Compatible solution	1	-	Changeable only at stop	"CE-11" on page $1023$
CE-12	OXCEOC	Speed loop   proportional gain in   FVC mode	0.00 Hz to 100.00 Hz	8.00	Hz	Changeable at any time	"CE-12" on page 1023
CE-13	0xCEOD	Speed loop integral time in FVC mode	0.000 s to 20.000 s	0.080	s	Changeable at any time	"CE-13" on page $1024$
CE-14	0xCEOE	Speed loop   proportional gain in   SVC mode	0.00 Hz to 100.00 Hz	5.00	Hz	Changeable at any time	"CE-14" on page $1024$
CE-15	0xCEOF	Speed loop integral time in SVC mode	0.000s to 20.000s	0.127	s	Changeable at any time	"CE-15" on page $1024$
CE-16	0xCE10	Low frequency proportional correction coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"CE-16" on page $1024$
CE-17	0xCE11	Low frequency integral correction coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"CE-17" on page   1024
CE-18	0xCE12	Speed loop adaption factor	0.000 to 10.000	0.200	-	Changeable at any time	"CE-18" on page $1025$
CE-19	0xCE13	Speed loop   adaption   switchover lower   limit	0.000 to 10.000	0.400	-	Changeable at any time	$\begin{aligned} & \text { "CE-19" on page } \\ & 1025 \end{aligned}$
CE-20	0xCE14	Speed loop   adaption   switchover upper   limit	0.000 to 10.000	1.000	-	Changeable at any time	"CE-20" on page $1025$
CE-21	0xCE15	Speed loop   adaption correction upper limit	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"CE-21" on page 1025
CE-22	0xCE16	Speed loop   adaption correction   lower limit	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	"CE-22" on page 1025
CE-23	0xCE17	Flux adaptation enable	0 to 1	0	-	Changeable at any time	"CE-23" on page $1026$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CE-24	0xCE18	Overspeed controller correction coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	$\begin{aligned} & \text { "CE-24" on page } \\ & 1026 \end{aligned}$
CE-25	0xCE19	VDC control command word	Bit00: VdcMin   0: Disabled   1: Enabled   Bit01: VdcMax   0: Disabled   1: Enabled   Bit02: Automatic calculation of VDC trigger voltage   0: Disabled   1: Enabled   Bit03: VDC control integral action   0 : Disabled   1: Enabled	0	-	Changeable at any time	"CE-25" on page $1026$
CE-26	0xCE1A	Bus capacitance ratio	$50.0 \%$ to $1000.0 \%$	100.0	\%	Changeable at any time	"CE-26" on page $1026$
CE-27	$0 \times C E 1 B$	Undervoltage   suppression exit   hysteresis   frequency	0.00 Hz to 10.00 Hz	3.00	Hz	Changeable at any time	"CE-27" on page $1027$
CE-28	0xCE1C	Minimum VDC   failure speed   threshold	0.00 Hz to 20.00 Hz	2.00	Hz	Changeable at any time	$\begin{aligned} & \text { "CE-28" on page } \\ & 1027 \end{aligned}$
CE-29	0xCE1D	Dynamic   adjustment coefficient	0.0\% to 1000.0\%	100.0	\%	Changeable at any time	$\begin{aligned} & \text { "CE-29" on page } \\ & 1027 \end{aligned}$
CE-30	0xCE1E	Minimum VDC activation voltage	320.0 V to 540.0 V	430.0	V	Changeable at any time	$\begin{aligned} & \text { "CE-30" on page } \\ & 1027 \end{aligned}$
CE-31	0xCE1F	Maximum VDC activation voltage	650.0 V to 800.0 V	770.0	V	Changeable at any time	"CE-31" on page $1027$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
CE-32	0xCE20	Flux linkage control command word	Bit00: Output voltage limit calculation filtering mode   0 : Symmetric filtering   1: Asymmetric filtering   Bit01: Asynchronous motor inverse proportion curve calculation   0 : The inverse proportional synchronization frequency decreases.   1: The inverse proportional speed decreases.   Bit02: Flux linkage feedforward calculation by using inverse proportional speed   0 : Disabled   1: Enabled   Bit03: Reserved   Bit04: Reserved   Bit05: Field weakening adjustment   0 : Disabled   1: Enabled   Bit06: Flux linkage derivative feedforward   0 : Disabled   1: Enabled   Bit07: Energy conservation control   0: Disabled   1: Enabled   Bit08: Asynchronous motor flux closed loop   0 : Disabled   1: Enabled   Bit09: Reserved   Bit10: Reserved   Bit11: Asynchronous motor pre-excitation mode   0: Pre-excitation based on time   1: Pre-excitation based on current   Bit12: Asynchronous motor pre-excitation current   0 : Reference current   1: Maximum current allowed by the drive	2357		Changeable at any time	"CE-32" on page $1027$
CE-33	0xCE21	Output voltage upper limit margin for field weakening adjustment	1\% to 50\%	5	\%	Changeable at any time	"CE-33" on page $1029$
CE-34	0xCE22	Output voltage upper limit margin for auto adjustment of field weakening	1\% to 20\%	3	\%	Changeable at any time	"CE-34" on page $1029$
CE-35	0xCE23	Filter time for calculating maximum output voltage	0 ms to 3000 ms	30	ms	Changeable at any time	"CE-35" on page   1029


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
CE-36	0xCE24	Rated flux adjustment coefficient for calculation	0.5 to 2.0	1.0	-	Changeable at any time	"CE-36" on page $1029$
CE-37	0xCE25	Field weakening frequency adjustment coefficient for calculation	0.8 to 1.2	1.0	-	Changeable at any time	"CE-37" on page $1030$
CE-38	0xCE26	Slip filter time for calculating field weakening frequency	0 ms to 3000 ms	62	ms	Changeable at any time	$\begin{aligned} & \text { "CE-38" on page } \\ & 1030 \end{aligned}$
CE-39	0xCE27	Feedback speed filtering	0 ms to 8000 ms	50	ms	Changeable at any time	$\begin{aligned} & \text { "CE-39" on page } \\ & 1030 \end{aligned}$
CE-40	0xCE28	Flux linkage rising filter time	0 ms to 8000 ms	20	ms	Changeable at any time	$\begin{aligned} & \text { "CE-40" on page } \\ & 1030 \end{aligned}$
CE-42	0xCE2A	Feedback voltage filter time	0 ms to 3000 ms	5	ms	Changeable at any time	"CE-42" on page 1031
CE-43	0xCE2B	Maximum demagnetization current of synchronous motor	0\% to 500\%	300	\%	Changeable at any time	"CE-43" on page $1031$
CE-44	0xCE2C	Voltage outer loop lower limit coefficient	0 to 500	50	-	Changeable at any time	"CE-44" on page 1031
CE-45	0xCE2D	Flux linkage derivative feedforward coefficient	0.0 to 1.5	1.0	-	Changeable at any time	$\begin{aligned} & \text { "CE-45" on page } \\ & 1031 \end{aligned}$
CE-46	0xCE2E	Flux linkage derivative feedforward filter time	0 ms to 3000 ms	6	ms	Changeable at any time	$\begin{aligned} & \text { "CE-46" on page } \\ & 1032 \end{aligned}$
CE-47	0xCE2F	Torque current rising filter time under energy conservation control	0 ms to 3000 ms	50	ms	Changeable at any time	"CE-47" on page $1032$
CE-48	0xCE30	Torque current falling filter time under energy conservation control	0 ms to 3000 ms	100	ms	Changeable at any time	$\begin{aligned} & \text { "CE-48" on page } \\ & 1032 \end{aligned}$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
CE-49	0xCE31	Flux linkage lower limit coefficient under energy conservation control	0.00 to 0.50	0.10	-	Changeable at any time	"CE-49" on page $1032$
CE-51	0xCE33	Pre-excitation current	1\% to 200\%	100	\%	Changeable at any time	"CE-51" on page $1032$
CE-52	0xCE34	Pre-excitation time	1 ms to 30000 ms	1000	ms	Changeable at any time	"CE-52" on page $1033$
CE-53	0xCE35	Flux linkage closedloop bandwidth frequency	0.0 Hz to 100.0 Hz	2.0	Hz	Changeable at any time	"CE-53" on page 1033
CE-54	0xCE36	Feedback flux linkage filter time coefficient	0 to 200	4	-	Changeable at any time	"CE-54" on page $1033$
CE-55	0xCE37	Static output flux linkage filter time	0 ms to 5000 ms	10	ms	Changeable at any time	"CE-55" on page 1033
CE-56	0xCE38	Current loop mode	0 : ImCsr2 mode   1: Complex vector mode   2: 880 mode   3: No field weakening	1	-	Changeable only at stop	"CE-56" on page $1034$
CE-57	0xCE39	PI regulator proportional gain adaptation with load	0 : Disabled   1: Enabled	0	-	Changeable only at stop	"CE-57" on page 1034
CE-58	0xCE3A	Current loop damping	0.2 to 5.0	0.8	-	Changeable at any time	"CE-58" on page $1034$
CE-59	0xCE3B	Low-speed current loop Kp adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"CE-59" on page 1034
CE-60	0xCE3C	High-speed current loop Kp adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"CE-60" on page 1034
CE-61	0xCE3D	Low-speed current loop Ki adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"CE-61" on page $1035$
CE-62	0xCE3E	High-speed current loop Ki adjustment	0.1 to 10.0	2.0	-	Changeable at any time	"CE-62" on page $1035$
CE-63	0xCE3F	D-axis current loop complex vector adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"CE-63" on page $1035$
CE-64	0xCE40	Q-axis current loop complex vector adjustment	0.1 to 10.0	1.0	-	Changeable at any time	$\begin{aligned} & \text { "CE-64" on page } \\ & 1035 \end{aligned}$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
CE-65	0xCE41	Complex vector hysteresis frequency lower limit as a percentage of rated frequency	0\% to CE-66	0	\%	Changeable at any time	"CE-65" on page $1036$
CE-66	0xCE42	Complex vector hysteresis frequency upper limit as a percentage of rated frequency	CE-65 to 150\%	0	\%	Changeable at any time	"CE-66" on page $1036$
CE-67	0xCE43	ImCsr2 hysteresis switchover voltage upper limit as a percentage of saturation voltage	CE-68 to 95\%	89	\%	Changeable at any time	"CE-67" on page $1036$
CE-68	0xCE44	ImCsr2 hysteresis switchover voltage lower limit as a percentage of saturation voltage	60\% to CE-67	79	\%	Changeable at any time	$\begin{aligned} & \text { "CE-68" on page } \\ & 1036 \end{aligned}$
CE-69	0xCE45	ImCsr2 hysteresis   switchover   frequency   hysteresis range as   a percentage of   rated frequency	1\% to 30\%	10	\%	Changeable at any time	"CE-69" on page 1036
CE-70	0xCE46	ImCsr2 hysteresis switchover frequency lower limit (below which the hysteresis condition does not take effect) as a percentage of the rated frequency	40\% to 80\%	60	\%	Changeable at any time	"CE-70" on page $1037$
CE-71	0xCE47	ImCsr2 current loop Kss adjustment	0.1 to 10.0	1.0	-	Changeable at any time	"CE-71" on page 1037
CE-72	0xCE48	Proportional gain adjustment coefficient corresponding to the maximum torque when proportional gain is adjusted with load	0.1 to 1.0	0.5	-	Changeable at any time	"CE-72" on page $1037$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CE-73	0xCE49	Torque upper limit setpoint as a percentage of rated torque when proportional gain is adjusted with load	CE-74 to 300\%	200	\%	Changeable at any time	"CE-73" on page 1037
CE-74	0xCE4A	Torque lower limit setpoint as a percentage of rated torque when proportional gain is adjusted with load	10\% to CE-73	100	\%	Changeable at any time	"CE-74" on page   1037
CE-75	0xCE4B	Derivative feedforward adjustment	0.0 to 1.0	0.0	-	Changeable at any time	$\begin{aligned} & \text { "CE-75" on page } \\ & 1038 \end{aligned}$
CE-76	0xCE4C	Decoupling control start frequency as a percentage of rated frequency	20\% to $150 \%$	40	\%	Changeable at any time	$\begin{aligned} & \text { "CE-76" on page } \\ & 1038 \end{aligned}$
CE-77	0xCE4D	Decoupling control filter time adjustment coefficient	0.1 to 3.0	1.0	-	Changeable at any time	"CE-77" on page $1038$
CE-78	0xCE4E	Decoupling control output adjustment coefficient	0.0 to 1.0	1.0	-	Changeable at any time	"CE-78" on page   1038
CE-79	0xCE4F	CPC feedforward enable	0: Disabled   1: Enabled	0	-	Changeable at any time	$\begin{aligned} & \text { "CE-79" on page } \\ & 1038 \end{aligned}$
CE-80	0xCE50	Current loop auxiliary command word	Bit00: Complex vector angle limiting   0 : Disabled   1: Enabled   Bit01: Voltage angle limiting   0: Program internal limiting   1: Parameter setting   Bit02: 0 by default   0 : No lower limit on the excitation current is imposed during the dynamic process.   1: A lower limit on the excitation current is imposed during the dynamic process in ImCsr2 mode.   Bit03-Bit15: Reserved (0 by default)	0	-	Changeable at any time	"CE-80" on page $1039$
CE-81	0xCE51	Voltage angle upper limit	$90^{\circ}$ to $180^{\circ}$	150	-	Changeable at any time	$\begin{aligned} & \text { "CE-81" on page } \\ & 1039 \end{aligned}$
CE-82	0xCE52	Voltage angle lower limit	$0^{\circ}$ to $90^{\circ}$	30	-	Changeable at any time	"CE-82" on page $1039$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
CE-83	0xCE53	Asynchronous motor D axis integral limit	0.500 to 1.000	0.707	-	Changeable at any time	"CE-83" on page $1039$
CE-84	0xCE54	Current loop carrier frequency upper limit	5.0 to 16.0	8.0	-	Changeable at any time	"CE-84" on page $1040$
CE-85	0xCE55	Droop enable	0 to 1	0	-	Changeable only at stop	"CE-85" on page $1040$
CE-86	0xCE56	Droop source	0 : Line current   1: Torque reference   2: Speed adjustment output   3: Speed adjustment integral component	1	-	Changeable only at stop	"CE-86" on page $1040$
CE-87	0xCE57	Frequency reference droop coefficient	0.0\% to 50.0\%	0.0	\%	Changeable at any time	"CE-87" on page $1040$
CE-88	0xCE58	FVC-SVC switchover mode	0: No switchover   1: Active switchover   2: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during stop and does not switch back to FVC mode when the encoder recovers during running.)   3: Passive switchover (The AC drive switches to SVC mode upon detection of encoder wire breakage, and it switches back to FVC mode when the encoder recovers during running or stop.)	0	-	Changeable only at stop	"CE-88" on page $1040$
CE-89	0xCE59	FVC-SVC switchover frequency	10\% to 500\%	50	\%	Changeable only at stop	"CE-89" on page 1041
CE-90	0xCE5A	FVC-SVC switchover hysteresis	10\% to $100 \%$	10	\%	Changeable only at stop	"CE-90" on page 1041
H0-00	0x8000	Code of active fault 1	0 to 65535	0	-	Unchangea ble	"HO-00" on page   1041
H0-01	0x8001	Subcode of active fault 1	0 to 65535	0	-	Unchangea ble	"H0-01" on page 1041
H0-02	0x8002	Information of active fault 1	0 to 65535	0	-	Unchangea ble	"HO-02" on page 1042
H0-03	0x8003	Code of active fault 2	0 to 65535	0	-	Unchangea ble	"HO-03" on page   1042
H0-04	0x8004	Subcode of active fault 2	0 to 65535	0	-	Unchangea ble	"H0-04" on page 1042
H0-05	0x8005	Information of active fault 2	0 to 65535	0	-	Unchangea ble	"HO-05" on page $1042$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H0-06	0x8006	Code of active fault 3	0 to 65535	0	-	Unchangea ble	" $\mathrm{HO}-06$ " on page 1042
H0-07	0x8007	Subcode of active fault 3	0 to 65535	0	-	Unchangea ble	"HO-07" on page   1043
H0-08	0x8008	Information of active fault 3	0 to 65535	0	-	Unchangea ble	"HO-08" on page 1043
H0-09	0x8009	Code of active fault   4	0 to 65535	0	-	Unchangea ble	"H0-09" on page 1043
H0-10	0x800A	Subcode of active fault 4	0 to 65535	0	-	Unchangea ble	"H0-10" on page $1043$
H0-11	0x800B	Information of active fault 4	0 to 65535	0	-	Unchangea ble	"H0-11" on page $1043$
H0-12	0x800C	Code of active fault 5	0 to 65535	0	-	Unchangea ble	"H0-12" on page 1044
H0-13	0x800D	Subcode of active fault 5	0 to 65535	0	-	Unchangea ble	"H0-13" on page 1044
H0-14	0x800E	Information of active fault 5	0 to 65535	0	-	Unchangea ble	"H0-14" on page 1044
H0-15	0x800F	Code of active fault $6$	0 to 65535	0	-	Unchangea ble	"H0-15" on page $1044$
H0-16	0x8010	Subcode of active fault 6	0 to 65535	0	-	Unchangea ble	"H0-16" on page   1044
H0-17	0x8011	Information of active fault 6	0 to 65535	0	-	Unchangea ble	"H0-17" on page 1044
H0-18	0x8012	Code of active limit 1	0 to 65535	0	-	Unchangea ble	"H0-18" on page $1045$
H0-19	0x8013	Subcode of active limit 1	0 to 65535	0	-	Unchangea ble	"H0-19" on page 1045
H0-20	0x8014	Information of active limit 1	0 to 65535	0	-	Unchangea ble	"HO-20" on page $1045$
H0-21	0x8015	Code of active limit 2	0 to 65535	0	-	Unchangea ble	"H0-21" on page 1045
H0-22	0x8016	Subcode of active limit 2	0 to 65535	0	-	Unchangea ble	"HO-22" on page 1045
H0-23	0x8017	Information of active limit 2	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "H0-23" on page } \\ & 1046 \end{aligned}$
H0-24	0x8018	Code of active limit 3	0 to 65535	0	-	Unchangea ble	"HO-24" on page $1046$
H0-25	0x8019	Subcode of active limit 3	0 to 65535	0	-	Unchangea ble	"HO-25" on page 1046
H0-26	0x801A	Information of active limit 3	0 to 65535	0	-	Unchangea ble	"H0-26" on page $1046$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H0-27	0x801B	Code of active limit 4	0 to 65535	0	-	Unchangea ble	"H0-27" on page 1046
H0-28	0x801C	Subcode of active limit 4	0 to 65535	0	-	Unchangea ble	"HO-28" on page 1047
H0-29	0x801D	Information of active limit 4	0 to 65535	0	-	Unchangea ble	"HO-29" on page 1047
H0-30	0x801E	Code of active limit 5	0 to 65535	0	-	Unchangea ble	"HO-30" on page 1047
H0-31	0x801F	Subcode of active limit 5	0 to 65535	0	-	Unchangea ble	"H0-31" on page 1047
H0-32	0x8020	Information of active limit 5	0 to 65535	0	-	Unchangea ble	"H0-32" on page 1047
H0-33	0x8021	Code of active limit 6	0 to 65535	0	-	Unchangea ble	"H0-33" on page $1048$
H0-34	0x8022	Subcode of active limit 6	0 to 65535	0	-	Unchangea ble	"HO-34" on page 1048
H0-35	0x8023	Information of active limit 6	0 to 65535	0	-	Unchangea ble	"H0-35" on page 1048
H0-36	0x8024	Code of active alarm 1	0 to 65535	0	-	Unchangea ble	"H0-36" on page $1048$
H0-37	0x8025	Subcode of active alarm 1	0 to 65535	0	-	Unchangea ble	"H0-37" on page 1048
H0-38	0x8026	Information of active alarm 1	0 to 65535	0	-	Unchangea ble	"H0-38" on page   1049
H0-39	0x8027	Code of active alarm 2	0 to 65535	0	-	Unchangea ble	"H0-39" on page $1049$
H0-40	0x8028	Subcode of active alarm 2	0 to 65535	0	-	Unchangea ble	"HO-40" on page   1049
H0-41	0x8029	Information of active alarm 2	0 to 65535	0	-	Unchangea ble	$\begin{array}{\|l\|} \hline \text { "H0-41" on page } \\ 1049 \\ \hline \end{array}$
H0-42	0x802A	Code of active alarm 3	0 to 65535	0	-	Unchangea ble	"HO-42" on page $1049$
H0-43	0x802B	Subcode of active alarm 3	0 to 65535	0	-	Unchangea ble	"HO-43" on page 1049
H0-44	0x802C	Information of active alarm 3	0 to 65535	0	-	Unchangea ble	"HO-44" on page $1050$
H0-45	0x802D	Code of active alarm 4	0 to 65535	0	-	Unchangea ble	"HO-45" on page 1050
H0-46	0x802E	Subcode of active alarm 4	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "H0-46" on page } \\ & 1050 \end{aligned}$
H0-47	0x802F	Information of active alarm 4	0 to 65535	0	-	Unchangea ble	"H0-47" on page 1050


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H0-48	0x8030	Code of active alarm 5	0 to 65535	0	-	Unchangea ble	"HO-48" on page $1050$
H0-49	0x8031	Subcode of active alarm 5	0 to 65535	0	-	Unchangea ble	"HO-49" on page 1051
H0-50	0x8032	Information of active alarm 5	0 to 65535	0	-	Unchangea ble	"H0-50" on page 1051
H0-51	0x8033	Code of active alarm 6	0 to 65535	0	-	Unchangea ble	"H0-51" on page 1051
H0-52	0x8034	Subcode of active alarm 6	0 to 65535	0	-	Unchangea ble	"H0-52" on page 1051
H0-53	0x8035	Information of active alarm 6	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "HO-53" on page } \\ & 1051 \end{aligned}$
H1-00	0x8100	Fault code of exceptions in group 1	0.0 to 199.9	0.0	-	Changeable only at stop	"H1-00" on page $1052$
H1-01	0x8101	Handling of exceptions in group 1	0: Coast to stop   1: Stop according to the stop mode   2: Continue to run   3: Run with power limit   4: Run with current limit   5: Ignore   6: No action	6	-	Changeable only at stop	"H1-01" on page 1052
H1-02	0x8102	Fault code of exceptions in group $2$	0.0 to 199.9	0.0	-	Changeable only at stop	"H1-02" on page 1052
H1-03	0x8103	Handling of exceptions in group $2$	Same as H1-01	6	-	Changeable only at stop	"H1-03" on page $1052$
H1-04	0x8104	Fault code of exceptions in group 3	0.0 to 199.9	0.0	-	Changeable only at stop	"H1-04" on page 1053
H1-05	0x8105	Handling of exceptions in group 3	Same as H1-01	6	-	Changeable only at stop	"H1-05" on page 1053
H1-06	0x8106	Fault code of exceptions in group   4	0.0 to 199.9	0.0	-	Changeable only at stop	"H1-06" on page 1053
H1-07	0x8107	Handling of exceptions in group 4	Same as H1-01	6	-	Changeable only at stop	"H1-07" on page 1053
H1-08	0x8108	Fault code of exceptions in group 5	0.0 to 199.9	0.0	-	Changeable only at stop	"H1-08" on page $1053$
H1-09	0x8109	Handling of exceptions in group 5	Same as H1-01	6	-	Changeable only at stop	"H1-09" on page 1054

-1615-

Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H1-10	0x810A	Fault code of exceptions in group 6	0.0 to 199.9	0.0	-	Changeable only at stop	"H1-10" on page 1054
H1-11	0x810B	Handling of exceptions in group 6	Same as H1-01	6	-	Changeable only at stop	"H1-11" on page $1054$
H1-12	0x810C	Fault code of exceptions in group 7	0.0 to 199.9	0.0	-	Changeable only at stop	"H1-12" on page 1054
H1-13	0x810D	Handling of exceptions in group 7	Same as H1-01	6	-	Changeable only at stop	$\begin{aligned} & \text { "H1-13" on page } \\ & 1054 \end{aligned}$
H1-14	0x810E	Fault code of exceptions in group   8	0.0 to 199.9	0.0	-	Changeable only at stop	"H1-14" on page 1054
H1-15	0x810F	Handling of exceptions in group   8	Same as H1-01	6	-	Changeable only at stop	"H1-15" on page 1055
H1-16	0x8110	Fault code of exceptions in group 9	0.0 to 199.9	0.0	-	Changeable only at stop	"H1-16" on page 1055
H1-17	$0 \times 8111$	Handling of exceptions in group 9	Same as H1-01	6	-	Changeable only at stop	"H1-17" on page 1055
H1-18	0x8112	Fault code of exceptions in group 10	0.0 to 199.9	0.0	-	Changeable only at stop	"H1-18" on page 1055
H1-19	0x8113	Handling of exceptions in group $10$	Same as H1-01	6	-	Changeable only at stop	"H1-19" on page $1055$
H2-00	0x8200	Source of external fault 1 (NO)	0 : Inactive   1: Active   Others: B connector	0	-	Changeable at any time	"H2-00" on page 1056
H2-01	0x8201	Source of external fault 2 (NC)	Same as H2-00	1	-	Changeable at any time	"H2-01" on page $1056$
H2-02	0x8202	Source of external alarm 1	0 : Reserved   Others: B connector	0	-	Changeable at any time	"H2-02" on page $1056$
H2-03	0x8203	Source of external alarm 2	Same as H2-02	0	-	Changeable at any time	$\begin{aligned} & \text { "H2-03" on page } \\ & 1056 \end{aligned}$
H2-04	0x8204	Source of custom fault 1	0 : Inactive   1: Active   Others: B connector	0	-	Changeable at any time	$\begin{aligned} & \text { "H2-04" on page } \\ & 1057 \end{aligned}$
H2-05	0x8205	Source of custom fault 2	Same as H2-04	0	-	Changeable at any time	"H2-05" on page 1057


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
H2-06	0x8206	Source of custom fault 3	0 : Reserved   Others: B connector	0	-	Changeable at any time	"H2-06" on page 1057
H2-07	0x8207	Source of custom fault 4	0 : Reserved   Others: B connector	0	-	Changeable at any time	"H2-07" on page 1057
H2-08	0x8208	Source of custom alarm 1	Same as H2-07	0	-	Changeable at any time	"H2-08" on page 1057
H2-09	0x8209	Source of custom alarm 2	Same as H2-07	0	-	Changeable at any time	"H2-09" on page 1058
H2-10	0x820A	Source of custom alarm 3	Same as H2-07	0	-	Changeable at any time	"H2-10" on page 1058
H2-11	0x820B	Source of custom alarm 4	Same as H2-07	0	-	Changeable at any time	"H2-11" on page 1058
H2-12	0x820C	Auto reset enable	0 to 1	1	-	Changeable at any time	"H2-12" on page 1058
H2-15	0x820F	Auto reset disabled upon manual reset	$\begin{aligned} & \text { 0: Yes } \\ & \text { 1: No } \end{aligned}$	1	-	Changeable at any time	"H2-15" on page 1058
H2-16	0x8210	Interval for clearing auto reset count	0 min to 6000 min	10	min	Changeable at any time	"H2-16" on page 1059
H2-17	0x8211	Active fault reset attempt count	0 to 65535	0	-	Unchangea ble	"H2-17" on page 1059
H2-18	0x8212	Clearing upon fault reset count reach	0: Cleared   1: Not cleared	0	-	Changeable at any time	"H2-18" on page 1059
H2-20	0x8214	Code of non-   resettable   exception 1	0 to 200	0	-	Changeable at any time	"H2-20" on page 1059
H2-21	0x8215	Subcode of nonresettable exception 1	0 to 9	0	-	Changeable at any time	"H2-21" on page 1059
H2-22	0x8216	Code of non-   resettable   exception 2	0 to 200	0	-	Changeable at any time	"H2-22" on page $1060$
H2-23	0x8217	Subcode of nonresettable exception 2	0 to 9	0	-	Changeable at any time	"H2-23" on page   1060
H2-24	0x8218	Code of non-   resettable   exception 3	0 to 200	0	-	Changeable at any time	"H2-24" on page 1060
H2-25	0x8219	Subcode of nonresettable exception 3	0 to 9	0	-	Changeable at any time	"H2-25" on page 1060
H2-26	0x821A	Code of nonresettable exception 4	0 to 200	0	-	Changeable at any time	"H2-26" on page $1060$


| Para. | Comm. <br> Addr. | Name |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H2-44	0x822C	Forced flying start during auto restart	0 to 1	0	-	Changeable at any time	"H2-44" on page 1063
H2-45	0x822D	Source of exceptions that allow restart	0 : Whitelist   1: Blacklist	1	-	Changeable at any time	"H2-45" on page 1064
H2-46	0x822E	Code of specified exception 1	0 to 200	0	-	Changeable at any time	"H2-46" on page 1064
H2-47	0x822F	Subcode of specified exception 1	0 to 9	0	-	Changeable at any time	" $\mathrm{H} 2-47$ " on page 1064
H2-48	0x8230	Code of specified exception 2	0 to 200	0	-	Changeable at any time	"H2-48" on page   1064
H2-49	0x8231	Subcode of specified exception 2	0 to 9	0	-	Changeable at any time	"H2-49" on page 1064
H2-50	0x8232	Code of specified exception 3	0 to 200	0	-	Changeable at any time	"H2-50" on page 1065
H2-51	0x8233	Subcode of specified exception 3	0 to 9	0	-	Changeable at any time	"H2-51" on page 1065
H2-52	0x8234	Code of specified exception 4	0 to 200	0	-	Changeable at any time	"H2-52" on page 1065
H2-53	0x8235	Subcode of specified exception 4	0 to 9	0	-	Changeable at any time	"H2-53" on page 1065
H2-54	0x8236	Code of specified exception 5	0 to 200	0	-	Changeable at any time	"H2-54" on page 1065
H2-55	0x8237	Subcode of specified exception 5	0 to 9	0	-	Changeable at any time	"H2-55" on page 1066
H2-56	0x8238	Code of specified exception 6	0 to 200	0	-	Changeable at any time	"H2-56" on page $1066$
H2-57	0x8239	Subcode of specified exception 6	0 to 9	0	-	Changeable at any time	"H2-57" on page 1066
H3-00	0x8300	Code of active fault 1	0 to 65535	0	-	Unchangea ble	"H3-00" on page $1066$
H3-01	0x8301	Subcode of active fault 1	0 to 65535	0	-	Unchangea ble	"H3-01" on page 1066
H3-02	0x8302	Information of active fault 1	0 to 65535	0	-	Unchangea ble	"H3-02" on page 1067
H3-03	0x8303	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H3-03" on page 1067


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
H3-04	0x8304	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H3-04" on page 1067
H3-05	0x8305	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H3-05" on page 1067
H3-06	0x8306	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H3-06" on page 1067
H3-07	0x8307	Code of active fault 2	0 to 65535	0	-	Unchangea ble	"H3-07" on page $1068$
H3-08	0x8308	Subcode of active fault 2	0 to 65535	0	-	Unchangea ble	" H3-08" on page 1068
H3-09	0x8309	Information of active fault 2	0 to 65535	0	-	Unchangea ble	"H3-09" on page $1068$
H3-10	0x830A	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H3-10" on page 1068
H3-11	0x830B	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H3-11" on page 1068
H3-12	0x830C	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H3-12" on page 1068
H3-13	0x830D	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H3-13" on page 1069
H3-14	0x830E	Code of active fault 3	0 to 65535	0	-	Unchangea ble	"H3-14" on page 1069
H3-15	0x830F	Subcode of active fault 3	0 to 65535	0	-	Unchangea ble	"H3-15" on page 1069
H3-16	0x8310	Information of active fault 3	0 to 65535	0	-	Unchangea ble	"H3-16" on page $1069$
H3-17	0x8311	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H3-17" on page $1069$
H3-18	0x8312	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H3-18" on page $1070$
H3-19	0x8313	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H3-19" on page 1070
H3-20	0x8314	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H3-20" on page $1070$
H3-21	0x8315	Code of active fault 4	0 to 65535	0	-	Unchangea ble	"H3-21" on page 1070
H3-22	0x8316	Subcode of active fault 4	0 to 65535	0	-	Unchangea ble	"H3-22" on page $1070$
H3-23	0x8317	Information of active fault 4	0 to 65535	0	-	Unchangea ble	"H3-23" on page 1071
H3-24	0x8318	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H3-24" on page 1071


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
H3-25	0x8319	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H3-25" on page 1071
H3-26	0x831A	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H3-26" on page 1071
H3-27	0x831B	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H3-27" on page 1071
H3-28	0x831C	Code of active fault 5	0 to 65535	0	-	Unchangea ble	"H3-28" on page   1072
H3-29	0x831D	Subcode of active fault 5	0 to 65535	0	-	Unchangea ble	"H3-29" on page 1072
H3-30	0x831E	Information of active fault 5	0 to 65535	0	-	Unchangea ble	"H3-30" on page 1072
H3-31	0x831F	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H3-31" on page 1072
H3-32	0x8320	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H3-32" on page 1072
H3-33	0x8321	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H3-33" on page   1073
H3-34	0x8322	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H3-34" on page 1073
H3-35	0x8323	Code of active fault 6	0 to 65535	0	-	Unchangea ble	"H3-35" on page 1073
H3-36	0x8324	Subcode of active fault 6	0 to 65535	0	-	Unchangea ble	"H3-36" on page 1073
H3-37	0x8325	Information of active fault 6	0 to 65535	0	-	Unchangea ble	"H3-37" on page 1073
H3-38	0x8326	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H3-38" on page $1073$
H3-39	0x8327	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H3-39" on page 1074
H3-40	0x8328	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H3-40" on page 1074
H3-41	0x8329	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H3-41" on page 1074
H3-42	0x832A	Frequency upon the active fault	0.00 Hz to 655.35 Hz	0.00	Hz	Unchangea ble	"H3-42" on page   1074
H3-43	0x832B	Current upon the active fault	0.00 A to 655.35 A	0.00	A	Unchangea ble	"H3-43" on page   1074
H3-44	0x832C	Bus voltage upon the active fault	0.0 V to 6553.5 V	0.0	V	Unchangea ble	"H3-44" on page $1075$
H3-45	0x832D	Input terminal state upon the active fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H3-45" on page 1075


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H3-46	0x832E	Output terminal state upon the active fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	$\begin{aligned} & \text { "H3-46" on page } \\ & 1075 \end{aligned}$
H3-47	0x832F	AC drive state upon the active fault	0 to 65535	0	-	Unchangea ble	"H3-47" on page $1075$
H3-48	0x8330	Power-on duration upon the active fault	0 min to 65535 min	0	min	Unchangea ble	"H3-48" on page $1075$
H3-49	0x8331	Running duration upon the active fault	0.0 min to 6553.5 min	0.0	min	Unchangea ble	"H3-49" on page $1076$
H3-50	0x8332	Status word A upon the active fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H3-50" on page 1076
H3-51	$0 \times 8333$	Status word B upon the active fault	0x0 to 0xFFFF	$0 \times 0$	-	Unchangea ble	"H3-51" on page $1076$
H3-52	0x8334	Command word upon the active fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H3-52" on page 1076
H4-00	0x8400	Code of the latest fault 1	0 to 65535	0	-	Unchangea ble	"H4-00" on page 1076
H4-01	0x8401	Subcode of the latest fault 1	0 to 65535	0	-	Unchangea ble	"H4-01" on page $1077$
H4-02	0x8402	Information of the latest fault 1	0 to 65535	0	-	Unchangea ble	"H4-02" on page 1077
H4-03	0x8403	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H4-03" on page 1077
H4-04	0x8404	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H4-04" on page $1077$
H4-05	0x8405	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H4-05" on page 1077
H4-06	0x8406	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H4-06" on page $1078$
H4-07	0x8407	Code of the latest fault 2	0 to 65535	0	-	Unchangea ble	"H4-07" on page $1078$
H4-08	0x8408	Subcode of the latest fault 2	0 to 65535	0	-	Unchangea ble	"H4-08" on page 1078
H4-09	0x8409	Information of the latest fault 2	0 to 65535	0	-	Unchangea ble	"H4-09" on page $1078$
H4-10	0x840A	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H4-10" on page 1078
H4-11	0x840B	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H4-11" on page 1079
H4-12	0x840C	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H4-12" on page $1079$


Para.	Comm.   Addr.	Name		De   fault	Unit	Change	Page


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
H4-34	0x8422	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H4-34" on page   1083
H4-35	$0 \times 8423$	Code of the latest fault 6	0 to 65535	0	-	Unchangea ble	"H4-35" on page   1083
H4-36	0×8424	Subcode of the latest fault 6	0 to 65535	0	-	Unchangea ble	"H4-36" on page 1083
H4-37	$0 \times 8425$	Information of the latest fault 6	0 to 65535	0	-	Unchangea ble	"H4-37" on page 1084
H4-38	0x8426	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H4-38" on page 1084
H4-39	$0 \times 8427$	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H4-39" on page 1084
H4-40	0×8428	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H4-40" on page 1084
H4-41	0×8429	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H4-41" on page 1084
H4-42	0x842A	Frequency upon the latest fault	0.00 Hz to 655.35 Hz	0.00	Hz	Unchangea ble	"H4-42" on page $1085$
H4-43	0×842B	Current upon the latest fault	0.00 A to 655.35 A	0.00	A	Unchangea ble	"H4-43" on page 1085
H4-44	0×842C	Bus voltage upon the latest fault	0.0 V to 6553.5 V	0.0	V	Unchangea ble	"H4-44" on page 1085
H4-45	0x842D	Input terminal state upon the latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H4-45" on page $1085$
H4-46	0x842E	Output terminal   state upon the latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H4-46" on page 1085
H4-47	0x842F	AC drive state upon the latest fault	0 to 65535	0	-	Unchangea ble	"H4-47" on page 1085
H4-48	0×8430	Power-on duration upon the latest fault	0 min to 65535 min	0	min	Unchangea ble	"H4-48" on page $1086$
H4-49	$0 \times 8431$	Running duration upon the latest fault	0.0 min to 6553.5 min	0.0	min	Unchangea ble	"H4-49" on page $1086$
H4-50	$0 \times 8432$	Status word A upon the latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H4-50" on page 1086
H4-51	$0 \times 8433$	Status word B upon the latest fault	0x0 to 0xFFFF	$0 \times 0$	-	Unchangea ble	"H4-51" on page 1086
H4-52	$0 \times 8434$	Command word upon the latest fault	0x0 to 0xFFFF	$0 \times 0$	-	Unchangea ble	"H4-52" on page $1086$
H5-00	0x8500	Code of the second latest fault 1	0 to 65535	0	-	Unchangea ble	"H5-00" on page 1087
H5-01	$0 \times 8501$	Subcode of the second latest fault 1	0 to 65535	0	-	Unchangea ble	"H5-01" on page 1087


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H5-02	0x8502	Information of the second latest fault 1	0 to 65535	0	-	Unchangea ble	"H5-02" on page 1087
H5-03	0x8503	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H5-03" on page 1087
H5-04	0x8504	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H5-04" on page 1087
H5-05	0x8505	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H5-05" on page 1088
H5-06	0x8506	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H5-06" on page 1088
H5-07	0x8507	Code of the second latest fault 2	0 to 65535	0	-	Unchangea ble	"H5-07" on page $1088$
H5-08	0x8508	Subcode of the second latest fault 2	0 to 65535	0	-	Unchangea ble	"H5-08" on page   1088
H5-09	0x8509	Information of the second latest fault 2	0 to 65535	0	-	Unchangea ble	"H5-09" on page 1088
H5-10	0x850A	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H5-10" on page 1089
H5-11	0x850B	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H5-11" on page 1089
H5-12	0x850C	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H5-12" on page 1089
H5-13	0x850D	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H5-13" on page 1089
H5-14	0x850E	Code of the second latest fault 3	0 to 65535	0	-	Unchangea ble	"H5-14" on page 1089
H5-15	0x850F	Subcode of the second latest fault 3	0 to 65535	0	-	Unchangea ble	"H5-15" on page $1090$
H5-16	0x8510	Information of the second latest fault 3	0 to 65535	0	-	Unchangea ble	"H5-16" on page   1090
H5-17	0x8511	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H5-17" on page $1090$
H5-18	0x8512	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H5-18" on page $1090$
H5-19	0x8513	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "H5-19" on page } \\ & 1090 \end{aligned}$
H5-20	0x8514	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H5-20" on page 1091
H5-21	0x8515	Code of the second latest fault 4	0 to 65535	0	-	Unchangea ble	"H5-21" on page $1091$
H5-22	0x8516	Subcode of the second latest fault 4	0 to 65535	0	-	Unchangea ble	"H5-22" on page 1091


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H5-23	$0 \times 8517$	Information of the second latest fault 4	0 to 65535	0	-	Unchangea ble	"H5-23" on page 1091
H5-24	0x8518	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H5-24" on page   1091
H5-25	0x8519	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H5-25" on page 1092
H5-26	0x851A	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H5-26" on page $1092$
H5-27	0x851B	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H5-27" on page $1092$
H5-28	0x851C	Code of the second latest fault 5	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "H5-28" on page } \\ & 1092 \end{aligned}$
H5-29	0x851D	Subcode of the second latest fault 5	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "H5-29" on page } \\ & 1092 \end{aligned}$
H5-30	0x851E	Information of the second latest fault 5	0 to 65535	0	-	Unchangea ble	"H5-30" on page   1092
H5-31	0x851F	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H5-31" on page $1093$
H5-32	0x8520	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H5-32" on page 1093
H5-33	0x8521	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H5-33" on page   1093
H5-34	0x8522	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H5-34" on page   1093
H5-35	$0 \times 8523$	Code of the second latest fault 6	0 to 65535	0	-	Unchangea ble	"H5-35" on page   1093
H5-36	0x8524	Subcode of the second latest fault 6	0 to 65535	0	-	Unchangea ble	"H5-36" on page 1094
H5-37	0x8525	Information of the second latest fault 6	0 to 65535	0	-	Unchangea ble	"H5-37" on page   1094
H5-38	0x8526	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H5-38" on page   1094
H5-39	$0 \times 8527$	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "H5-39" on page } \\ & 1094 \end{aligned}$
H5-40	0x8528	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H5-40" on page 1094
H5-41	$0 \times 8529$	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "H5-41" on page } \\ & 1095 \end{aligned}$
H5-42	0x852A	Frequency upon the second latest fault	0.00 Hz to 655.35 Hz	0.00	Hz	Unchangea ble	$\begin{aligned} & \text { "H5-42" on page } \\ & 1095 \end{aligned}$
H5-43	0x852B	Current upon the second latest fault	0.00 A to 655.35 A	0.00	A	Unchangea ble	$\begin{aligned} & \text { "H5-43" on page } \\ & 1095 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H5-44	0×852C	Bus voltage upon the second latest fault	0.0 V to 6553.5 V	0.0	V	Unchangea ble	"H5-44" on page 1095
H5-45	0x852D	Input terminal state upon the second latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H5-45" on page $1095$
H5-46	0x852E	Output terminal state upon the second latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H5-46" on page $1096$
H5-47	0x852F	AC drive state upon the second latest fault	0 to 65535	0	-	Unchangea ble	"H5-47" on page 1096
H5-48	0x8530	Power-on duration upon the second latest fault	0 min to 65535 min	0	min	Unchangea ble	"H5-48" on page 1096
H5-49	0x8531	Running duration upon the second latest fault	0.0 min to 6553.5 min	0.0	min	Unchangea ble	$\begin{aligned} & \text { "H5-49" on page } \\ & 1096 \end{aligned}$
H5-50	0x8532	Status word A upon the second latest fault	$0 \times 0$ to 0xFFFF	0x0	-	Unchangea ble	"H5-50" on page 1096
H5-51	0x8533	Status word B upon the second latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H5-51" on page 1097
H5-52	0x8534	Command word upon the second latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H5-52" on page 1097
H6-00	0x8600	Code of the third latest fault 1	0 to 65535	0	-	Unchangea ble	"H6-00" on page 1097
H6-01	0x8601	Subcode of the third latest fault 1	0 to 65535	0	-	Unchangea ble	"H6-01" on page 1097
H6-02	0x8602	Information of the third latest fault 1	0 to 65535	0	-	Unchangea ble	"H6-02" on page $1097$
H6-03	$0 \times 8603$	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H6-03" on page 1098
H6-04	0x8604	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H6-04" on page 1098
H6-05	0x8605	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H6-05" on page $1098$
H6-06	$0 \times 8606$	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H6-06" on page 1098
H6-07	0x8607	Code of the third latest fault 2	0 to 65535	0	-	Unchangea ble	"H6-07" on page 1098
H6-08	0x8608	Subcode of the third latest fault 2	0 to 65535	0	-	Unchangea ble	"H6-08" on page 1099


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H6-09	0x8609	Information of the third latest fault 2	0 to 65535	0	-	Unchangea ble	"H6-09" on page 1099
H6-10	0x860A	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H6-10" on page   1099
H6-11	0x860B	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H6-11" on page 1099
H6-12	0x860C	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H6-12" on page 1099
H6-13	0x860D	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H6-13" on page 1099
H6-14	0x860E	Code of the third latest fault 3	0 to 65535	0	-	Unchangea ble	"H6-14" on page $1100$
H6-15	0x860F	Subcode of the third latest fault 3	0 to 65535	0	-	Unchangea ble	"H6-15" on page $1100$
H6-16	0x8610	Information of the third latest fault 3	0 to 65535	0	-	Unchangea ble	"H6-16" on page $1100$
H6-17	0x8611	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H6-17" on page 1100
H6-18	0x8612	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H6-18" on page $1100$
H6-19	0x8613	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H6-19" on page   1101
H6-20	0x8614	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H6-20" on page   1101
H6-21	0x8615	Code of the third latest fault 4	0 to 65535	0	-	Unchangea ble	"H6-21" on page   1101
H6-22	0x8616	Subcode of the third latest fault 4	0 to 65535	0	-	Unchangea ble	"H6-22" on page 1101
H6-23	0x8617	Information of the third latest fault 4	0 to 65535	0	-	Unchangea ble	"H6-23" on page   1101
H6-24	0x8618	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H6-24" on page   1102
H6-25	0x8619	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H6-25" on page   1102
H6-26	0x861A	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H6-26" on page   1102
H6-27	0x861B	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H6-27" on page   1102
H6-28	0x861C	Code of the third latest fault 5	0 to 65535	0	-	Unchangea ble	"H6-28" on page 1102
H6-29	0x861D	Subcode of the third latest fault 5	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "H6-29" on page } \\ & 1103 \end{aligned}$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
H6-30	0x861E	Information of the third latest fault 5	0 to 65535	0	-	Unchangea ble	"H6-30" on page 1103
H6-31	0x861F	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H6-31" on page $1103$
H6-32	0x8620	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H6-32" on page 1103
H6-33	0x8621	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H6-33" on page 1103
H6-34	0x8622	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H6-34" on page   1104
H6-35	$0 \times 8623$	Code of the third latest fault 6	0 to 65535	0	-	Unchangea ble	"H6-35" on page 1104
H6-36	0x8624	Subcode of the third latest fault 6	0 to 65535	0	-	Unchangea ble	"H6-36" on page 1104
H6-37	$0 \times 8625$	Information of the third latest fault 6	0 to 65535	0	-	Unchangea ble	"H6-37" on page 1104
H6-38	0x8626	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H6-38" on page 1104
H6-39	0x8627	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H6-39" on page   1104
H6-40	0x8628	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H6-40" on page 1105
H6-41	0x8629	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "H6-41" on page } \\ & 1105 \end{aligned}$
H6-42	0x862A	Frequency upon the third latest fault	0.00 Hz to 655.35 Hz	0.00	Hz	Unchangea ble	$\begin{aligned} & \text { "H6-42" on page } \\ & 1105 \end{aligned}$
H6-43	0x862B	Current upon the third latest fault	0.00 A to 655.35 A	0.00	A	Unchangea ble	"H6-43" on page 1105
H6-44	0×862C	Bus voltage upon the third latest fault	0.0 V to 6553.5 V	0.0	V	Unchangea ble	$\begin{aligned} & \text { "H6-44" on page } \\ & 1105 \end{aligned}$
H6-45	0x862D	Input terminal state upon the third latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	$\begin{aligned} & \text { "H6-45" on page } \\ & 1106 \end{aligned}$
H6-46	0x862E	Output terminal state upon the third latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	$\begin{aligned} & \text { "H6-46" on page } \\ & 1106 \end{aligned}$
H6-47	0x862F	AC drive state upon the third latest fault	0 to 65535	0	-	Unchangea ble	"H6-47" on page $1106$
H6-48	0x8630	Power-on duration upon the third latest fault	0 min to 65535 min	0	min	Unchangea ble	"H6-48" on page 1106
H6-49	0x8631	Running duration upon the third latest fault	0.0 min to 6553.5 min	0.0	min	Unchangea ble	$\begin{aligned} & \text { "H6-49" on page } \\ & 1106 \end{aligned}$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
H6-50	0x8632	Status word A upon the third latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H6-50" on page   1107
H6-51	$0 \times 8633$	Status word B upon the third latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H6-51" on page 1107
H6-52	$0 \times 8634$	Command word upon the third latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H6-52" on page 1107
H7-00	0x8700	Code of the fourth latest fault 1	0 to 65535	0	-	Unchangea ble	"H7-00" on page 1107
H7-01	$0 \times 8701$	Subcode of the fourth latest fault 1	0 to 65535	0	-	Unchangea ble	"H7-01" on page $1107$
H7-02	0×8702	Information of the fourth latest fault 1	0 to 65535	0	-	Unchangea ble	"H7-02" on page 1108
H7-03	0x8703	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H7-03" on page $1108$
H7-04	0x8704	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H7-04" on page $1108$
H7-05	0x8705	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H7-05" on page   1108
H7-06	0x8706	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H7-06" on page $1108$
H7-07	$0 \times 8707$	Code of the fourth latest fault 2	0 to 65535	0	-	Unchangea ble	"H7-07" on page   1109
H7-08	0x8708	Subcode of the fourth latest fault 2	0 to 65535	0	-	Unchangea ble	"H7-08" on page $1109$
H7-09	0x8709	Information of the fourth latest fault 2	0 to 65535	0	-	Unchangea ble	"H7-09" on page 1109
H7-10	0x870A	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H7-10" on page 1109
H7-11	0×870B	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H7-11" on page 1109
H7-12	0x870C	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H7-12" on page   1110
H7-13	0x870D	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H7-13" on page $1110$
H7-14	0x870E	Code of the third latest fault 3	0 to 65535	0	-	Unchangea ble	"H7-14" on page $1110$
H7-15	0x870F	Subcode of the third latest fault 3	0 to 65535	0	-	Unchangea ble	"H7-15" on page 1110
H7-16	$0 \times 8710$	Information of the third latest fault 3	0 to 65535	0	-	Unchangea ble	"H7-16" on page $1110$
H7-17	$0 \times 8711$	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H7-17" on page $1111$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H7-18	0x8712	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H7-18" on page   1111
H7-19	0x8713	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H7-19" on page   1111
H7-20	0x8714	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H7-20" on page   1111
H7-21	0x8715	Code of the fourth latest fault 4	0 to 65535	0	-	Unchangea ble	"H7-21" on page   1111
H7-22	0x8716	Subcode of the fourth latest fault 4	0 to 65535	0	-	Unchangea ble	"H7-22" on page   1111
H7-23	0x8717	Information of the fourth latest fault 4	0 to 65535	0	-	Unchangea ble	"H7-23" on page 1112
H7-24	0x8718	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H7-24" on page   1112
H7-25	0x8719	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H7-25" on page 1112
H7-26	0x871A	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H7-26" on page   1112
H7-27	0x871B	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H7-27" on page   1112
H7-28	0x871C	Code of the fourth latest fault 5	0 to 65535	0	-	Unchangea ble	"H7-28" on page   1113
H7-29	0x871D	Subcode of the fourth latest fault 5	0 to 65535	0	-	Unchangea ble	"H7-29" on page   1113
H7-30	0x871E	Information of the fourth latest fault 5	0 to 65535	0	-	Unchangea ble	"H7-30" on page   1113
H7-31	0x871F	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H7-31" on page 1113
H7-32	0x8720	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H7-32" on page   1113
H7-33	0x8721	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H7-33" on page   1114
H7-34	0x8722	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H7-34" on page   1114
H7-35	0x8723	Code of the fourth latest fault 6	0 to 65535	0	-	Unchangea ble	"H7-35" on page   1114
H7-36	0x8724	Subcode of the fourth latest fault 6	0 to 65535	0	-	Unchangea ble	"H7-36" on page   1114
H7-37	0x8725	Information of the fourth latest fault 6	0 to 65535	0	-	Unchangea ble	"H7-37" on page 1114
H7-38	0x8726	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H7-38" on page 1115


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H7-39	0x8727	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H7-39" on page $1115$
H7-40	0x8728	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H7-40" on page $1115$
H7-41	0x8729	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H7-41" on page $1115$
H7-42	0x872A	Frequency upon the fourth latest fault	0.00 Hz to 655.35 Hz	0.00	Hz	Unchangea ble	"H7-42" on page 1115
H7-43	0x872B	Current upon the fourth latest fault	0.00 A to 655.35 A	0.00	A	Unchangea ble	"H7-43" on page $1116$
H7-44	0x872C	Bus voltage upon the fourth latest fault	0.0 V to 6553.5 V	0.0	V	Unchangea ble	"H7-44" on page $1116$
H7-45	0x872D	Input terminal state upon the fourth latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H7-45" on page $1116$
H7-46	0x872E	Output terminal   state upon the   fourth latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H7-46" on page 1116
H7-47	0x872F	AC drive state upon the fourth latest fault	0 to 65535	0	-	Unchangea ble	"H7-47" on page $1116$
H7-48	0x8730	Power-on duration upon the fourth latest fault	0 min to 65535 min	0	min	Unchangea ble	"H7-48" on page $1116$
H7-49	0x8731	Running duration upon the fourth latest fault	0.0 min to 6553.5 min	0.0	min	Unchangea ble	"H7-49" on page 1117
H7-50	0x8732	Status word A upon the fourth latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H7-50" on page 1117
H7-51	0x8733	Status word B upon the fourth latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H7-51" on page $1117$
H7-52	0x8734	Command word upon the fourth latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H7-52" on page 1117
H8-00	0x8800	Code of the fifth latest fault 1	0 to 65535	0	-	Unchangea ble	"H8-00" on page 1118
H8-01	0x8801	Subcode of the fifth latest fault 1	0 to 65535	0	-	Unchangea ble	"H8-01" on page 1118
H8-02	0x8802	Information of the fifth latest fault 1	0 to 65535	0	-	Unchangea ble	"H8-02" on page 1118
H8-03	0x8803	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H8-03" on page 1118


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
H8-04	0x8804	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H8-04" on page   1118
H8-05	0x8805	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H8-05" on page   1119
H8-06	0x8806	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H8-06" on page $1119$
H8-07	0x8807	Code of the fifth latest fault 2	0 to 65535	0	-	Unchangea ble	"H8-07" on page   1119
H8-08	0x8808	Subcode of the fifth latest fault 2	0 to 65535	0	-	Unchangea ble	"H8-08" on page   1119
H8-09	0x8809	Information of the fifth latest fault 2	0 to 65535	0	-	Unchangea ble	"H8-09" on page   1119
H8-10	0x880A	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H8-10" on page   1119
H8-11	0x880B	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H8-11" on page $1120$
H8-12	0x880C	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H8-12" on page $1120$
H8-13	0x880D	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H8-13" on page $1120$
H8-14	0x880E	Code of the fifth latest fault 3	0 to 65535	0	-	Unchangea ble	"H8-14" on page $1120$
H8-15	0x880F	Subcode of the fifth latest fault 3	0 to 65535	0	-	Unchangea ble	"H8-15" on page $1120$
H8-16	0x8810	Information of the fifth latest fault 3	0 to 65535	0	-	Unchangea ble	"H8-16" on page 1121
H8-17	0x8811	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H8-17" on page 1121
H8-18	0x8812	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H8-18" on page   1121
H8-19	0x8813	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H8-19" on page   1121
H8-20	0x8814	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H8-20" on page   1121
H8-21	0x8815	Code of the fifth latest fault 4	0 to 65535	0	-	Unchangea ble	"H8-21" on page   1122
H8-22	0x8816	Subcode of the fifth latest fault 4	0 to 65535	0	-	Unchangea ble	"H8-22" on page   1122
H8-23	0x8817	Information of the fifth latest fault 4	0 to 65535	0	-	Unchangea ble	"H8-23" on page   1122
H8-24	0x8818	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H8-24" on page   1122


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H8-25	0x8819	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H8-25" on page $1122$
H8-26	0x881A	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H8-26" on page   1123
H8-27	0x881B	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H8-27" on page $1123$
H8-28	0x881C	Code of the fifth latest fault 5	0 to 65535	0	-	Unchangea ble	"H8-28" on page 1123
H8-29	0x881D	Subcode of the fifth latest fault 5	0 to 65535	0	-	Unchangea ble	"H8-29" on page $1123$
H8-30	0x881E	Information of the fifth latest fault 5	0 to 65535	0	-	Unchangea ble	"H8-30" on page   1123
H8-31	0x881F	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H8-31" on page 1124
H8-32	0x8820	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H8-32" on page   1124
H8-33	0x8821	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H8-33" on page   1124
H8-34	0x8822	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H8-34" on page   1124
H8-35	0x8823	Code of the fifth latest fault 6	0 to 65535	0	-	Unchangea ble	"H8-35" on page   1124
H8-36	0x8824	Subcode of the fifth latest fault 6	0 to 65535	0	-	Unchangea ble	"H8-36" on page   1124
H8-37	0×8825	Information of the fifth latest fault 6	0 to 65535	0	-	Unchangea ble	"H8-37" on page $1125$
H8-38	0x8826	Self diagnosis information 1	0 to 65535	0	-	Unchangea ble	"H8-38" on page $1125$
H8-39	0x8827	Self diagnosis information 2	0 to 65535	0	-	Unchangea ble	"H8-39" on page $1125$
H8-40	0x8828	Self diagnosis information 3	0 to 65535	0	-	Unchangea ble	"H8-40" on page $1125$
H8-41	0x8829	Self diagnosis information 4	0 to 65535	0	-	Unchangea ble	"H8-41" on page $1125$
H8-42	0x882A	Frequency upon the fifth latest fault	0.00 Hz to 655.35 Hz	0.00	Hz	Unchangea ble	"H8-42" on page   1126
H8-43	0x882B	Current upon the fifth latest fault	0.00 A to 655.35 A	0.00	A	Unchangea ble	"H8-43" on page $1126$
H8-44	0x882C	Bus voltage upon the fifth latest fault	0.0 V to 6553.5 V	0.0	V	Unchangea ble	"H8-44" on page $1126$
H8-45	0x882D	Input terminal state upon the fifth latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H8-45" on page $1126$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
H8-46	0x882E	Output terminal state upon the fifth latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H8-46" on page $1126$
H8-47	0x882F	AC drive state upon the fifth latest fault	0 to 65535	0	-	Unchangea ble	"H8-47" on page 1127
H8-48	0x8830	Power-on duration upon the fifth latest fault	0 min to 65535 min	0	min	Unchangea ble	"H8-48" on page   1127
H8-49	0x8831	Running duration upon the fifth latest fault	0.0 min to 6553.5 min	0.0	min	Unchangea ble	"H8-49" on page $1127$
H8-50	0x8832	Status word A upon the fifth latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H8-50" on page 1127
H8-51	$0 \times 8833$	Status word B upon the fifth latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H8-51" on page $1127$
H8-52	0x8834	Command word upon the fifth latest fault	0x0 to 0xFFFF	0x0	-	Unchangea ble	"H8-52" on page   1128
U0-00	0x7000	Running frequency	0.00 Hz to 500.00 Hz	0.00	Hz	Unchangea ble	" U0-00" on page $1128$
U0-01	0x7001	Frequency reference	0.00 Hz to 500.00 Hz	0.00	Hz	Unchangea ble	"U0-01" on page $1128$
U0-02	0x7002	Bus voltage	0.0 V to 6553.5 V	0.0	V	Unchangea ble	"U0-02" on page $1128$
U0-03	0x7003	Output voltage	0 V to 65535 V	0	V	Unchangea ble	$\begin{aligned} & \text { "U0-03" on page } \\ & 1128 \end{aligned}$
U0-04	0x7004	Output current	0.00 A to 655.35 A	0.00	A	Unchangea ble	" U0-04" on page $1129$
U0-05	0x7005	Output power	-3276.8 kW to +3276.7 kW	0.0	kW	Unchangea ble	" $U 0-05$ " on page 1129
U0-06	0x7006	Output torque	$-3276.8 \%$ to $+3276.7 \%$	0.0	\%	Unchangea ble	" U0-06" on page $1129$
U0-07	0x7007	DI state	0x0 to 0x7FFF	0x0	-	Unchangea ble	" U0-07" on page $1129$
U0-08	0x7008	DO state	0x0 to 0x7FFF	0x0	-	Unchangea ble	" $U 0-08$ " on page $1129$
U0-09	0x7009	Al1 voltage	-10.57 V to +10.57 V	0.00	V	Unchangea ble	" U0-09" on page $1130$
U0-10	0x700A	Al2 voltage	-10.57 V to +10.57 V	0.00	V	Unchangea ble	" $U 0-10$ " on page $1130$
U0-11	0x700B	Al3 voltage	-10.57 V to +10.57 V	0.00	V	Unchangea ble	"U0-11" on page $1130$
U0-12	0x700C	Count value	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "U0-12" on page } \\ & 1130 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
U0-13	0x700D	Length value	0 to 65535	0	-	Unchangea ble	" $U 0-13$ " on page 1130
U0-14	0x700E	Load speed	0 RPM to 65535 RPM	0	RPM	Unchangea ble	" U0-14" on page   1131
U0-15	0x700F	PID reference	0 to 65535	0	-	Unchangea ble	"U0-15" on page 1131
U0-16	0x7010	PID feedback	0 to 65535	0	-	Unchangea ble	" $U 0-16$ " on page   1131
U0-17	0x7011	PLC stage	0 to 65535	0	-	Unchangea ble	"U0-17" on page 1131
U0-18	0x7012	Pulse input frequency	0.00 kHz to 100.00 kHz	0.00	kHz	Unchangea ble	" $U 0-18$ " on page 1131
U0-19	0x7013	Feedback speed	-500 Hz to +500.00 Hz	0.00	Hz	Unchangea ble	"U0-19" on page 1131
U0-20	0x7014	Remaining running duration	0.0 min to 65535.0 min	0.0	min	Unchangea ble	" $U 0-20$ " on page 1132
U0-21	0x7015	Al1 voltage before correction	-10.57 V to +10.570 V	0.000	V	Unchangea ble	"U0-21" on page 1132
U0-22	0x7016	Al2 voltage before correction	-10.57 V to +10.570 V	0.000	V	Unchangea ble	"U0-22" on page 1132
U0-23	0x7017	Al3 voltage before correction	-10.57 V to +10.570 V	0.000	V	Unchangea ble	"U0-23" on page   1132
U0-24	0x7018	Motor speed	0 RPM to 65535 RPM	0	RPM	Unchangea ble	"U0-24" on page 1132
U0-25	0x7019	Current power-on duration	0 min to 65535 min	0	min	Unchangea ble	"U0-25" on page 1133
U0-26	0x701A	Current running duration	0.0 min to 6553.5 min	0.0	min	Unchangea ble	"U0-26" on page $1133$
U0-27	0x701B	Pulse input frequency	0 Hz to 65535 Hz	0	Hz	Unchangea ble	"U0-27" on page 1133
U0-28	0x701C	Communication reference	$-100 \%$ to $+100.00 \%$	0.00	\%	Unchangea ble	" $U 0-28$ " on page   1133
U0-29	0x701D	Encoder feedback speed	-500 Hz to +500.00 Hz	0.00	Hz	Unchangea ble	"U0-29" on page 1133
U0-30	0x701E	Main frequency $X$	-500 Hz to +500.00 Hz	0.00	Hz	Unchangea ble	"U0-30" on page   1134
U0-31	0x701F	Auxiliary frequency Y	-500 Hz to +500.00 Hz	0.00	Hz	Unchangea ble	"U0-31" on page 1134
U0-32	0x7020	Any memory   address	0 to 65535	0	-	Unchangea ble	"U0-32" on page 1134
U0-33	0x7021	Synchronous motor rotor position	$0.0^{\circ}$ to $6553.5^{\circ}$	0.0	-	Unchangea ble	"U0-33" on page   1134


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
U0-34	0x7022	Al3 temperature mode - motor temperature	$0^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$	0	${ }^{\circ} \mathrm{C}$	Unchangea ble	"U0-34" on page   1134
U0-35	0x7023	Target torque	$-200 \%$ to $+200.0 \%$	0.0	\%	Unchangea ble	"U0-35" on page   1135
U0-36	0x7024	Resolver position	0 to 65535	0	-	Unchangea ble	"U0-36" on page   1135
U0-37	0x7025	Power factor angle	$0.0^{\circ}$ to $6553.5^{\circ}$	0.0	-	Unchangea ble	"U0-37" on page   1135
U0-38	0x7026	ABZ position	0 to 65535	0	-	Unchangea ble	"U0-38" on page 1135
U0-39	0x7027	Target voltage upon   V/f separation	0 V to 65535 V	0	V	Unchangea ble	"U0-39" on page 1135
U0-40	0x7028	Output voltage upon V/f separation	0 V to 65535 V	0	V	Unchangea ble	"U0-40" on page $1136$
U0-45	0x702D	Fault subcode	0 to 65535	0	-	Unchangea ble	"U0-45" on page $1136$
U0-46	0x702E	Limit code	0.0 to 6553.5	0.0	-	Unchangea ble	"U0-46" on page $1136$
U0-50	0x7032	0.5 ms A hold-up time	0.0 ms to 6553.5 ms	0.0	ms	Unchangea ble	"U0-50" on page   1136
U0-51	0x7033	0.5 ms B hold-up time	0.0 ms to 6553.5 ms	0.0	ms	Unchangea ble	"U0-51" on page   1136
U0-52	0x7034	0.5 ms C hold-up time	0.0 ms to 6553.5 ms	0.0	ms	Unchangea ble	"U0-52" on page 1136
U0-53	0x7035	0.5 ms D hold-up time	0.0 ms to 6553.5 ms	0.0	ms	Unchangea ble	"U0-53" on page 1137
U0-54	0x7036	0.5 ms A execution time	0.0 ms to 6553.5 ms	0.0	ms	Unchangea ble	"U0-54" on page 1137
U0-55	0x7037	0.5 ms B execution time	0.0 ms to 6553.5 ms	0.0	ms	Unchangea ble	"U0-55" on page 1137
U0-56	0x7038	0.5 ms C execution time	0.0 ms to 6553.5 ms	0.0	ms	Unchangea ble	"U0-56" on page   1137
U0-57	0x7039	0.5 ms D execution time	0.0 ms to 6553.5 ms	0.0	ms	Unchangea ble	"U0-57" on page 1137
U0-58	0x703A	Motor running revolution count	0 to 65535	0	-	Unchangea ble	"U0-58" on page   1138
U0-59	0x703B	Frequency reference	$-100 \%$ to $+100.00 \%$	0.00	\%	Unchangea ble	"U0-59" on page   1138
U0-60	0x703C	Running frequency	$-100 \%$ to $+100.00 \%$	0.00	\%	Unchangea ble	"U0-60" on page   1138
U0-61	0x703D	AC drive state	0 to 65535	0	-	Unchangea ble	"U0-61" on page   1138


Para.	Comm.   Addr.	Name		De   fault	Unit	Change	Page


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
U0-81	0x7051	EtherCAT slave alias	0 to 65535	0	-	Unchangea ble	" $U 0-81$ " on page   1142
U0-82	0x7052	EtherCAT ESM transmission error code	0 to 65535	0	-	Unchangea ble	" $U 0-82$ " on page 1142
U0-83	0x7053	EtherCAT XML file version	0 to 65535	0	-	Unchangea ble	" $U 0-83$ " on page   1142
U0-84	0x7054	EtherCAT   synchronization loss count	0 to 65535	0	-	Unchangea ble	"U0-84" on page   1142
U0-85	0x7055	Maximum errors and invalid frames of EtherCAT port 0 per unit time	0 to 65535	0	-	Unchangea ble	" $U 0-85$ " on page   1142
U0-86	0x7056	Maximum errors and invalid frames of EtherCAT port 1 per unit time	0 to 65535	0	-	Unchangea ble	" U0-86" on page   1143
U0-87	0x7057	Maximum   forwarding errors of EtherCAT port per unit time	0 to 65535	0	-	Unchangea ble	"U0-87" on page 1143
U0-88	0x7058	Maximum error count of EtherCAT data frame processing unit per unit time	0 to 65535	0	-	Unchangea ble	" U0-88" on page   1143
U0-89	0x7059	Maximum link loss of EtherCAT port per unit time	0 to 65535	0	-	Unchangea ble	" U0-89" on page $1143$
U0-90	0x705A	DI function selection display 1	0 to 65535	0	-	Unchangea ble	"U0-90" on page 1143
U0-91	0x705B	DI function selection display 2	0 to 65535	0	-	Unchangea ble	"U0-91" on page   1144
U0-92	0x705C	DI function selection display 3	0 to 65535	0	-	Unchangea ble	"U0-92" on page 1144
U0-93	0x705D	DI function selection display 4	0 to 65535	0	-	Unchangea ble	"U0-93" on page   1144
U0-94	0x705E	DI function selection display 5	0 to 65535	0	-	Unchangea ble	"U0-94" on page   1144
U0-95	0x705F	STO initialization flag	0 to 65535	0	-	Unchangea ble	"U0-95" on page   1144
U0-96	0x7060	STO status word monitoring	0 to 65535	0	-	Unchangea ble	"U0-96" on page 1145


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
U0-97	0x7061	STO model	0x0 to 0xFFFF	0x0	-	Unchangea ble	$\begin{aligned} & \text { "U0-97" on page } \\ & 1145 \end{aligned}$
U0-98	0x7062	STO 1.2 V AD sampling value	0 to 65535	0	-	Unchangea ble	"U0-98" on page $1145$
U0-99	$0 \times 7063$	STO 5 V AD sampling value	0 to 65535	0	-	Unchangea ble	"U0-99" on page $1145$
U2-00	0x7200	Current motor parameter group	0 to 65535	0	-	Unchangea ble	"U2-00" on page $1145$
U2-01	0x7201	Current control channel	0 to 65535	0	-	Unchangea ble	"U2-01" on page 1146
U2-02	$0 \times 7202$	Current reference channel	0 to 65535	0	-	Unchangea ble	"U2-02" on page $1146$
U2-03	0x7203	Skip frequency flag	0 to 65535	0	-	Unchangea ble	"U2-03" on page   1146
U2-04	0x7204	Local or remote	0 to 65535	0	-	Unchangea ble	"U2-04" on page 1146
U2-05	$0 \times 7205$	Current multi-speed reference	0 to 65535	0	-	Unchangea ble	"U2-05" on page   1146
U2-06	0x7206	Current multi-speed reference effective value	0 to 65535	0	-	Unchangea ble	"U2-06" on page 1147
U2-07	0x7207	Key value	0 to 65535	0	-	Unchangea ble	" U2-07" on page   1147
U2-08	0x7208	Power-off time	0 to 65535	0	-	Unchangea ble	"U2-08" on page 1147
U2-09	0x7209	16-bit parameter error index menu address	0x0 to 0xFFFF	0x0	-	Unchangea ble	" U2-09" on page   1147
U2-10	0x720A	16-bit parameter error type	0 to 65535	0	-	Unchangea ble	"U2-10" on page 1147
U2-11	0x720B	32-bit parameter error internal index address	0 to 65535	0	-	Unchangea ble	"U2-11" on page 1148
U2-12	0x720C	32-bit parameter error internal index address	0 to 65535	0	-	Unchangea ble	"U2-12" on page   1148
U2-13	0x720D	Fault and limit severity	0 to 65535	0	-	Unchangea ble	"U2-13" on page   1148
U2-14	0x720E	Fault auto reset and restart steps	0 to 65535	0	-	Unchangea ble	"U2-14" on page $1148$
U2-23	$0 \times 7217$	Parameter backup exception	0 to 65535	0	-	Unchangea ble	"U2-23" on page   1148


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
U2-24	0x7218	Macro parameter   backup and   restoration   exception	0 to 65535	0	-	Unchangea ble	"U2-24" on page   1148
U2-25	0x7219	Remaining running duration during timed running	0.0 min to 6553.5 min	0.0	min	Unchangea ble	"U2-25" on page   1149
U2-26	0x721A	Parameter record information 0	0 to 65535	0	-	Unchangea ble	"U2-26" on page   1149
U2-27	0x721B	Parameter record information 1	0 to 65535	0	-	Unchangea ble	"U2-27" on page   1149
U2-28	0x721C	Parameter record information 2	0 to 65535	0	-	Unchangea ble	"U2-28" on page   1149
U2-29	0x721D	Parameter record information 3	0 to 65535	0	-	Unchangea ble	" U2-29" on page   1149
U2-30	0x721E	Parameter record information 4	0 to 65535	0	-	Unchangea ble	"U2-30" on page 1150
U2-31	0x721F	Parameter record information 5	0 to 65535	0	-	Unchangea ble	"U2-31" on page $1150$
U2-32	0x7220	Parameter record information 6	0 to 65535	0	-	Unchangea ble	"U2-32" on page $1150$
U2-33	0x7221	Parameter record information 7	0 to 65535	0	-	Unchangea ble	"U2-33" on page $1150$
U2-34	0x7222	Parameter record information 8	0 to 65535	0	-	Unchangea ble	"U2-34" on page $1150$
U2-35	0x7223	Parameter record information 9	0 to 65535	0	-	Unchangea ble	"U2-35" on page 1151
U2-36	0x7224	Parameter record information 10	0 to 65535	0	-	Unchangea ble	"U2-36" on page $1151$
U2-37	0x7225	Parameter record information 11	0 to 65535	0	-	Unchangea ble	"U2-37" on page 1151
U2-38	0x7226	Parameter record information 12	0 to 65535	0	-	Unchangea ble	"U2-38" on page $1151$
U2-39	0x7227	Parameter record information 13	0 to 65535	0	-	Unchangea ble	"U2-39" on page $1151$
U2-40	0x7228	Parameter record information 14	0 to 65535	0	-	Unchangea ble	" U2-40" on page $1152$
U2-41	0x7229	Parameter record information 15	0 to 65535	0	-	Unchangea ble	" U2-41" on page $1152$
U2-42	0x722A	Parameter record information 16	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "U2-42" on page } \\ & 1152 \end{aligned}$
U2-43	0x722B	Parameter record information 17	0 to 65535	0	-	Unchangea ble	"U2-43" on page $1152$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
U2-44	0x722C	Parameter record information 18	0 to 65535	0	-	Unchangea ble	" U2-44" on page 1152
U2-45	0x722D	Parameter record information 19	0 to 65535	0	-	Unchangea ble	"U2-45" on page 1153
U2-46	0x722E	Parameter record information 20	0 to 65535	0	-	Unchangea ble	"U2-46" on page 1153
U2-47	0x722F	Parameter record information 21	0 to 65535	0	-	Unchangea ble	" U2-47" on page $1153$
U2-48	0x7230	Parameter record information 22	0 to 65535	0	-	Unchangea ble	"U2-48" on page $1153$
U2-49	0x7231	Parameter record information 23	0 to 65535	0	-	Unchangea ble	"U2-49" on page 1153
U2-50	0x7232	Parameter record information 24	0 to 65535	0	-	Unchangea ble	"U2-50" on page 1153
U2-51	0x7233	Parameter record information 25	0 to 65535	0	-	Unchangea ble	"U2-51" on page 1154
U2-52	0x7234	Parameter record information 26	0 to 65535	0	-	Unchangea ble	"U2-52" on page 1154
U2-60	0x723C	Address mapping enable state	0 to 65535	0	-	Unchangea ble	" U2-60" on page 1154
U2-61	0x723D	Expansion card communication fault state	0 to 65535	0	-	Unchangea ble	"U2-61" on page 1154
U2-62	0x723E	Communication fault reset command	0 to 65535	0	-	Unchangea ble	"U2-62" on page   1154
U2-63	0x723F	Communication warning flag	0 to 65535	0	-	Unchangea ble	"U2-63" on page 1155
U2-64	0x7240	16-bit parameter error internal index address	0 to 65535	0	-	Unchangea ble	"U2-64" on page 1155
U2-65	0x7241	Power-on   initialization   completion flag	0 to 65535	0	-	Unchangea ble	" U2-65" on page 1155
U2-66	0x7242	Model-related parameter update flag	0 to 65535	0	-	Unchangea ble	" U2-66" on page 1155
U3-12	0x730C	Master state	0 to 65535	0	-	Unchangea ble	"U3-12" on page 1155
U3-13	0x730D	Master frequency	0 to 65535	0	-	Unchangea ble	"U3-13" on page $1156$
U3-14	0x730E	Master torque	0 to 65535	0	-	Unchangea ble	"U3-14" on page 1156


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
U3-15	0x730F	Master phase sequence	0 to 65535	0	-	Unchangea ble	"U3-15" on page $1156$
U3-16	0x7310	Communication frequency reference	0.00 Hz to 655.35 Hz	0.00	Hz	Unchangea ble	"U3-16" on page 1156
U3-17	0x7311	Communication reference control word	0 to 65535	0	-	Unchangea ble	"U3-17" on page $1156$
U3-18	0x7312	DO state (terminal function defined by parameters in group F5: communication control)	0 to 65535	0	-	Unchangea ble	"U3-18" on page   1157
U3-19	$0 \times 7313$	AO1 output reference (terminal function defined by parameters in group F5: communication control)	0\% to 65535\%	0	\%	Unchangea ble	"U3-19" on page 1157
U3-20	0x7314	AO2 output reference (terminal function defined by parameters in group F5: communication control)	0\% to 65535\%	0	\%	Unchangea ble	" U3-20" on page 1157
U3-21	0x7315	HDO output reference (terminal function defined by parameters in group F5: communication control)	0\% to 65535\%	0	\%	Unchangea ble	"U3-21" on page 1157
U3-22	0x7316	Command input through communication	0 to 65535	0	-	Unchangea ble	"U3-22" on page 1157
U3-23	0x7317	Speed reference input through communication	0 RPM to 65535 RPM	0	RPM	Unchangea ble	"U3-23" on page $1158$
U3-24	0x7318	Communication card type	0 to 65535	0	-	Unchangea ble	"U3-24" on page 1158
U3-25	0x7319	Communication card version	0 to 65535	0	-	Unchangea ble	"U3-25" on page 1158
U3-28	0x731C	EtherCAT station alias	0 to 65535	0	-	Changeable at any time	$\begin{aligned} & \text { "U3-28" on page } \\ & 1158 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
U3-35	0x7323	EtherCAT card information 1	0 to 65535	0	-	Unchangea ble	"U3-35" on page $1158$
U3-36	0x7324	EtherCAT card information 2	0 to 65535	0	-	Unchangea ble	"U3-36" on page $1159$
U3-37	0x7325	EtherCAT card information 3	0 to 65535	0	-	Unchangea ble	"U3-37" on page $1159$
U3-38	0x7326	EtherCAT card information 4	0 to 65535	0	-	Unchangea ble	"U3-38" on page 1159
U3-39	$0 \times 7327$	EtherCAT card information 5	0 to 65535	0	-	Unchangea ble	"U3-39" on page $1159$
U3-40	0x7328	EtherCAT card information 6	0 to 65535	0	-	Unchangea ble	"U3-40" on page   1159
U3-41	0x7329	EtherCAT card information 7	0 to 65535	0	-	Unchangea ble	"U3-41" on page $1160$
U3-42	0x732A	EtherCAT card information 8	0 to 65535	0	-	Unchangea ble	"U3-42" on page $1160$
U3-43	0x732B	EtherCAT card information 9	0 to 65535	0	-	Unchangea ble	"U3-43" on page $1160$
U3-44	0x732C	EtherNet/IP error	0 to 65535	0	-	Unchangea ble	"U3-44" on page $1160$
U3-50	0x7332	LED control word	0 to 65535	0	-	Unchangea ble	" U3-50" on page $1160$
U3-51	$0 \times 7333$	Background control word	0 to 65535	0	-	Unchangea ble	"U3-51" on page $1161$
U3-52	0x7334	SOP control word	0 to 65535	0	-	Unchangea ble	"U3-52" on page 1161
U3-53	0x7335	Remote call	0 to 65535	0	-	Unchangea ble	"U3-53" on page   1161
U3-54	$0 \times 7336$	Control word set through communication	0 to 65535	0	-	Unchangea ble	"U3-54" on page $1161$
U3-55	0x7337	Target speed set through communication	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"U3-55" on page 1161
U3-56	0x7338	MD500 compatible status word	0 to 65535	0	-	Unchangea ble	"U3-56" on page   1162
U3-57	0x7339	MD500 compatible LCD command word	0 to 65535	0	-	Unchangea ble	"U3-57" on page   1162
U3-58	0x733A	MD500 compatible IDS command word	0 to 65535	0	-	Unchangea ble	" U3-58" on page 1162
U3-59	0x733B	MD500 compatible   1000 H speed   reference	0.00\% to 655.35\%	0.00	\%	Unchangea ble	"U3-59" on page 1162


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L0-00	0x9000	DI1 drive sampling state	0 to 65535	0	-	Unchangea ble	"LO-00" on page   1162
L0-01	0x9001	DI2 drive sampling state	0 to 65535	0	-	Unchangea ble	"L0-01" on page   1163
L0-02	0x9002	DI3 drive sampling state	0 to 65535	0	-	Unchangea ble	"LO-02" on page 1163
L0-03	0x9003	DI4 drive sampling state	0 to 65535	0	-	Unchangea ble	"LO-03" on page $1163$
L0-04	0x9004	DI5 drive sampling state	0 to 65535	0	-	Unchangea ble	"L0-04" on page $1163$
L0-05	0x9005	DI6 drive sampling state	0 to 65535	0	-	Unchangea ble	"L0-05" on page 1163
L0-06	0x9006	DI7 drive sampling state	0 to 65535	0	-	Unchangea ble	"L0-06" on page   1164
L0-07	0x9007	DI8 drive sampling state	0 to 65535	0	-	Unchangea ble	"L0-07" on page   1164
L0-08	0x9008	DI9 drive sampling state	0 to 65535	0	-	Unchangea ble	"L0-08" on page 1164
L0-09	0x9009	DIIO drive sampling state	0 to 65535	0	-	Unchangea ble	"L0-09" on page 1164
L0-10	0x900A	AIIAsDI final output state	0 to 65535	0	-	Unchangea ble	"L0-10" on page 1164
L0-11	0x900B	AI2AsDI final output state	0 to 65535	0	-	Unchangea ble	"L0-11" on page 1164
L0-12	0x900C	AI3AsDI final output state	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L0-12" on page } \\ & 1165 \end{aligned}$
L0-13	0x900D	Al1AsDI inversion state	0 to 65535	0	-	Unchangea ble	"L0-13" on page $1165$
L0-14	0x900E	AI2AsDI inversion state	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L0-14" on page } \\ & 1165 \end{aligned}$
L0-15	0x900F	Al3AsDI inversion state	0 to 65535	0	-	Unchangea ble	"L0-15" on page 1165
L0-16	0x9010	DI1 drive output state	0 to 65535	0	-	Unchangea ble	"L0-16" on page 1165
L0-17	$0 \times 9011$	DI2 drive output state	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L0-17" on page } \\ & 1166 \end{aligned}$
L0-18	$0 \times 9012$	DI3 drive output state	0 to 65535	0	-	Unchangea ble	"L0-18" on page 1166
L0-19	$0 \times 9013$	DI4 drive output state	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L0-19" on page } \\ & 1166 \end{aligned}$
L0-20	0x9014	DI5 drive output state	0 to 65535	0	-	Unchangea ble	"LO-20" on page $1166$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L0-21	0x9015	DI6 drive output state	0 to 65535	0	-	Unchangea ble	"L0-21" on page 1166
L0-22	0x9016	DI7 drive output state	0 to 65535	0	-	Unchangea ble	"L0-22" on page 1167
L0-23	0x9017	DI8 drive output state	0 to 65535	0	-	Unchangea ble	"L0-23" on page 1167
L0-24	0x9018	DI9 drive output state	0 to 65535	0	-	Unchangea ble	"L0-24" on page 1167
L0-25	0x9019	DI10 drive output state	0 to 65535	0	-	Unchangea ble	"L0-25" on page   1167
L0-26	0x901A	VDI1 drive output state	0 to 65535	0	-	Unchangea ble	"L0-26" on page   1167
L0-27	0x901B	VDI2 drive output state	0 to 65535	0	-	Unchangea ble	"L0-27" on page $1168$
L0-28	0x901C	VDI3 drive output state	0 to 65535	0	-	Unchangea ble	"L0-28" on page   1168
L0-29	0x901D	VDI4 drive output state	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L0-29" on page } \\ & 1168 \end{aligned}$
L0-30	0x901E	VDI5 drive output state	0 to 65535	0	-	Unchangea ble	"L0-30" on page $1168$
L0-31	0x901F	VDI6 drive output state	0 to 65535	0	-	Unchangea ble	"L0-31" on page 1168
L0-32	0x9020	DI1 final output state	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "LO-32" on page } \\ & 1169 \end{aligned}$
L0-33	0x9021	DI2 final output state	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "LO-33" on page } \\ & 1169 \end{aligned}$
L0-34	0x9022	DI3 final output state	0 to 65535	0	-	Unchangea ble	"L0-34" on page   1169
L0-35	0x9023	DI4 final output state	0 to 65535	0	-	Unchangea ble	"L0-35" on page   1169
L0-36	0x9024	DI5 final output state	0 to 65535	0	-	Unchangea ble	"L0-36" on page 1169
L0-37	0x9025	DI6 final output state	0 to 65535	0	-	Unchangea ble	"L0-37" on page 1169
L0-38	0x9026	DI7 final output state	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L0-38" on page } \\ & 1170 \end{aligned}$
L0-39	0x9027	DI8 final output state	0 to 65535	0	-	Unchangea ble	"L0-39" on page   1170
L0-40	0x9028	DI9 final output state	0 to 65535	0	-	Unchangea ble	"LO-40" on page   1170
L0-41	0x9029	DIIO final output state	0 to 65535	0	-	Unchangea ble	"L0-41" on page $1170$


Para.	Comm.   Addr.	Name		De   fault	Unit	Change	Page


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L0-63	0x903F	VDI6 inversion state	0 to 65535	0	-	Unchangea ble	"L0-63" on page   1174
L0-64	0x9040	Relay 1 (DO3) state before filtering	0 to 65535	0	-	Unchangea ble	"L0-64" on page $1175$
L0-65	0x9041	FMR state before filtering	0 to 65535	0	-	Unchangea ble	"L0-65" on page $1175$
L0-66	$0 \times 9042$	DO1 state before filtering	0 to 65535	0	-	Unchangea ble	"LO-66" on page   1175
L0-67	0x9043	Relay 2 (DO4) state before filtering	0 to 65535	0	-	Unchangea ble	"L0-67" on page $1175$
L0-68	0x9044	DO2 state before filtering	0 to 65535	0	-	Unchangea ble	"L0-68" on page   1175
L0-69	0x9045	VDO1 state before filtering	0 to 65535	0	-	Unchangea ble	"L0-69" on page   1176
L0-70	0x9046	VDO2 state before filtering	0 to 65535	0	-	Unchangea ble	"L0-70" on page   1176
L0-71	0x9047	VDO3 state before filtering	0 to 65535	0	-	Unchangea ble	"L0-71" on page 1176
L0-72	0x9048	VDO4 state before filtering	0 to 65535	0	-	Unchangea ble	"LO-72" on page   1176
L0-73	0x9049	VDO5 state before filtering	0 to 65535	0	-	Unchangea ble	"L0-73" on page $1176$
L0-74	0x904A	VD06 state before filtering	0 to 65535	0	-	Unchangea ble	"LO-74" on page   1177
L0-75	0x904B	VD07 state before filtering	0 to 65535	0	-	Unchangea ble	"L0-75" on page   1177
L0-76	0x904C	VD08 state before filtering	0 to 65535	0	-	Unchangea ble	"LO-76" on page   1177
L0-77	0x904D	VD09 state before filtering	0 to 65535	0	-	Unchangea ble	"LO-77" on page   1177
L0-78	0x904E	VDO10 state before filtering	0 to 65535	0	-	Unchangea ble	"L0-78" on page   1177
L0-79	0x904F	VDO11 state before filtering	0 to 65535	0	-	Unchangea ble	"L0-79" on page $1178$
L0-80	0x9050	Relay 1 (DO3) final output state	0 to 65535	0	-	Unchangea ble	"L0-80" on page   1178
L0-81	0x9051	FMR final output state	0 to 65535	0	-	Unchangea ble	"L0-81" on page $1178$
L0-82	0x9052	DO1 final output state	0 to 65535	0	-	Unchangea ble	"L0-82" on page $1178$
L0-83	0x9053	Relay 2 (DO4) final output state	0 to 65535	0	-	Unchangea ble	"L0-83" on page $1178$


Para.	Comm.   Addr.	Name		De   fault	Unit	Change	Page


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L1-04	0x9104	Comparison result of DIO edge counting module 2	0 to 65535	0	-	Unchangea ble	"L1-04" on page   1182
L1-05	0x9105	Comparison result of DIO edge counting module 3	0 to 65535	0	-	Unchangea ble	"L1-05" on page $1183$
L1-06	0x9106	Comparison result of DIO edge counting module 4	0 to 65535	0	-	Unchangea ble	"L1-06" on page 1183
L1-07	0x9107	Al2 or Al3   temperature mode -   motor temperature   reach	0 to 65535	0	-	Unchangea ble	"L1-07" on page   1183
L1-08	0x9108	Al2 or Al3   temperature mode -   motor   overtemperature	0 to 65535	0	-	Unchangea ble	"L1-08" on page   1183
L1-09	0x9109	Al2 temperature mode - motor overtemperature	0 to 65535	0	-	Unchangea ble	"L1-09" on page $1183$
L1-10	0x910A	Al3 temperature mode - motor overtemperature	0 to 65535	0	-	Unchangea ble	"L1-10" on page 1184
L1-11	0x910B	IGBT temperature reach (flag)	0 to 65535	0	-	Unchangea ble	"L1-11" on page 1184
L1-12	0x910C	Ready to switch on	0 to 65535	0	-	Unchangea ble	"L1-12" on page 1184
L1-13	0x910D	Ready to run	0 to 65535	0	-	Unchangea ble	"L1-13" on page 1184
L1-14	0x910E	Running	0 to 65535	0	-	Unchangea ble	"L1-14" on page 1184
L1-15	0x910F	Faulty	0 : Not faulty   1: Faulty	0	-	Unchangea ble	"L1-15" on page 1185
L1-16	$0 \times 9110$	OFF2 inactive	$\begin{aligned} & 0: \text { Active }(\mathrm{OFF2}=0) \\ & \text { 1: Inactive }(\mathrm{OFF2}=1) \end{aligned}$	0	-	Unchangea ble	"L1-16" on page 1185
L1-17	$0 \times 9111$	OFF3 inactive	0 : Active (OFF3 = 0)   1: Inactive (OFF3 = 1)	0	-	Unchangea ble	"L1-17" on page $1185$
L1-18	$0 \times 9112$	Switch-on blocking	0 to 65535	0	-	Unchangea ble	"L1-18" on page $1185$
L1-19	$0 \times 9113$	Alarm/Limit activation	0 to 65535	0	-	Unchangea ble	"L1-19" on page 1185
L1-20	$0 \times 9114$	Actual speed following speed reference	0 to 65535	0	-	Unchangea ble	"L1-20" on page   1186


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L1-21	0x9115	Local or remote	0: Local   1: Remote	0	-	Unchangea ble	"L1-21" on page $1186$
L1-22	0x9116	Target speed reach	0 to 65535	0	-	Unchangea ble	"L1-22" on page 1186
L1-23	0x9117	Torque limit reach	0 to 65535	0	-	Unchangea ble	"L1-23" on page 1186
L1-24	0x9118	Forward speed	0 to 65535	0	-	Unchangea ble	"L1-24" on page 1186
L1-25	0x9119	Reverse speed	0 to 65535	0	-	Unchangea ble	"L1-25" on page 1187
L1-26	0x911A	Motor running flag	0 : Stopped   1: Running (pulse output)	0	-	Unchangea ble	"L1-26" on page 1187
L1-27	0x911B	User setting 0	0 to 65535	0	-	Unchangea ble	"L1-27" on page 1187
L1-28	0x911C	Self-check	0 to 65535	0	-	Unchangea ble	"L1-28" on page 1187
L1-29	0x911D	Auto-tuning	0 to 65535	0	-	Unchangea ble	"L1-29" on page 1187
L1-30	0x911E	Limit (running with limits) activation	0 to 65535	0	-	Unchangea ble	"L1-30" on page 1188
L1-31	0x911F	Alarm activation	0 to 65535	0	-	Unchangea ble	"L1-31" on page 1188
L1-32	0x9120	Speed mode	0 to 65535	0	-	Unchangea ble	"L1-32" on page 1188
L1-33	0x9121	Torque mode	0 to 65535	0	-	Unchangea ble	"L1-33" on page 1188
L1-34	0x9122	Position mode	0 to 65535	0	-	Unchangea ble	"L1-34" on page $1188$
L1-35	0x9123	RFG enable	0 to 65535	0	-	Unchangea ble	"L1-35" on page 1189
L1-36	0x9124	RFG running	0 to 65535	0	-	Unchangea ble	"L1-36" on page 1189
L1-37	0x9125	Stop upon fault	0 to 65535	0	-	Unchangea ble	"L1-37" on page 1189
L1-38	0x9126	Normal running	0 to 65535	0	-	Unchangea ble	"L1-38" on page 1189
L1-39	0x9127	Jogging	0 to 65535	0	-	Unchangea ble	"L1-39" on page 1189
L1-42	0x912A	Terminal control flag	0 to 65535	0	-	Unchangea ble	"L1-42" on page $1190$
L1-43	0x912B	User setting 1	0 to 65535	0	-	Unchangea ble	"L1-43" on page $1190$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L1-44	0x912C	Control channel	0 : Control channel 1   1: Control channel 2	0		Unchangea ble	$\begin{aligned} & \text { "L1-44" on page } \\ & 1190 \end{aligned}$
L1-45	0x912D	Reference channel	0 : Reference channel 1   1: Reference channel 2	0	-	Unchangea ble	"L1-45" on page $1190$
L1-60	0x913C	Excessive speed deviation	0 to 65535	0	-	Unchangea ble	"L1-60" on page $1190$
L1-61	0x913D	Overspeed	0 to 65535	0	-	Unchangea ble	"L1-61" on page 1191
L1-62	0x913E	Target speed reach	0 to 65535	0	-	Unchangea ble	"L1-62" on page 1191
L1-63	0x913F	Speed comparison reach 0	0 to 65535	0	-	Unchangea ble	"L1-63" on page 1191
L1-64	0x9140	Speed comparison reach 1	0 to 65535	0	-	Unchangea ble	"L1-64" on page $1191$
L1-65	0x9141	Motor speed positive	0 to 65535	0	-	Unchangea ble	"L1-65" on page $1191$
L1-66	0x9142	Motor speed negative	0 to 65535	0	-	Unchangea ble	"L1-66" on page 1191
L1-76	0x914C	Bit0 of W2B module   A	0 to 65535	0	-	Unchangea ble	"L1-76" on page   1192
L1-77	0x914D	Bit1 of W2B module A	0 to 65535	0	-	Unchangea ble	"L1-77" on page $1192$
L1-78	0x914E	Bit2 of W2B module   A	0 to 65535	0	-	Unchangea ble	"L1-78" on page $1192$
L1-79	0x914F	Bit3 of W2B module   A	0 to 65535	0	-	Unchangea ble	"L1-79" on page $1192$
L1-80	0x9150	Bit4 of W2B module   A	0 to 65535	0	-	Unchangea ble	"L1-80" on page $1192$
L1-81	0x9151	Bit5 of W2B module   A	0 to 65535	0	-	Unchangea ble	"L1-81" on page $1193$
L1-82	0x9152	Bit6 of W2B module   A	0 to 65535	0	-	Unchangea ble	"L1-82" on page 1193
L1-83	0x9153	Bit7 of W2B module   A	0 to 65535	0	-	Unchangea ble	"L1-83" on page $1193$
L1-84	0x9154	Bit8 of W2B module   A	0 to 65535	0	-	Unchangea ble	"L1-84" on page $1193$
L1-85	0x9155	Bit9 of W2B module   A	0 to 65535	0	-	Unchangea ble	"L1-85" on page $1193$
L1-86	0x9156	Bit10 of W2B module A	0 to 65535	0	-	Unchangea ble	"L1-86" on page 1194
L1-87	0x9157	Bit11 of W2B module A	0 to 65535	0	-	Unchangea ble	"L1-87" on page 1194


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L1-88	0x9158	Bit12 of W2B module A	0 to 65535	0	-	Unchangea ble	"L1-88" on page   1194
L1-89	0x9159	Bit13 of W2B module A	0 to 65535	0	-	Unchangea ble	"L1-89" on page   1194
L1-90	0x915A	Bit14 of W2B module A	0 to 65535	0	-	Unchangea ble	"L1-90" on page   1194
L1-91	0x915B	Bit15 of W2B module A	0 to 65535	0	-	Unchangea ble	"L1-91" on page $1195$
L1-92	0x915C	Bit0 of W2B module B	0 to 65535	0	-	Unchangea ble	"L1-92" on page   1195
L1-93	0x915D	Bit1 of W2B module B	0 to 65535	0	-	Unchangea ble	"L1-93" on page $1195$
L1-94	0x915E	Bit2 of W2B module B	0 to 65535	0	-	Unchangea ble	"L1-94" on page 1195
L1-95	0x915F	Bit3 of W2B module B	0 to 65535	0	-	Unchangea ble	"L1-95" on page $1195$
L1-96	0x9160	Bit4 of W2B module B	0 to 65535	0	-	Unchangea ble	"L1-96" on page $1196$
L1-97	0x9161	Bit5 of W2B module B	0 to 65535	0	-	Unchangea ble	"L1-97" on page $1196$
L1-98	0x9162	Bit6 of W2B module B	0 to 65535	0	-	Unchangea ble	"L1-98" on page $1196$
L1-99	0x9163	Bit7 of W2B module B	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L1-99" on page } \\ & 1196 \end{aligned}$
L2-00	0x9200	Bit8 of W2B module B	0 to 65535	0	-	Unchangea ble	"L2-00" on page 1196
L2-01	0x9201	Bit9 of W2B module B	0 to 65535	0	-	Unchangea ble	"L2-01" on page 1197
L2-02	0x9202	Bit10 of W2B module B	0 to 65535	0	-	Unchangea ble	"L2-02" on page 1197
L2-03	0x9203	Bit11 of W2B module B	0 to 65535	0	-	Unchangea ble	"L2-03" on page 1197
L2-04	0x9204	Bit12 of W2B module B	0 to 65535	0	-	Unchangea ble	"L2-04" on page 1197
L2-05	0x9205	Bit13 of W2B module B	0 to 65535	0	-	Unchangea ble	"L2-05" on page $1197$
L2-06	0x9206	Bit14 of W2B module B	0 to 65535	0	-	Unchangea ble	"L2-06" on page   1198
L2-07	0x9207	Bit15 of W2B module B	0 to 65535	0	-	Unchangea ble	"L2-07" on page $1198$
L2-08	0x9208	Bit0 of W2B module   C	0 to 65535	0	-	Unchangea ble	"L2-08" on page $1198$


Para.	Comm.   Addr.	Name		Deference   fault	Unit	Change	Page


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L2-30	0x921E	Bit6 of W2B module   D	0 to 65535	0	-	Unchangea ble	"L2-30" on page $1202$
L2-31	0x921F	Bit7 of W2B module D	0 to 65535	0	-	Unchangea ble	"L2-31" on page $1202$
L2-32	0x9220	Bit8 of W2B module D	0 to 65535	0	-	Unchangea ble	"L2-32" on page $1203$
L2-33	$0 \times 9221$	Bit9 of W2B module D	0 to 65535	0	-	Unchangea ble	"L2-33" on page   1203
L2-34	0x9222	Bit10 of W2B module D	0 to 65535	0	-	Unchangea ble	"L2-34" on page $1203$
L2-35	0x9223	Bit11 of W2B module D	0 to 65535	0	-	Unchangea ble	"L2-35" on page $1203$
L2-36	0x9224	Bit12 of W2B module D	0 to 65535	0	-	Unchangea ble	"L2-36" on page   1203
L2-37	$0 \times 9225$	Bit13 of W2B module D	0 to 65535	0	-	Unchangea ble	"L2-37" on page   1203
L2-38	$0 \times 9226$	Bit14 of W2B module D	0 to 65535	0	-	Unchangea ble	"L2-38" on page   1204
L2-39	$0 \times 9227$	Bit15 of W2B module D	0 to 65535	0	-	Unchangea ble	"L2-39" on page $1204$
L2-40	0x9228	Bit0 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-40" on page $1204$
L2-41	0x9229	Bit1 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-41" on page $1204$
L2-42	0x922A	Bit2 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-42" on page   1204
L2-43	0x922B	Bit3 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-43" on page   1205
L2-44	0x922C	Bit4 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-44" on page $1205$
L2-45	0x922D	Bit5 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-45" on page $1205$
L2-46	0x922E	Bit6 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-46" on page   1205
L2-47	0x922F	Bit7 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-47" on page $1205$
L2-48	0x9230	Bit8 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-48" on page $1206$
L2-49	$0 \times 9231$	Bit9 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-49" on page $1206$
L2-50	0x9232	Bit10 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-50" on page $1206$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
L2-51	0x9233	Bit11 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-51" on page $1206$
L2-52	0x9234	Bit12 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-52" on page $1206$
L2-53	0x9235	Bit13 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-53" on page 1207
L2-54	0x9236	Bit14 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-54" on page   1207
L2-55	0x9237	Bit15 of W2B module E	0 to 65535	0	-	Unchangea ble	"L2-55" on page 1207
L2-56	0x9238	Bit0 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-56" on page 1207
L2-57	0x9239	Bit1 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-57" on page 1207
L2-58	0x923A	Bit2 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-58" on page 1208
L2-59	0x923B	Bit3 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-59" on page 1208
L2-60	0x923C	Bit4 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-60" on page 1208
L2-61	0x923D	Bit5 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-61" on page 1208
L2-62	0x923E	Bit6 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-62" on page 1208
L2-63	0x923F	Bit7 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-63" on page 1208
L2-64	0×9240	Bit8 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-64" on page $1209$
L2-65	0x9241	Bit9 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-65" on page $1209$
L2-66	0x9242	Bit10 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-66" on page   1209
L2-67	0x9243	Bit11 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-67" on page 1209
L2-68	0×9244	Bit12 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-68" on page 1209
L2-69	0x9245	Bit13 of W2B module $F$	0 to 65535	0	-	Unchangea ble	"L2-69" on page $1210$
L2-70	0×9246	Bit14 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-70" on page 1210
L2-71	0×9247	Bit15 of W2B module F	0 to 65535	0	-	Unchangea ble	"L2-71" on page 1210


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L2-72	0x9248	Bit0 of W2B module G	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L2-72" on page } \\ & 1210 \end{aligned}$
L2-73	0x9249	Bit1 of W2B module G	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L2-73" on page } \\ & 1210 \end{aligned}$
L2-74	0x924A	Bit2 of W2B module G	0 to 65535	0	-	Unchangea ble	"L2-74" on page $1211$
L2-75	0x924B	Bit3 of W2B module G	0 to 65535	0	-	Unchangea ble	"L2-75" on page 1211
L2-76	0x924C	Bit4 of W2B module G	0 to 65535	0	-	Unchangea ble	"L2-76" on page 1211
L2-77	0x924D	Bit5 of W2B module G	0 to 65535	0	-	Unchangea ble	"L2-77" on page 1211
L2-78	0x924E	Bit6 of W2B module G	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L2-78" on page } \\ & 1211 \end{aligned}$
L2-79	0x924F	Bit7 of W2B module G	0 to 65535	0	-	Unchangea ble	"L2-79" on page 1212
L2-80	0x9250	Bit8 of W2B module G	0 to 65535	0	-	Unchangea ble	"L2-80" on page $1212$
L2-81	0x9251	Bit9 of W2B module G	0 to 65535	0	-	Unchangea ble	"L2-81" on page $1212$
L2-82	0x9252	Bit10 of W2B module G	0 to 65535	0	-	Unchangea ble	"L2-82" on page $1212$
L2-83	0x9253	Bit11 of W2B module G	0 to 65535	0	-	Unchangea ble	"L2-83" on page $1212$
L2-84	0x9254	Bit12 of W2B module G	0 to 65535	0	-	Unchangea ble	"L2-84" on page   1213
L2-85	0x9255	Bit13 of W2B module G	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L2-85" on page } \\ & 1213 \end{aligned}$
L2-86	0x9256	Bit14 of W2B module G	0 to 65535	0	-	Unchangea ble	"L2-86" on page $1213$
L2-87	0x9257	Bit15 of W2B module G	0 to 65535	0	-	Unchangea ble	"L2-87" on page   1213
L2-88	0x9258	Bit0 of W2B module H	0 to 65535	0	-	Unchangea ble	"L2-88" on page $1213$
L2-89	0x9259	Bit1 of W2B module H	0 to 65535	0	-	Unchangea ble	"L2-89" on page $1213$
L2-90	0x925A	Bit2 of W2B module   H	0 to 65535	0	-	Unchangea ble	"L2-90" on page 1214
L2-91	0x925B	Bit3 of W2B module H	0 to 65535	0	-	Unchangea ble	"L2-91" on page 1214
L2-92	0x925C	Bit4 of W2B module   H	0 to 65535	0	-	Unchangea ble	"L2-92" on page $1214$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
L2-93	0x925D	Bit5 of W2B module   H	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L2-93" on page } \\ & 1214 \end{aligned}$
L2-94	0x925E	Bit6 of W2B module	0 to 65535	0	-	Unchangea ble	"L2-94" on page   1214
L2-95	0x925F	Bit7 of W2B module   H	0 to 65535	0	-	Unchangea ble	"L2-95" on page $1215$
L2-96	0x9260	Bit8 of W2B module   H	0 to 65535	0	-	Unchangea ble	"L2-96" on page 1215
L2-97	0x9261	Bit9 of W2B module H	0 to 65535	0	-	Unchangea ble	"L2-97" on page $1215$
L2-98	0x9262	Bit10 of W2B module H	0 to 65535	0	-	Unchangea ble	"L2-98" on page 1215
L2-99	$0 \times 9263$	Bit11 of W2B module H	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L2-99" on page } \\ & 1215 \end{aligned}$
L3-00	0x9300	Bit12 of W2B module H	0 to 65535	0	-	Unchangea ble	"L3-00" on page $1216$
L3-01	0x9301	Bit13 of W2B module H	0 to 65535	0	-	Unchangea ble	"L3-01" on page $1216$
L3-02	0x9302	Bit14 of W2B module H	0 to 65535	0	-	Unchangea ble	"L3-02" on page $1216$
L3-03	0x9303	Bit15 of W2B module H	0 to 65535	0	-	Unchangea ble	"L3-03" on page $1216$
L3-04	0x9304	Output of binary selector module A	0 to 65535	0	-	Unchangea ble	"L3-04" on page $1216$
L3-05	0x9305	Output of binary selector module B	0 to 65535	0	-	Unchangea ble	"L3-05" on page 1217
L3-06	0x9306	Output of binary selector module C	0 to 65535	0	-	Unchangea ble	"L3-06" on page 1217
L3-07	0x9307	Output of binary selector module D	0 to 65535	0	-	Unchangea ble	"L3-07" on page $1217$
L3-08	0x9308	Output of binary selector module E	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L3-08" on page } \\ & 1217 \end{aligned}$
L3-09	0x9309	Output of binary selector module $F$	0 to 65535	0	-	Unchangea ble	"L3-09" on page 1217
L3-10	0x930A	Output of binary selector module G	0 to 65535	0	-	Unchangea ble	"L3-10" on page   1218
L3-11	0x930B	Output of binary selector module H	0 to 65535	0	-	Unchangea ble	"L3-11" on page $1218$
L3-20	0x9314	Output of logic delay module A	0 to 65535	0	-	Unchangea ble	"L3-20" on page $1218$
L3-21	0x9315	Output of logic delay module B	0 to 65535	0	-	Unchangea ble	"L3-21" on page $1218$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L3-22	0x9316	Output of logic delay module C	0 to 65535	0	-	Unchangea ble	"L3-22" on page $1218$
L3-23	$0 \times 9317$	Output of logic delay module D	0 to 65535	0	-	Unchangea ble	"L3-23" on page $1219$
L3-24	0x9318	Output of logic delay module E	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L3-24" on page } \\ & 1219 \end{aligned}$
L3-25	0x9319	Output of logic delay module F	0 to 65535	0	-	Unchangea ble	"L3-25" on page   1219
L3-26	0x931A	Output of logic delay module G	0 to 65535	0	-	Unchangea ble	"L3-26" on page   1219
L3-27	0x931B	Output of logic delay module H	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L3-27" on page } \\ & 1219 \end{aligned}$
L3-36	0×9324	Output of logic AND-OR module A	0 to 65535	0	-	Unchangea ble	"L3-36" on page   1220
L3-37	0x9325	Output of logic AND-OR module B	0 to 65535	0	-	Unchangea ble	"L3-37" on page   1220
L3-38	0x9326	Output of logic   AND-OR module C	0 to 65535	0	-	Unchangea ble	"L3-38" on page   1220
L3-39	$0 \times 9327$	Output of logic   AND-OR module D	0 to 65535	0	-	Unchangea ble	"L3-39" on page   1220
L3-40	0x9328	Output of logic AND-OR module E	0 to 65535	0	-	Unchangea ble	"L3-40" on page   1220
L3-41	0x9329	Output of logic AND-OR module F	0 to 65535	0	-	Unchangea ble	"L3-41" on page   1220
L3-42	0x932A	Output of logic AND-OR module G	0 to 65535	0	-	Unchangea ble	"L3-42" on page   1221
L3-43	0x932B	Output of logic   AND-OR module H	0 to 65535	0	-	Unchangea ble	"L3-43" on page   1221
L3-44	0x932C	Output of logic   AND-OR module I	0 to 65535	0	-	Unchangea ble	"L3-44" on page $1221$
L3-45	0x932D	Output of logic   AND-OR module J	0 to 65535	0	-	Unchangea ble	"L3-45" on page   1221
L3-46	0x932E	Output of logic AND-OR module K	0 to 65535	0	-	Unchangea ble	"L3-46" on page   1221
L3-47	0x932F	Output of logic   AND-OR module L	0 to 65535	0	-	Unchangea ble	"L3-47" on page   1222
L3-52	0x9334	Output of logic NOT module A	0 to 65535	0	-	Unchangea ble	"L3-52" on page   1222
L3-53	0x9335	Output of logic NOT module B	0 to 65535	0	-	Unchangea ble	"L3-53" on page   1222
L3-54	0x9336	Output of logic NOT module C	0 to 65535	0	-	Unchangea ble	"L3-54" on page   1222


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
L3-55	0x9337	Output of logic NOT module D	0 to 65535	0	-	Unchangea ble	"L3-55" on page $1222$
L3-56	0x9338	Output of logic NOT module E	0 to 65535	0	-	Unchangea ble	"L3-56" on page   1223
L3-57	0x9339	Output of logic NOT module F	0 to 65535	0	-	Unchangea ble	"L3-57" on page   1223
L3-58	0x933A	Output of logic NOT module G	0 to 65535	0	-	Unchangea ble	"L3-58" on page $1223$
L3-59	0x933B	Output of logic NOT module H	0 to 65535	0	-	Unchangea ble	"L3-59" on page $1223$
L3-60	0x933C	Output of logic NOT module I	0 to 65535	0	-	Unchangea ble	"L3-60" on page $1223$
L3-61	0x933D	Output of logic NOT module J	0 to 65535	0	-	Unchangea ble	"L3-61" on page $1224$
L3-62	0x933E	Output of logic NOT module K	0 to 65535	0	-	Unchangea ble	"L3-62" on page   1224
L3-63	0x933F	Output of logic NOT module L	0 to 65535	0	-	Unchangea ble	"L3-63" on page   1224
L3-64	0x9340	Output of logic NOT module M	0 to 65535	0	-	Unchangea ble	"L3-64" on page   1224
L3-65	0x9341	Output of logic NOT module N	0 to 65535	0	-	Unchangea ble	"L3-65" on page   1224
L3-66	0x9342	Output of logic NOT module $O$	0 to 65535	0	-	Unchangea ble	"L3-66" on page   1225
L3-67	0x9343	Output of logic NOT module P	0 to 65535	0	-	Unchangea ble	"L3-67" on page $1225$
L3-68	0x9344	Output of logic XOR/XNOR module A	0 to 65535	0	-	Unchangea ble	"L3-68" on page   1225
L3-69	0x9345	Output of logic XOR/XNOR module B	0 to 65535	0	-	Unchangea ble	"L3-69" on page   1225
L3-70	0x9346	Output of logic XOR/XNOR module C	0 to 65535	0	-	Unchangea ble	"L3-70" on page $1225$
L3-71	0x9347	Output of logic XOR/XNOR module D	0 to 65535	0	-	Unchangea ble	"L3-71" on page $1225$
L3-72	0x9348	Output of logic XOR/XNOR module E	0 to 65535	0	-	Unchangea ble	"L3-72" on page $1226$
L3-73	0x9349	Output of logic XOR/XNOR module F	0 to 65535	0	-	Unchangea ble	"L3-73" on page $1226$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L3-74	0x934A	Output of logic XOR/XNOR module G	0 to 65535	0	-	Unchangea ble	"L3-74" on page   1226
L3-75	0x934B	Output of logic XOR/XNOR module H	0 to 65535	0	-	Unchangea ble	"L3-75" on page $1226$
L3-84	0x9354	Output of level-topulse conversion module A	0 to 65535	0	-	Unchangea ble	"L3-84" on page $1226$
L3-85	0x9355	Output of level-topulse conversion module B	0 to 65535	0	-	Unchangea ble	"L3-85" on page $1227$
L3-86	0x9356	Output of level-topulse conversion module C	0 to 65535	0	-	Unchangea ble	"L3-86" on page 1227
L3-87	0x9357	Output of level-topulse conversion module D	0 to 65535	0	-	Unchangea ble	"L3-87" on page 1227
L4-00	0x9400	Output of floatingpoint comparison module A	0 to 65535	0	-	Unchangea ble	"L4-00" on page 1227
L4-01	0×9401	Output of floatingpoint comparison module B	0 to 65535	0	-	Unchangea ble	"L4-01" on page 1227
L4-02	0x9402	Output of floatingpoint comparison module C	0 to 65535	0	-	Unchangea ble	"L4-02" on page $1228$
L4-03	0x9403	Output of floatingpoint comparison module D	0 to 65535	0	-	Unchangea ble	"L4-03" on page $1228$
L4-04	0x9404	Output of fixedpoint comparison module E	0 to 65535	0	-	Unchangea ble	"L4-04" on page $1228$
L4-05	0x9405	Output of fixedpoint comparison module F	0 to 65535	0	-	Unchangea ble	"L4-05" on page 1228
L4-06	0x9406	Output of fixedpoint comparison module G	0 to 65535	0	-	Unchangea ble	"L4-06" on page $1228$
L4-07	0x9407	Output of fixed-   point comparison   module H	0 to 65535	0	-	Unchangea ble	"L4-07" on page $1229$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
L4-16	0x9410	Flag indicating whether input of floating-point absolute value module $A$ is negative	0 : Not negative   1: Negative	0		Unchangea ble	"L4-16" on page $1229$
L4-17	0x9411	Flag indicating whether input of floating-point absolute value module $B$ is negative	0 : Not negative   1: Negative	0		Unchangea ble	"L4-17" on page   1229
L4-18	0x9412	Flag indicating whether input of floating-point absolute value module C is negative	0: Not negative   1: Negative	0	-	Unchangea ble	"L4-18" on page $1229$
L4-19	0x9413	Flag indicating whether input of floating-point absolute value module $D$ is negative	0 : Not negative   1: Negative	0	-	Unchangea ble	"L4-19" on page   1229
L4-20	0x9414	Flag indicating whether input of floating-point absolute value module E is negative	0 : Not negative   1: Negative	0	-	Unchangea ble	" $L 4-20$ " on page $1230$
L4-21	0x9415	Flag indicating whether input of fixed-point absolute value module $F$ is negative	0 : Not negative   1: Negative	0	-	Unchangea ble	"L4-21" on page $1230$
L4-22	0x9416	Flag indicating whether input of fixed-point absolute value module G is negative	0 : Not negative   1: Negative	0	-	Unchangea ble	"L4-22" on page $1230$
L4-23	0x9417	Flag indicating whether input of fixed-point absolute value module H is negative	0 : Not negative   1: Negative	0	-	Unchangea ble	"L4-23" on page $1230$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L4-32	0x9420	Flag indicating whether divisor of MULTIPLY/DIVIDE module $A$ is 0	$\begin{aligned} & 0: \text { Not } 0 \\ & 1: 0 \end{aligned}$	0	-	Unchangea ble	"L4-32" on page   1231
L4-33	0x9421	Flag indicating whether divisor of MULTIPLY/DIVIDE module $B$ is 0	$\begin{aligned} & 0: \text { Not } 0 \\ & 1: 0 \end{aligned}$	0	-	Unchangea ble	"L4-33" on page   1231
L4-34	0x9422	Flag indicating whether divisor of MULTIPLY/DIVIDE module C is 0	$\begin{aligned} & 0: \text { Not } 0 \\ & 1: 0 \end{aligned}$	0	-	Unchangea ble	"L4-34" on page $1231$
L4-35	0x9423	Flag indicating whether divisor of MULTIPLY/DIVIDE module $D$ is 0	$\begin{aligned} & 0: \text { Not } 0 \\ & 1: 0 \end{aligned}$	0	-	Unchangea ble	"L4-35" on page   1231
L4-36	0x9424	Flag indicating whether divisor of MULTIPLY/DIVIDE module E is 0	$\begin{aligned} & 0: \text { Not } 0 \\ & 1: 0 \end{aligned}$	0	-	Unchangea ble	"L4-36" on page   1231
L4-37	0x9425	Flag indicating whether divisor of MULTIPLY/DIVIDE module $F$ is 0	$\begin{aligned} & 0: \text { Not } 0 \\ & 1: 0 \end{aligned}$	0	-	Unchangea ble	"L4-37" on page 1232
L4-38	0x9426	Flag indicating whether divisor of MULTIPLY/DIVIDE module G is 0	$\begin{aligned} & 0: \text { Not } 0 \\ & 1: 0 \end{aligned}$	0	-	Unchangea ble	"L4-38" on page   1232
L4-39	0x9427	Flag indicating whether divisor of MULTIPLY/DIVIDE module H is 0	$\begin{aligned} & 0: \text { Not } 0 \\ & 1: 0 \end{aligned}$	0	-	Unchangea ble	"L4-39" on page   1232
L4-48	0x9430	Upper limit flag of limiting module A	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L4-48" on page } \\ & 1232 \end{aligned}$
L4-49	0x9431	Lower limit flag of limiting module A	0 to 65535	0	-	Unchangea ble	"L4-49" on page 1232
L4-50	0x9432	Upper limit flag of limiting module B	0 to 65535	0	-	Unchangea ble	"L4-50" on page   1233
L4-51	0x9433	Lower limit flag of limiting module $B$	0 to 65535	0	-	Unchangea ble	"L4-51" on page 1233
L4-52	0x9434	Upper limit flag of limiting module C	0 to 65535	0	-	Unchangea ble	"L4-52" on page $1233$
L4-53	0x9435	Lower limit flag of limiting module C	0 to 65535	0	-	Unchangea ble	"L4-53" on page   1233
L4-54	0x9436	Upper limit flag of limiting module D	0 to 65535	0	-	Unchangea ble	"L4-54" on page $1233$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L4-55	0x9437	Lower limit flag of limiting module D	0 to 65535	0		Unchangea ble	"L4-55" on page   1234
L4-56	0x9438	Upper limit flag of limiting module E	0 to 65535	0	-	Unchangea ble	"L4-56" on page   1234
L4-57	0x9439	Lower limit flag of limiting module E	0 to 65535	0	-	Unchangea ble	"L4-57" on page   1234
L4-58	0x943A	Upper limit flag of limiting module $F$	0 to 65535	0	-	Unchangea ble	"L4-58" on page   1234
L4-59	0x943B	Lower limit flag of limiting module $F$	0 to 65535	0	-	Unchangea ble	"L4-59" on page   1234
L4-64	0x9440	Hibernation enable flag	0 to 65535	0	-	Unchangea ble	"L4-64" on page $1235$
L4-66	0x9442	Startup frequency RFG forcing	0 to 65535	0	-	Unchangea ble	"L4-66" on page $1235$
L4-67	$0 \times 9443$	Startup frequency stop flag	0 to 65535	0	-	Unchangea ble	"L4-67" on page $1235$
L4-72	0×9448	Power-on duration reach	0 to 65535	0	-	Unchangea ble	"L4-72" on page $1235$
L4-73	0x9449	Running duration reach	0 to 65535	0	-	Unchangea ble	"L4-73" on page $1235$
L4-74	0x944A	Timing duration reach	0 to 65535	0	-	Unchangea ble	"L4-74" on page $1236$
L4-75	0x944B	Current running duration reach	0 to 65535	0	-	Unchangea ble	"L4-75" on page 1236
L5-00	0x9500	System status word $1$	Bit00: Ready to switch on   Bit01: Ready to run   Bit02: Running   Bit03: Faulty   Bit04: OFF2   Bit05: OFF3   Bit06: Switch-on blocking   Bit07: Running with limits   Bit08: No speed deviation   Bit09: Local or remote   Bit10: Target speed reach   Bit11: Torque limiting   Bit12: Positive speed   Bit13: Negative speed   Bit14: Running (pulse output)   Bit15: User-defined state 0	0		Unchangea ble	"L5-00" on page $1236$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L5-01	0x9501	System status word 2	Bit00: Self-check   Bit01: Auto-tuning   Bit02: Limit state   Bit03: Alarm state   Bit04: Speed mode   Bit05: Torque mode   Bit06: Position mode   Bit07: RFG enable   Bit08: RFG running   Bit09: Stop upon fault   Bit10: Normal running   Bit11: Jogging   Bit12: Decelerate to stop   Bit13: Reserved   Bit14: Terminal control   Bit15: User-defined state 1	0	-	Unchangea ble	"L5-01" on page 1237
L5-02	0x9502	Main status word of drive	0 to 65535	0	-	Unchangea ble	"L5-02" on page 1237
L5-03	0x9503	Auxiliary status word of drive	0 to 65535	0	-	Unchangea ble	"L5-03" on page 1237
L5-04	0x9504	Main status word of motor	0 to 65535	0	-	Unchangea ble	"L5-04" on page 1237
L5-05	0x9505	Auxiliary status word of motor	0 to 65535	0	-	Unchangea ble	"L5-05" on page $1238$
L5-06	0x9506	Current state of system state machine	0: Initializing   1: Switch-on prohibited   2: Switch-on allowed   3: Running allowed   4: Started   5: Running   6: Stopped   7: Self-check   8: Auto-tuning	0	-	Unchangea ble	$\begin{aligned} & \text { "L5-06" on page } \\ & 1238 \end{aligned}$
L5-07	0x9507	System state   machine switchover command	Bit00: Startup active   Bit01: Stop active   Bit02: OFF2 stop active   Bit03: OFF3 stop active   Bit04: Running permission active   Bit05: Running prohibition active   Bit06: Stop upon fault active	0	-	Unchangea ble	"L5-07" on page $1238$
L5-08	0x9508	System running state	0 to 65535	0	-	Unchangea ble	"L5-08" on page   1239
L5-09	0x9509	Current stop mode	0 : Coast to stop   1: Stop at maximum capability   2: Quick stop   3: Decelerate to stop	0	-	Unchangea ble	"L5-09" on page $1239$


Para.	Comm.   Addr.	Name		De   fault	Unit	Change	Page


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L5-41	0x9529	Al2 raw sampling value	-32.767 V to +32.767 V	0.000	V	Unchangea ble	"L5-41" on page $1243$
L5-42	0x952A	Al3 raw sampling value	-32.767 V to +32.767 V	0.000	V	Unchangea ble	"L5-42" on page   1243
L5-43	0x952B	Al1 sampling value after correction	-327.67 V to +327.67 V	0.00	V	Unchangea ble	"L5-43" on page   1243
L5-44	0x952C	Al2 sampling value after correction	-327.67 V to +327.67 V	0.00	V	Unchangea ble	$\begin{aligned} & \text { "L5-44" on page } \\ & 1243 \end{aligned}$
L5-45	0x952D	Al3 sampling value after correction	-327.67 V to +327.67 V	0.00	V	Unchangea ble	"L5-45" on page   1244
L5-46	0x952E	Input value of AI1 curve	-327.67 V to +327.67 V	0.00	V	Unchangea ble	"L5-46" on page   1244
L5-47	0x952F	Input value of AI2 curve	-327.67 V to +327.67 V	0.00	V	Unchangea ble	"L5-47" on page   1244
L5-48	0x9530	Input value of AI3 curve	-327.67 V to +327.67 V	0.00	V	Unchangea ble	$\begin{aligned} & \text { "L5-48" on page } \\ & 1244 \end{aligned}$
L5-49	$0 \times 9531$	AO1 output (before correction)	-327.67 V to +327.67 V	0.00	V	Unchangea ble	"L5-49" on page   1244
L5-50	0x9532	AO2 output (before correction)	-327.67 V to +327.67 V	0.00	V	Unchangea ble	"L5-50" on page   1245
L5-51	$0 \times 9533$	AO1 output (after correction)	-32.767 V to +32.767 V	0.000	V	Unchangea ble	"L5-51" on page   1245
L5-52	0x9534	AO2 output (after correction)	-32.767 V to +32.767 V	0.000	V	Unchangea ble	"L5-52" on page $1245$
L5-53	0x9535	HDI input frequency	0.00 kHz to 655.35 kHz	0.00	kHz	Unchangea ble	"L5-53" on page   1245
L5-54	0x9536	Counter output	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L5-54" on page } \\ & 1245 \end{aligned}$
L5-55	$0 \times 9537$	Length count	0 to 65535	0	-	Unchangea ble	"L5-55" on page   1246
L5-56	0x9538	Command word set through communication	Bit00:OFF1   Bit01: OFF2   Bit02: OFF3   Bit03: Running permission   Bit04: Reset   Bit05: JOG1   Bit06: JOG2   Bit07: Speed negation	0	-	Unchangea ble	"L5-56" on page   1246
L5-57	0x9539	Communication setpoint	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"L5-57" on page   1246
L5-58	0x953A	Communication command clear flag	0 to 65535	0	-	Unchangea ble	"L5-58" on page $1246$
L5-59	0x953B	RFG performance forcing enable	0 to 65535	0	-	Unchangea ble	"L5-59" on page   1247


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L5-60	0x953C	Pre-auto-tuning command	0 to 65535	0	-	Unchangea ble	"L5-60" on page   1247
L5-62	0x953E	DI immediate DC braking command	0 to 65535	0	-	Unchangea ble	"L5-62" on page   1247
L5-63	0x953F	Drive sampling DI state	0 to 65535	0	-	Unchangea ble	"L5-63" on page   1247
L5-64	0x9540	Drive output DI state	0 to 65535	0	-	Unchangea ble	"L5-64" on page $1247$
L5-65	0x9541	Final output DI state	0 to 65535	0	-	Unchangea ble	"L5-65" on page $1247$
L5-66	0x9542	DI state inversion	0 to 65535	0	-	Unchangea ble	"L5-66" on page   1248
L5-67	0x9543	DO state before filtering	0 to 65535	0	-	Unchangea ble	"L5-67" on page $1248$
L5-68	0x9544	Final output DO state	0 to 65535	0	-	Unchangea ble	"L5-68" on page $1248$
L5-69	0x9545	I/O monitoring state	0 to 65535	0	-	Unchangea ble	"L5-69" on page $1248$
L5-70	0x9546	Main speed	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"L5-70" on page   1248
L5-71	0x9547	Auxiliary speed	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"L5-71" on page   1249
L5-73	0x9549	Al2 sampling current 1 after correction (impedance: $500 \Omega$ )	-327.67 mA to +327.67 mA	0.00	mA	Unchangea ble	$\begin{aligned} & \text { "L5-73" on page } \\ & 1249 \end{aligned}$
L5-75	0x954B	AO1 output current (before correction)	-327.67 mA to +327.67 mA	0.00	mA	Unchangea ble	"L5-75" on page $1249$
L5-76	0x954C	AO2 output current (before correction)	-327.67 mA to +327.67 mA	0.00	mA	Unchangea ble	"L5-76" on page $1249$
L5-77	0x954D	Al2 sampling current 2 after correction (impedance: $250 \Omega$ )	-327.67 mA to +327.67 mA	0.00	mA	Unchangea ble	"L5-77" on page $1249$
L5-78	0x954E	Flag indicating whether mapping write data is 32 -bit	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L5-78" on page } \\ & 1250 \end{aligned}$
L5-79	0x954F	External communication data low-order 16 bits 1	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L5-79" on page } \\ & 1250 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
L5-80	0x9550	External communication data low-order 16 bits 2	0 to 65535	0	-	Unchangea ble	"L5-80" on page $1250$
L5-81	0x9551	External communication data low-order 16 bits 3	0 to 65535	0	-	Unchangea ble	"L5-81" on page $1250$
L5-82	0x9552	External communication data low-order 16 bits 4	0 to 65535	0	-	Unchangea ble	"L5-82" on page $1250$
L5-83	0x9553	External communication data low-order 16 bits 5	0 to 65535	0	-	Unchangea ble	"L5-83" on page   1251
L5-84	0x9554	External communication data low-order 16 bits 6	0 to 65535	0	-	Unchangea ble	"L5-84" on page 1251
L5-85	0x9555	External communication data low-order 16 bits 7	0 to 65535	0	-	Unchangea ble	"L5-85" on page $1251$
L5-86	0x9556	External communication data low-order 16 bits 8	0 to 65535	0	-	Unchangea ble	"L5-86" on page   1251
L5-87	0x9557	External communication data low-order 16 bits 9	0 to 65535	0	-	Unchangea ble	"L5-87" on page $1251$
L5-88	0x9558	External communication data low-order 16 bits 10	0 to 65535	0	-	Unchangea ble	"L5-88" on page 1252
L5-89	0x9559	External communication data high-order 16 bits 1	0 to 65535	0	-	Unchangea ble	"L5-89" on page $1252$
L5-90	0x955A	External communication data high-order 16 bits 2	0 to 65535	0	-	Unchangea ble	" L5-90" on page $1252$


Para.	Comm.   Addr.	Name		Deference   fault	Unit	Change	Page
L5-91	0x955B	External   communication   data high-order 16   bits 3	0 to 65535	0	-	Unchangea   ble	"L5-91" on page
L6							


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
L6-05	0x9605	System main status word C	Bit00: Control channel   Bit01: Reference channel   Bit02: Motor selection bit 0   Bit03: Motor selection bit 1   Bit04: Exception (fault and alarm)   Bit05: EEPROM idle	0		Unchangea ble	$\begin{aligned} & \text { "L6-05" on page } \\ & 1255 \end{aligned}$
L6-06	0x9606	Motor object auxiliary status word 2	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L6-06" on page } \\ & 1255 \end{aligned}$
L6-07	0x9607	V/f separation stop frequency control	0 to 65535	0	-	Unchangea ble	"L6-07" on page 1255
L6-08	0x9608	Torque control frequency offset mode	0 to 65535	0	-	Unchangea ble	"L6-08" on page 1255
L6-09	0x9609	RFG acceleration/ deceleration state	0 to 65535	0	-	Unchangea ble	"L6-09" on page 1256
L6-10	0x960A	RFG rounding state	0 to 65535	0	-	Unchangea ble	"L6-10" on page $1256$
L6-11	0x960B	Inverter protection state monitoring	Bit00: Pulse-by-pulse current limit protection   Bit01: Pulse-by-pulse current limit inhibition   Bit02: Input phase loss Bit03: Output phase loss   Bit04: Pre-charge resistor exception Bit05: Drive overload   Bit06: Drive pre-overload   Bit07: Bus overvoltage   Bit08: Bus undervoltage   Bit09: Output overcurrent   Bit10: Drive overtemperature   Bit11: Drive pre-overtemperature   Bit12: Leakage current protection   Bit13: Current control exception Bit14: Software overcurrent   Bit15: Short-to-ground (reserved)	0	-	Unchangea ble	"L6-11" on page 1256
L6-12	0x960C	Modulation module status word	0 to 65535	0	-	Unchangea ble	"L6-12" on page $1256$
L6-13	0x960D	Body sampling status word	0 to 65535	0	-	Unchangea ble	"L6-13" on page 1257
L6-14	0x960E	Al2 temperature mode - motor temperature sampling value	$-32767^{\circ} \mathrm{C}$ to $+32767^{\circ} \mathrm{C}$	0	${ }^{\circ} \mathrm{C}$	Unchangea ble	"L6-14" on page 1257
L6-15	0x960F	Al3 temperature mode - motor temperature sampling value	$0^{\circ} \mathrm{C}$ to $65535^{\circ} \mathrm{C}$	0	${ }^{\circ} \mathrm{C}$	Unchangea ble	$\begin{aligned} & \text { "L6-15" on page } \\ & 1257 \end{aligned}$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
L6-16	0x9610	Motor protection status word	Bit00: Motor overload   Bit01: Motor pre-overload   Bit02: Output load loss (reserved)   Bit03: PG-detected fault (reserved)   Bit04: Current control error   Bit05: Locked-rotor   Bit06: Motor wire breakage, two- or three-phase loss (reserved)   Bit07: Excessive motor load at constant current (reserved)   Bit08:VC out-of-step due to magnetic flux exception   Bit09: Abnormal speed fluctuation (reserved)   Bit10: Motor parameter setting error (reserved)   Bit11: HSVM sampling card wire breakage and misphase (reserved)   Bit12: Synchronous motor overcurrent (reserved)	0		Unchangea ble	"L6-16" on page 1257
L6-17	0x9611	Speed controller status word	Bit00: Speed loop enable   Bit01: Actual state of integral mode   Bit02: Integral forcing enable Bit03: Feedforward torque enable   Bit04: Positive limit reach Bit05: Negative limit reach   Bit06: Integral hold enable   Bit07: Fast integral cancel enable   Bit08: Anti-load disturbance enable   Bit09: Reserved   Bit10: Reserved   Bit11: Reserved   Bit12: Reserved   Bit13: Reserved   Bit14: Reserved   Bit15: Reserved	0	-	Unchangea ble	"L6-17" on page $1258$


Para.	Comm.   Addr.	Name	Reference   L6-18	0x9612	VDC control status   word	Bit00: Undervoltage suppression enable   Bit01: Overvoltage suppression enable   Bit02: Low frequency lower limit for enabling   undervoltage suppression   Bit03: Reserved   Bit04: Reserved   Bit05: Reserved   Bit06: Reserved   Bit07: Reserved   Bit08: Reserved   Bit09: Reserved   Bit10: Reserved   Bit11: Reserved   Bit12: Reserved   Bit13: Reserved   Bit14: Reserved   Bit15: Reserved	0


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
L6-35	0x9623	System main status word D	Bit0: Zero-speed running (inactive at stop)   Bit1: Zero-speed running (active at stop)   Bit2: Frequency-level detection 1   Bit3: Frequency-level detection 2   Bit4: Al1 > Al2   Bit5: Simple PLC cycle completion   Bit6: Communication setpoint   Bit7: STO state   Bit8: Current 1 reach   Bit9: Current 2 reach   Bit10: Zero current state   Bit11: Output overcurrent   Bit12: Motor overload pre-warning   Bit13: AC drive overload pre-warning   Bit14: Undervoltage   Bit15: Load loss	0	-	Unchangea ble	$\begin{aligned} & \text { "L6-35" on page } \\ & 1260 \end{aligned}$
L7-00	0x9700	Per-unit constant value 22	0 to 65535	0	-	Unchangea ble	"L7-00" on page   1261
L7-01	0x9701	Per-unit constant value 23	0 to 65535	0	-	Unchangea ble	"L7-01" on page $1261$
L7-02	0x9702	Per-unit constant value 24	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L7-02" on page } \\ & 1261 \end{aligned}$
L7-03	0x9703	Per-unit constant value 25	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L7-03" on page } \\ & 1262 \end{aligned}$
L7-04	0x9704	Per-unit constant value 26	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L7-04" on page } \\ & 1262 \end{aligned}$
L7-05	0x9705	Per-unit constant value 27	0 to 65535	0	-	Unchangea ble	"L7-05" on page   1262
L7-06	0x9706	Per-unit constant value 28	0 to 65535	0	-	Unchangea ble	"L7-06" on page   1262
L7-07	0x9707	Per-unit constant value 29	0 to 65535	0	-	Unchangea ble	"L7-07" on page $1262$
L7-08	0x9708	Per-unit constant value 30	0 to 65535	0	-	Unchangea ble	"L7-08" on page $1263$
L7-09	0x9709	Per-unit constant value 31	0 to 65535	0	-	Unchangea ble	"L7-09" on page 1263
L7-10	0x970A	Per-unit constant value 32	0 to 65535	0	-	Unchangea ble	"L7-10" on page $1263$
L7-11	0x970B	Per-unit constant value 33	0 to 65535	0	-	Unchangea ble	"L7-11" on page 1263
L7-12	0x970C	Per-unit constant value 34	0 to 65535	0	-	Unchangea ble	"L7-12" on page $1263$
L7-13	0x970D	Per-unit constant value 35	0 to 65535	0	-	Unchangea ble	"L7-13" on page $1264$


Para.	Comm. Addr.	Name	Reference	De fault	Unit	Change	Page
L7-14	0x970E	Per-unit constant value 36	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L7-14" on page } \\ & 1264 \end{aligned}$
L7-15	0x970F	Per-unit constant value 37	0 to 65535	0	-	Unchangea ble	"L7-15" on page 1264
L7-16	0x9710	Per-unit constant value 38	0 to 65535	0	-	Unchangea ble	"L7-16" on page 1264
L7-17	$0 \times 9711$	Per-unit constant value 39	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L7-17" on page } \\ & 1264 \end{aligned}$
L7-18	$0 \times 9712$	Per-unit constant value 40	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L7-18" on page } \\ & 1265 \end{aligned}$
L7-19	$0 \times 9713$	Per-unit constant value 41	0 to 65535	0	-	Unchangea ble	"L7-19" on page $1265$
L7-20	0x9714	Per-unit constant value 42	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L } 7-20 \text { " on page } \\ & 1265 \end{aligned}$
L7-21	$0 \times 9715$	B2W module A	0 to 65535	0	-	Unchangea ble	"L7-21" on page $1265$
L7-22	0x9716	B2W module B	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L7-22" on page } \\ & 1265 \end{aligned}$
L7-23	$0 \times 9717$	B2W module C	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L7-23" on page } \\ & 1265 \end{aligned}$
L7-24	0x9718	B2W module D	0 to 65535	0	-	Unchangea ble	" $L 7$-24" on page $1266$
L7-25	0x9719	DW-W HIWORD A	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L7-25" on page } \\ & 1266 \end{aligned}$
L7-26	0x971A	DW-W LOWORD A	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L7-26" on page } \\ & 1266 \end{aligned}$
L7-27	0x971B	DW-W HIWORD B	0 to 65535	0	-	Unchangea ble	"L7-27" on page 1266
L7-28	0x971C	DW-W LOWORD B	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L } 7-28 \text { " on page } \\ & 1266 \end{aligned}$
L7-29	0x971D	DW-W HIWORD C	0 to 65535	0	-	Unchangea ble	"L7-29" on page 1267
L7-30	0x971E	DW-W LOWORD C	0 to 65535	0	-	Unchangea ble	"L7-30" on page 1267
L7-31	0x971F	DW-W HIWORD D	0 to 65535	0	-	Unchangea ble	"L7-31" on page 1267
L7-32	0x9720	DW-W LOWORD D	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L7-32" on page } \\ & 1267 \end{aligned}$
L7-36	0x9724	16-bit parameter monitoring 1	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L7-36" on page } \\ & 1267 \end{aligned}$
L7-37	0x9725	16-bit parameter monitoring 2	0 to 65535	0	-	Unchangea ble	"L7-37" on page $1268$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
L7-38	0x9726	16-bit parameter monitoring 3	0 to 65535	0	-	Unchangea ble	"L7-38" on page   1268
L7-39	0x9727	16-bit parameter monitoring 4	0 to 65535	0	-	Unchangea ble	"L7-39" on page $1268$
L7-40	0x9728	16-bit parameter monitoring 5	0 to 65535	0	-	Unchangea ble	"L7-40" on page $1268$
L7-41	0x9729	Output of word selector A	0 to 65535	0	-	Unchangea ble	"L7-41" on page 1268
L7-42	0x972A	Output of word selector B	0 to 65535	0	-	Unchangea ble	"L7-42" on page   1269
L7-43	0x972B	Output of word selector C	0 to 65535	0	-	Unchangea ble	"L7-43" on page   1269
L7-44	0x972C	Output of word selector D	0 to 65535	0	-	Unchangea ble	"L7-44" on page 1269
L7-50	0x9732	Internal parameter monitoring output 1	-32767 to +32767	0	-	Unchangea ble	"L7-50" on page   1269
L7-51	0x9733	Internal parameter monitoring output 2	-32767 to +32767	0	-	Unchangea ble	"L7-51" on page 1269
L7-52	0x9734	Internal parameter monitoring output 3	-32767 to +32767	0	-	Unchangea ble	"L7-52" on page $1270$
L7-53	0x9735	Internal parameter monitoring output 4	-32767 to +32767	0	-	Unchangea ble	"L7-53" on page   1270
L7-54	0x9736	Internal parameter monitoring output 5	-32767 to +32767	0	-	Unchangea ble	"L7-54" on page $1270$
L7-55	0x9737	Internal parameter monitoring output 6	-32767 to +32767	0	-	Unchangea ble	"L7-55" on page $1270$
L7-56	0x9738	Internal parameter monitoring output 7	-32767 to +32767	0	-	Unchangea ble	"L7-56" on page   1270
L7-57	0x9739	Internal parameter monitoring output 8	-32767 to +32767	0	-	Unchangea ble	"L7-57" on page   1270
L9-00	0x9900	Output of W-DW module A	0 to 65535	0	-	Unchangea ble	"L9-00" on page $1271$
L9-01	0x9901	Output of W-DW module B	0 to 65535	0	-	Unchangea ble	"L9-01" on page   1271
L9-02	0x9902	Output of W-DW module C	0 to 65535	0	-	Unchangea ble	"L9-02" on page   1271
L9-03	0x9903	Output of W-DW module D	0 to 65535	0	-	Unchangea ble	"L9-03" on page   1271
L9-04	0x9904	Output of DWord selector module A	0 to 65535	0	-	Unchangea ble	"L9-04" on page   1272
L9-05	0x9905	Output of DWord selector module B	0 to 65535	0	-	Unchangea ble	"L9-05" on page   1272


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
L9-06	0x9906	Output of DWord selector module C	0 to 65535	0	-	Unchangea ble	"L9-06" on page   1272
L9-07	0x9907	Output of DWord selector module D	0 to 65535	0	-	Unchangea ble	"L9-07" on page   1272
L9-08	0x9908	Output of fixedpoint absolute value module F	0 to 65535	0	-	Unchangea ble	"L9-08" on page   1272
L9-09	0x9909	Output of fixedpoint absolute value module G	0 to 65535	0	-	Unchangea ble	"L9-09" on page $1272$
L9-10	0x990A	Output of fixedpoint absolute value module H	0 to 65535	0	-	Unchangea ble	"L9-10" on page $1273$
L9-11	0x990B	Output of fixed-   point ADD/   SUBTRACT module   F	0 to 65535	0	-	Unchangea ble	"L9-11" on page $1273$
L9-12	0x990C	Output of fixed-   point ADD/   SUBTRACT module   G	0 to 65535	0	-	Unchangea ble	"L9-12" on page $1273$
L9-13	0x990D	Output of fixed-   point ADD/   SUBTRACT module H	0 to 65535	0	-	Unchangea ble	"L9-13" on page $1273$
L9-14	0x990E	Output of fixed-   point MULTIPLY/   DIVIDE module F	0 to 65535	0	-	Unchangea ble	"L9-14" on page   1273
L9-15	0x990F	Output of fixed-   point MULTIPLY/   DIVIDE module G	0 to 65535	0	-	Unchangea ble	"L9-15" on page   1274
L9-16	0x9910	Output of fixedpoint MULTIPLY/ DIVIDE module H	0 to 65535	0	-	Unchangea ble	"L9-16" on page   1274
L9-17	$0 \times 9911$	Output of fixedpoint filter module E	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L9-17" on page } \\ & 1274 \end{aligned}$
L9-18	0x9912	Output of fixedpoint filter module F	0 to 65535	0	-	Unchangea ble	"L9-18" on page   1274
L9-19	0x9913	Output of fixedpoint limiting module E	0 to 65535	0	-	Unchangea ble	$\begin{aligned} & \text { "L9-19" on page } \\ & 1274 \end{aligned}$
L9-20	0x9914	Output of fixedpoint limiting module F	0 to 65535	0	-	Unchangea ble	"L9-20" on page $1275$


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
L9-21	0x9915	32-bit parameter monitoring 1	0 to 65535	0	-	Unchangea ble	"L9-21" on page $1275$
L9-22	0x9916	32-bit parameter monitoring 2	0 to 65535	0	-	Unchangea ble	"L9-22" on page $1275$
L9-23	0x9917	32-bit parameter monitoring 3	0 to 65535	0	-	Unchangea ble	"L9-23" on page $1275$
L9-24	0x9918	32-bit parameter monitoring 4	0 to 65535	0	-	Unchangea ble	"L9-24" on page 1275
L9-25	0x9919	32-bit parameter monitoring 5	0 to 65535	0	-	Unchangea ble	"L9-25" on page $1276$
L9-30	0x991E	Variable connector viewing output 1	0 to 65535	0	-	Unchangea ble	"L9-30" on page $1276$
L9-31	0x991F	Variable connector viewing output 2	0 to 65535	0	-	Unchangea ble	"L9-31" on page $1276$
L9-32	0x9920	Variable connector viewing output 3	0 to 65535	0	-	Unchangea ble	"L9-32" on page   1276
L9-33	0x9921	Variable connector viewing output 4	0 to 65535	0	-	Unchangea ble	"L9-33" on page $1276$
L9-34	0x9922	Variable connector viewing output 5	0 to 65535	0	-	Unchangea ble	"L9-34" on page   1277
L9-35	0x9923	Variable connector viewing output 6	0 to 65535	0	-	Unchangea ble	"L9-35" on page   1277
L9-36	0x9924	Variable connector viewing output 7	0 to 65535	0	-	Unchangea ble	"L9-36" on page   1277
L9-37	0x9925	Variable connector viewing output 8	0 to 65535	0	-	Unchangea ble	"L9-37" on page 1277
LB-00	0x9B00	Al1 input per-unit value	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-00$ " on page 1277
LB-01	0x9B01	Al2 input per-unit value	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-01" on page 1278
LB-02	0x9B02	Al3 input per-unit value	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-02" on page $1278$
LB-03	0x9B03	HDI input per-unit value	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-03" on page $1278$
LB-04	0x9B04	Per-unit value of speed reference set through communication	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-04" on page 1278
LB-05	0x9B05	Main speed reference	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-05" on page $1278$
LB-06	0x9B06	Auxiliary speed reference	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-06" on page $1279$


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
LB-07	0x9B07	Channel target speed	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-07" on page $1279$
LB-08	0x9B08	Channel supplementary speed	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-08" on page $1279$
LB-09	0x9B09	Supplementary speed setpoint	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-09" on page $1279$
LB-10	0x9B0A	Maximum forward speed	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-10$ " on page $1279$
LB-11	0х9B0B	Minimum forward speed	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-11$ " on page $1279$
LB-12	0x9B0C	Maximum reverse speed	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-12$ " on page $1280$
LB-13	0x9B0D	Minimum reverse speed	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LB-13" on page } \\ & 1280 \end{aligned}$
LB-14	0x9B0E	Forward limit	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-14$ " on page $1280$
LB-15	0x9B0F	Reverse limit	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-15" on page $1280$
LB-16	0x9B10	Speed reference -   raw	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-16$ " on page $1280$
LB-17	0x9B11	Speed reference direction limit	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-17$ " on page 1281
LB-18	0x9B12	Speed reference -   after limiting	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-18$ " on page $1281$
LB-19	0x9B13	Speed reference -   after skip frequency	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-19$ " on page $1281$
LB-20	0x9B14	Speed reference -   after ramp shift	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-20$ " on page 1281
LB-21	0x9B15	Torque reference	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-21" on page 1281
LB-22	0x9B16	Supplementary torque	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-22$ " on page 1282
LB-23	0x9B17	Torque reference after filtering	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-23" on page   1282
LB-24	0x9B18	Target torque reference	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-24$ " on page 1282
LB-25	0x9B19	Maximum torque	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-25" on page   1282
LB-26	0x9B1A	Minimum torque	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-26$ " on page   1282
LB-27	0x9B1B	RFG reference input	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-27" on page 1283

-1679-

Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
LB-28	0x9B1C	RFG calculation input	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-28" on page 1283
LB-29	0x9B1D	RFG actual target	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-29" on page $1283$
LB-30	0x9B1E	RFG calculation output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-30" on page 1283
LB-31	0x9B1F	RFG final output (maximum per-unit value)	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-31" on page 1283
LB-32	0x9B20	RFG final output (rated per-unit value)	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-32" on page   1284
LB-33	0x9B21	Updown upper limit	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-33" on page   1284
LB-34	0x9B22	Updown lower limit	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-34" on page   1284
LB-35	0x9B23	RFG acceleration	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-35" on page 1284
LB-36	0x9B24	V/f separation voltage output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L B-36$ " on page 1284
LB-37	0x9B25	RFG force value of startup frequency function	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-37" on page   1284
LB-38	0x9B26	Speed limit in torque control mode	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-38" on page 1285
LB-39	0x9B27	Frequency offset in torque control mode	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-39" on page 1285
LB-40	0x9B28	Running frequency	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-40" on page $1285$
LB-41	0x9B29	Frequency reference	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LB-41" on page   1285
LB-42	$0 \times 9 B 2 \mathrm{~A}$	Speed reference after UpDn	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LB-42" on page } \\ & 1285 \end{aligned}$
LC-00	0x9C00	Final frequency reference	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L C-00$ " on page $1286$
LC-01	0x9C01	Final voltage reference	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-01" on page 1286
LC-02	0x9C02	Output voltage without limit	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L C-02$ " on page 1286
LC-03	0x9C03	Voltage phase angle	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L C-03$ " on page 1286


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
LC-04	0x9C04	Maximum output voltage	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-04" on page 1286
LC-05	0x9C05	Current loop saturation voltage	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-05" on page 1287
LC-06	0x9C06	Torque reference	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-06" on page 1287
LC-07	0x9C07	Final flux reference	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-07" on page $1287$
LC-08	0x9C08	Excitation current reference	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-08" on page 1287
LC-09	0x9C09	Torque current reference	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-09" on page 1287
LC-10	0x9C0A	Rotor speed	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-10" on page 1288
LC-11	0x9C0B	Encoder speed	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-11" on page 1288
LC-12	0x9C0C	Output torque	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LC-12" on page } \\ & 1288 \end{aligned}$
LC-13	0x9C0D	Flux amplitude	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-13" on page 1288
LC-14	0x9C0E	Flux angle	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LC-14" on page } \\ & 1288 \end{aligned}$
LC-15	0x9C0F	Synchronization frequency	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L C-15$ " on page $1289$
LC-16	0x9C10	Synchronous rotation angle	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LC-16" on page } \\ & 1289 \end{aligned}$
LC-17	$0 \times 9 \mathrm{C} 11$	Motor object output power	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LC-17" on page } \\ & 1289 \end{aligned}$
LC-18	$0 \times 9 \mathrm{C} 12$	Output voltage amplitude	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LC-18" on page } \\ & 1289 \end{aligned}$
LC-19	$0 \times 9 \mathrm{C} 13$	Output current amplitude	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-19" on page 1289
LC-20	$0 \times 9 C 14$	Actual excitation current of motor	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L C-20$ " on page $1290$
LC-21	$0 \times 9 \mathrm{C} 15$	Actual torque current of motor	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-21" on page $1290$
LC-22	0x9C16	Output power	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LC-22" on page } \\ & 1290 \end{aligned}$
LC-23	$0 \times 9 \mathrm{C} 17$	PWMU	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LC-23" on page } \\ & 1290 \end{aligned}$
LC-24	0x9C18	PWMV	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-24" on page $1290$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
LC-25	0x9C19	PWMW	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LC-25" on page } \\ & 1291 \end{aligned}$
LC-26	0x9C1A	IU	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-26" on page   1291
LC-27	$0 \times 9 \mathrm{C} 1 \mathrm{~B}$	IV	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-27" on page $1291$
LC-28	0x9C1C	IW	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-28" on page   1291
LC-31	0x9C1F	Drive bus voltage	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-31" on page 1291
LC-32	0x9C20	Accumulative drive overload	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-32" on page 1291
LC-33	0x9C21	Accumulative motor overload	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-33" on page   1292
LC-34	0x9C22	Output voltage phase	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-34" on page 1292
LC-35	0x9C23	Output current phase	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-35" on page 1292
LC-36	0x9C24	General PID output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-36" on page 1292
LC-37	0x9C25	General PID error	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-37" on page 1292
LC-38	0x9C26	General PID reference	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-38" on page   1293
LC-39	0x9C27	General PID   feedback	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-39" on page 1293
LC-40	0x9C28	General PID proportional output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-40" on page $1293$
LC-41	0x9C29	General PID integral output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-41" on page 1293
LC-42	0x9C2A	General PID derivative output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-42" on page 1293
LC-92	0x9C5C	Variable connector viewing output 1	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-92" on page 1294
LC-93	0x9C5D	Variable connector viewing output 2	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-93" on page 1294
LC-94	0x9C5E	Variable connector viewing output 3	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-94" on page 1294
LC-95	0x9C5F	Variable connector viewing output 4	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LD-00" on page } \\ & 1295 \end{aligned}$
LC-96	0x9C60	Variable connector viewing output 5	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-96" on page   1294


Para.	Comm.   Addr.	Name	Reference	De fault	Unit	Change	Page
LC-97	0x9C61	Variable connector viewing output 6	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LC-97" on page 1295
LC-98	0x9C62	Variable connector viewing output 7	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LC-98" on page } \\ & 1295 \end{aligned}$
LC-99	0x9C63	Variable connector viewing output 8	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LC-99" on page } \\ & 1295 \end{aligned}$
LD-00	0x9D00	Output of floatingpoint selector module A	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-00" on page   1295
LD-01	0x9D01	Output of floatingpoint selector module B	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-01" on page $1295$
LD-02	0x9D02	Output of floatingpoint selector module C	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-02" on page $1296$
LD-03	0x9D03	Output of floatingpoint selector module D	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-03" on page   1296
LD-04	0x9D04	Output of floatingpoint selector module E	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-04" on page 1296
LD-05	0x9D05	Output of floatingpoint selector module F	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-05" on page $1296$
LD-06	0x9D06	Output of floatingpoint selector module G	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-06" on page   1296
LD-07	0x9D07	Output of floatingpoint selector module H	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-07" on page $1297$
LD-08	0x9D08	Output of floatingpoint absolute value module A	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-08" on page 1297
LD-09	0x9D09	Output of floatingpoint absolute value module $B$	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LD-09" on page } \\ & 1297 \end{aligned}$
LD-10	0x9D0A	Output of floatingpoint absolute value module C	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-10" on page $1297$
LD-11	0x9D0B	Output of floatingpoint absolute value module D	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-11" on page 1297
LD-12	0x9D0C	Output of floatingpoint absolute value module E	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-12" on page $1298$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
LD-13	0x9D0D	Output of floatingpoint ADD/ SUBTRACT module   A	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LD-13" on page } \\ & 1298 \end{aligned}$
LD-14	0x9D0E	Output of floatingpoint ADD/ SUBTRACT module B	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L D-14$ " on page 1298
LD-15	0x9D0F	Output of floatingpoint ADD/ SUBTRACT module C	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L D-15$ " on page 1298
LD-16	0x9D10	Output of floatingpoint ADD/ SUBTRACT module D	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L D-16$ " on page 1298
LD-17	0x9D11	Output of floatingpoint ADD/ SUBTRACT module E	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-17" on page 1298
LD-18	0x9D12	Output of floatingpoint MULTIPLY/ DIVIDE module A	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L D-18$ " on page 1299
LD-19	0x9D13	Output of floatingpoint MULTIPLY/ DIVIDE module B	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-19" on page 1299
LD-20	0x9D14	Output of floatingpoint MULTIPLY/ DIVIDE module C	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-20" on page $1299$
LD-21	0x9D15	Output of floatingpoint MULTIPLY/ DIVIDE module D	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-21" on page 1299
LD-22	0x9D16	Output of floatingpoint MULTIPLY/ DIVIDE module E	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-22" on page $1299$
LD-23	0x9D17	Output of floatingpoint filter module A	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-23" on page 1300
LD-24	0x9D18	Output of floatingpoint filter module B	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-24" on page 1300
LD-25	0x9D19	Output of floatingpoint filter module C	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-25" on page 1300
LD-26	0x9D1A	Output of floatingpoint filter module D	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-26" on page $1300$


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
LD-27	0x9D1B	Output of floatingpoint limiting module A	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-27" on page 1300
LD-28	0x9D1C	Output of floatingpoint limiting module B	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-28" on page $1301$
LD-29	0x9D1D	Output of floatingpoint limiting module C	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-29" on page 1301
LD-30	0x9D1E	Output of floatingpoint limiting module D	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-30" on page 1301
LD-31	0x9D1F	Output of word-tofloating point module A	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-31" on page 1301
LD-32	0x9D20	Output of word-tofloating point module B	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-32" on page 1301
LD-33	0x9D21	Output of word-tofloating point module C	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-33" on page $1302$
LD-34	0x9D22	Output of word-tofloating point module D	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-34" on page 1302
LD-35	0x9D23	Output of DWord-to-floating point module A	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-35" on page 1302
LD-36	0x9D24	Output of DWord-to-floating point module B	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-36" on page 1302
LD-37	0x9D25	Output of DWord-to-floating point module C	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-37" on page $1302$
LD-38	0x9D26	Output of DWord-to-floating point module D	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-38" on page $1303$
LD-39	0x9D27	Force value of motor-driven potentiometer	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LD-39" on page } \\ & 1303 \end{aligned}$
LD-40	0x9D28	Reset value of motor-driven potentiometer	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-40" on page $1303$
LD-41	0x9D29	Maximum value of motor-driven potentiometer	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LD-41" on page } \\ & 1303 \end{aligned}$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
LD-42	0x9D2A	Minimum value of motor-driven potentiometer	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-42" on page   1303
LD-43	0x9D2B	Initial value of motor-driven potentiometer	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L D-43$ " on page $1303$
LD-44	0x9D2C	Process operation output value of motor-driven potentiometer	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L D-44$ " on page $1304$
LD-45	0x9D2D	Final output value of motor-driven potentiometer	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-45" on page $1304$
LD-46	0x9D2E	Output of multipoint curve module A	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-46" on page $1304$
LD-47	0x9D2F	Output of multipoint curve module B	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-47" on page $1304$
LD-48	0x9D30	Multi-reference selection output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-48" on page $1304$
LD-49	0x9D31	Multi-reference 1 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-49" on page $1305$
LD-50	0x9D32	Multi-reference 2 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-50" on page $1305$
LD-51	0x9D33	Multi-reference 3 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-51" on page $1305$
LD-52	0x9D34	Multi-reference 4 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-52" on page 1305
LD-53	0x9D35	Multi-reference 5 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LD-53" on page } \\ & 1305 \end{aligned}$
LD-54	0x9D36	Multi-reference 6 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-54" on page 1306
LD-55	0x9D37	Multi-reference 7 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-55" on page $1306$
LD-56	0x9D38	Multi-reference 8 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-56" on page $1306$
LD-57	0x9D39	Multi-reference 9 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-57" on page $1306$
LD-58	0x9D3A	Multi-reference 10 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-58" on page $1306$
LD-59	0x9D3B	Multi-reference 11 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-59" on page 1307


Para.	Comm. Addr.	Name	Reference	De   fault	Unit	Change	Page
LD-60	0x9D3C	Multi-reference 12 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-60" on page 1307
LD-61	0x9D3D	Multi-reference 13 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-61" on page $1307$
LD-62	0x9D3E	Multi-reference 14 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-62" on page 1307
LD-63	0x9D3F	Multi-reference 15 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LD-63" on page } \\ & 1307 \end{aligned}$
LD-64	0x9D40	Multi-reference 16 output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-64" on page 1308
LD-65	0x9D41	Per-unit constant value 1	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-65" on page $1308$
LD-66	0x9D42	Per-unit constant value 2	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-66" on page $1308$
LD-67	0x9D43	Per-unit constant value 3	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-67" on page 1308
LD-68	0x9D44	Per-unit constant value 4	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-68" on page $1308$
LD-69	0x9D45	Per-unit constant value 5	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-69" on page 1308
LD-70	0x9D46	Per-unit constant value 6	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	" $L D-70$ " on page 1309
LD-71	0x9D47	Per-unit constant value 7	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-71" on page 1309
LD-72	0x9D48	Per-unit constant value 8	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-72" on page 1309
LD-73	0x9D49	Per-unit constant value 9	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LD-73" on page } \\ & 1309 \end{aligned}$
LD-74	0x9D4A	Per-unit constant value 10	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LD-74" on page } \\ & 1309 \end{aligned}$
LD-75	0x9D4B	Per-unit constant value 11	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LD-75" on page } \\ & 1310 \end{aligned}$
LD-76	0x9D4C	Per-unit constant value 12	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LD-76" on page } \\ & 1310 \end{aligned}$
LD-77	0x9D4D	Per-unit constant value 13	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { "LD-77" on page } \\ & 1310 \end{aligned}$
LD-78	0x9D4E	Per-unit constant value 14	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { " } L D-78 \text { " on page } \\ & 1310 \end{aligned}$
LD-79	0x9D4F	Per-unit constant value 15	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	$\begin{aligned} & \text { " } L D-79 \text { " on page } \\ & 1310 \end{aligned}$
LD-80	0x9D50	Per-unit constant value 16	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-80" on page $1311$


Para.	Comm.   Addr.	Name	Reference	De   fault	Unit	Change	Page
LD-81	0x9D51	Per-unit constant value 17	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-81" on page $1311$
LD-82	0x9D52	Per-unit constant value 18	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-82" on page   1311
LD-83	0x9D53	Per-unit constant value 19	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-83" on page 1311
LD-84	0x9D54	Per-unit constant value 20	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-84" on page 1311
LD-85	0x9D55	Per-unit constant value 21	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-85" on page $1312$
LD-86	0x9D56	Updown offset	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-86" on page $1312$
LD-87	0x9D57	Percentage of current length relative to target length	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-87" on page $1312$
LD-88	0x9D58	Percentage of current count value relative to target count value	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-88" on page $1312$
LD-89	0x9D59	Percentage of AO1 value written through communication	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-89" on page   1312
LD-90	0x9D5A	Percentage of AO2 value written through communication	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-90" on page $1313$
LD-91	0x9D5B	Percentage of HDO value written through communication	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-91" on page $1313$
LD-92	0x9D5C	Current value based on the maximum 1000 A per-unit value	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-92" on page $1313$
LD-93	0x9D5D	Voltage value based on the maximum 1000 V per-unit value	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-93" on page $1313$
LD-94	0x9D5E	AO output torque absolute value output	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-94" on page $1313$
LD-95	0x9D5F	AO output torque $\begin{aligned} & \text { (-200.0\% to } \\ & +200.0 \%) \end{aligned}$	0.0\% to 6553.5\%	0.0	\%	Unchangea ble	"LD-95" on page $1313$

Copyright © Shenzhen Inovance Technology Co., Ltd

## Suzhou Inovance Technology Co., Ltd.

Add.: No. 16 Youxiang Road, Yuexi Town,
Wuzhong District, Suzhou 215104, P.R. China
Tel: (0512) 66376666
Fax: (0512) 62856720


[^0]:    F0-05 Base value of range of auxiliary frequency source for superposition
    Address: 0xF005
    Min.: 0
    Max.: 1
    Default: 0
    Value Range:
    0 : Relative to maximum frequency
    1: Relative to main frequency $X$

    ## Description

    0 : Relative to maximum frequency
    The auxiliary frequency at superposition is equal to the auxiliary frequency source range (F0-06) multiplied by the maximum frequency (F0-10).
    1: Relative to main frequency $X$
    The auxiliary frequency at superposition is equal to the auxiliary frequency source range (F0-06) multiplied by the main frequency $X$.

    ## F0-06 Range of auxiliary frequency source $Y$ for superposition

    | Address: | $0 x F 006$ | Effective mode: |  |
    | :--- | :--- | :--- | :--- |
    | Min.: | 0 | Unit: | $\%$ |
    | Max.: | 150 | Data type: | Ulnt16 |
    | Default: | 100 | Change: | Changeable at any time |

    Value Range:
    0\% to 150\%

    ## Description

    0 : Relative to maximum frequency
    The auxiliary frequency at superposition is equal to the auxiliary frequency source range (F0-06) multiplied by the maximum frequency (F0-10).
    1: Relative to main frequency $X$
    The auxiliary frequency at superposition is equal to the auxiliary frequency source range (F0-06) multiplied by the main frequency $X$.

    ## F0-07 Frequency source superposition

    | Address: | $0 \times F 007$ | Effective mode: | - |
    | :--- | :--- | :--- | :--- |
    | Min.: | 0 | Unit: | - |
    | Max.: | 34 | Data type: | Ulnt16 |
    | Default: | 0 | Change: | Changeable at any time |

    Value Range:
    Ones: Frequency reference
    0 : Main frequency source $X$
    1: Main and auxiliary operation result (based on tens)
    2: Switchover between main frequency source $X$ and auxiliary frequency source $Y$
    3: Switchover between main frequency source $X$ and the main and auxiliary operation result
    4: Switchover between auxiliary frequency source $Y$ and the main and auxiliary operation result
    Tens: Main and auxiliary frequency reference operation
    0 : Main + Auxiliary
    1: Main - Auxiliary
    2: Max. (main, auxiliary)
    3: Min. (main, auxiliary)
    4: Main x Auxiliary

[^1]:    0 : No check (8-N-2)
    1: Even parity (8-E-1)
    2: Odd parity (8-0-1)
    3: No check (8-N-1)
    4: No check (7-N-2)
    5: Even parity (7-E-1)
    6: Odd parity (7-O-1)
    7: No check (7-N-1)
    Description
    This parameter is valid for Modbus.

    ## FD-02 Local address

    Address: 0xFD02 Effective mode:
    Min.: 1
    Max.: 247
    Default: 1
    Value Range:
    1 to 247
    Description
    The value ranges from 1 to 247.
    This parameter is valid for Modbus, CANlink, and CANopen.

    ## FD-03 Modbus response delay

    Address: 0xFD03 Effective mode:
    Min.: $0 \quad$ Unit: ms
    Max.: $20 \quad$ Data type: Ulnt16
    Default: 2
    Value Range:
    0 ms to 20 ms

    ## Description

    The value ranges from 0 to 20 ms . This parameter is valid for Modbus.

    ## FD-04 Communication timeout time

    Address: 0xFD04 Effective mode: -
    Min.: 0.0 Unit: S
    Max.: $60.0 \quad$ Data type: Ulnt16
    Default: $0.0 \quad$ Change: Changeable at any time

    ## Value Range:

    0.0 s to 60.0s

    ## Description

    0.0: Timeout disabled
    0.1 s to 60.0 s : Timeout time

    FD-06 Current resolution read by communication
    Address: 0xFD06 Effective mode: -
    Min.: 0 Unit: -
    Max.: 1 Data type: Ulnt16
    Default: $0 \quad$ Change: Changeable at any time

    ## Value Range:

    $0: 0.01 \mathrm{~A}$ (valid when $\leqslant 55 \mathrm{~kW}$ )
    1: 0.1 A

[^2]:    Same as C4-55

[^3]:    CE-70 ImCsr2 hysteresis switchover frequency lower limit (below which the hysteresis condition does not take effect) as a percentage of the rated frequency
    Address: 0xCE46 Effective mode: -
    Min.: 40 Unit: \%
    Max.: $80 \quad$ Data type: Ulnt16
    Default: $60 \quad$ Change: Changeable at any time
    Value Range:
    40\% to 80\%
    Description
    CE-71 ImCsr2 current loop Kss adjustment
    Address: 0xCE47 Effective mode:
    Min.: 0.1 Unit
    Max.: $10.0 \quad$ Data type: Ulnt16
    Default: 1.0
    Change: Changeable at any time
    Value Range:
    0.1 to 10.0
    Description

    CE-72 Proportional gain adjustment coefficient corresponding to the maximum torque when proportional gain is adjusted with load
    Address: 0xCE48 Effective mode:

    | Min.: | 0.1 | Unit: | - |
    | :--- | :--- | :--- | :--- |
    | Max.: | 1.0 | Data type: | Ulnt16 |

    Default: 0.5 Change: Changeable at any time
    Value Range:
    0.1 to 1.0

    Description

    CE-73 Torque upper limit setpoint as a percentage of rated torque when proportional gain is adjusted with load
    Address: 0xCE49 Effective mode: -
    Min.: CE-74 Unit: \%
    Max.: 300 Data type: Ulnt16
    Default: $200 \quad$ Change: Changeable at any time
    Value Range:
    CE-74 to 300\%
    Description

    | CE-74 | Torque lower limit setpoint as a percentage of rated torque when proportional gain is adjusted |  |  |
    | :--- | :--- | :--- | :--- |
    |  | with load |  |  |
    | Address: | $0 \times C E 4 A$ | Effective mode: | - |
    | Min.: | 10 | Unit: | $\%$ |
    | Max.: | CE-73 | Data type: | Ulnt16 |
    | Default: 100 | Change: | Changeable at any time |  |
    | Value Range: |  |  |  |
    | 10\% to CE-73 |  |  |  |

[^4]:    - 

[^5]:    Effective mode:

